

# Alabama's Water Quality Assessment and Listing Methodology

January 2008

#### THIS PAGE LEFT INTENTIONALLY BLANK

# **Table of Contents**

| List of Acronyms                                           |
|------------------------------------------------------------|
| 1.0 Introduction                                           |
| 2.0 Alabama's Water Quality Standards                      |
| 3.0 Waterbody Categorization                               |
| 4.0 The Water Quality Assessment Process                   |
| 4.1 Outstanding Alabama Waters (OAW)                       |
| 4.1.1 Minimum Data Requirement for OAW Waters              |
| 4.1.2 Use Support Assessment for OAW Waters 17             |
| 4.2 Public Water Supply (PWS)                              |
| 4.2.1 Minimum Data Requirement for PWS Waters              |
| 4.2.2 Use Support Assessment for PWS Waters                |
| 4.3 Swimming and Other Whole Body Water-Contact Sports (S) |
| 4.3.1 Minimum Data Requirement for S Waters                |
| 4.3.2 Use Support Assessment for S Waters                  |
| 4.4 Shellfish Harvesting (SH)                              |
| 4.4.1 Minimum Data Requirement for SH Waters               |
| 4.4.2 Use Support Assessment for SH Waters                 |
| 4.5 Fish and Wildlife (F&W)                                |
| 4.5.1 Minimum Data Requirement for F&W Waters              |
| 4.5.2 Use Support Assessment for F&W Waters                |
| 4.6 Limited Warmwater Fishery (LWF)                        |
| 4.6.1 Minimum Data Requirement for LWF Waters              |
| 4.6.2 Use Support Assessment for LWF Waters                |
| 4.7 Agricultural and Industrial Water Supply (A&I)         |
| 4.7.1 Minimum Data Requirement for A&I Waters              |
| 4.7.2 Use Support Assessment for A&I Waters                |
| 4.8 Other Data considerations and Requirements             |
| 4.8.1 Use of the 10% Rule                                  |
| 4.8.2 Use of Data Older than Six Years                     |

| 4.8.3 Use of Accurate Location Data                                                     |
|-----------------------------------------------------------------------------------------|
| 4.8.4 Use of Temporally Independent Samples and Data from Continuous Monitoring 56      |
| 4.8.5 Use of Fish / Shellfish Consumption Advisories and Shellfish Growing Area         |
| Classifications                                                                         |
| 4.8.6 Use of Biological Assessments                                                     |
| 4.8.7 Use of Data Collected by Others                                                   |
| 4.8.8 Use of Bacteria Data                                                              |
| 4.8.9 Consideration of Stream Flow and Method Detection Limits                          |
| 4.9 Quality Control / Quality Assurance Requirements                                    |
| 4.10 Minimum Sample Size and Allowable Number of Water Quality Criterion Exceedances 63 |
| 5.0 Removing a Waterbody from Category 5                                                |
| 6.0 Estimating the Size of the Assessed Waterbody                                       |
| 7.0 Ranking and Prioritizing Impaired Waters                                            |
| 8.0 Schedule for Assessing State Waters                                                 |
| 9.0 Public Participation                                                                |
| 10.0 References                                                                         |
| APPENDIX                                                                                |

## List of Acronyms

|                   | Agriculture and Industry water supply use       |
|-------------------|-------------------------------------------------|
| A&I               | classification                                  |
| ADB               | Assessment Database                             |
| ADEM              | Alabama Department of Environmental Management  |
| ADPH              | Alabama Department of Public Health             |
| AEMC              | Alabama Environmental Management Commission     |
| AWIC              | Alabama Water Improvement Commission            |
| CaCO <sub>3</sub> | Calcium Carbonate                               |
| CBOD <sub>5</sub> | Five-Day Carbonaceous Biochemical Oxygen Demand |
| $CI^{-1}$         |                                                 |
|                   | Chlorides                                       |
| CWA               | Clean Water Act                                 |
| DO                | Dissolved Oxygen                                |
| DRP               | Dissolved Reactive Phosphorus                   |
| EPA               | Environmental Protection Agency                 |
| EPT               | Ephemeroptera/Plecoptera/Trichoptera            |
| F&W               | Fish and Wildlife                               |
| GIS               | Geographical Information System                 |
| GPS               | Global Positioning System                       |
| IBI               | Index of Biotic Integrity                       |
| LWF               | Limited Warmwater Fishery                       |
| MDL               | Method Detection Limit                          |
| NH3-N             | Ammonia Nitrogen                                |
| NHD               | National Hydrography Dataset                    |
| NO3+NO2-N         | Nitrate + Nitrite Nitrogen                      |
| NPDES             | National Pollutant Discharge Elimination System |
| NTU               | Nephelometric Turbidity Units                   |
| OAW               | Outstanding Alabama Waters                      |
| ONRW              | Outstanding National Resource Water             |
| PWS               | Public Water Supply                             |
| QAPP              | Quality Assurance Project Plan                  |
|                   | Swimming and Other Whole Body Water-Contact     |
| S                 | Sports                                          |
| SH                | Shellfish Harvesting                            |
|                   | Standard Operating Procedures/Quality Control   |
| SOP/QCA           | Assurance                                       |
| SW                | Surface Water                                   |
| TDS               | Total Dissolved Solids                          |
| TKN               | Total Kjeldahl Nitrogen                         |
| TMDL              | Total Maximum Daily Load                        |
| Total-P           | Total Phosphorus                                |
| TSS               | Total Suspended Solids                          |
| USEPA             | United States Environmental Protection Agency   |
| USGS              | United States Geological Survey                 |
|                   | Wadeable Multi-habitat Bioassessment - EPT      |
| WMB-EPT           | Families                                        |
| WMB-I             | Intensive Wadeable Multi-habitat Bioassessment  |
|                   |                                                 |

#### **1.0** Introduction

Alabama has long been recognized for its abundant water resources. With over 77,000 miles of perennial and intermittent streams and rivers, 481,757 acres of publicly-owned lakes and reservoirs, 610 square miles of estuaries, and 50 miles of coastal shoreline, the state is faced with a tremendous challenge to monitor and accurately report on the condition of its surface waters (ADEM, 2004).

Sections 305(b) and 303(d) of the federal Clean Water Act direct states to monitor and report the condition of their water resources. Recent guidance published by the Environmental Protection Agency (EPA) provides a basic framework that states may use to fulfill this reporting requirement. *Guidance for 2006 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act* provides recommendations on the delineation of assessment units, reporting the status and progress towards comprehensive assessment of state waters, attainment of state water quality standards and the basis for making attainment decisions, schedules for additional monitoring, listing waters which do not fully support their designated uses (i.e. impaired waters), and schedules to address impaired waters (EPA, 2005).

Alabama's assessment and listing methodology establishes a process, consistent with EPA's guidance, to assess the status of surface waters in Alabama relative to the designated uses assigned to each waterbody. The methodology will also describe the procedure to assign the size or extent of assessed waterbodies. This methodology is not intended to limit the data or information that the State considers as it prepares an integrated water quality assessment report. Rather, it is intended to establish a rational and consistent process for reporting the status of Alabama's surface waters relative to their designated uses.

#### 2.0 Alabama's Water Quality Standards

State water quality standards are the yardstick by which the condition of the nation's waters is measured. They are intended to protect, restore and maintain the condition of the nation's waters. In Alabama, water quality standards were first adopted in 1967 by the Alabama Water Improvement Commission (AWIC). In 1982 the Alabama Department of Environmental Management (ADEM) was formed by merging AWIC with elements of the Alabama Department of Public Health (ADPH). Since first being adopted in 1967, Alabama's water quality standards have been amended on numerous occasions (ADEM, 2005).

The Alabama Environmental Management Commission (AEMC) has the authority to adopt revisions to the ADEM Administrative Code. The Designated Uses (Chapter 335-6-11 of the Administrative Code) and the Water Quality Criteria (Chapter 335-6-10 of the Administrative Code) are reviewed once every three years pursuant to EPA regulations at 40 CFR Part 131.20. This review process is known as the triennial review and affords the public the opportunity to make comments and suggestions regarding Alabama's water quality standards. Any changes that ADEM may propose as a result of the review process are subject to further public comment before consideration by the AEMC.

Water quality standards consist of three components: designated uses, numeric and narrative criteria, and an antidegradation policy. These three components have been compared to the three legs of a stool which work together to provide water quality protection for the nation's surface waters.

Designated uses describe the best uses reasonably expected of waters. These uses should include such activities as recreation in and on the water, public water supply, agricultural and industrial water supply, and habitat for fish and wildlife. While all waters may not support all of these uses, the goal of the Clean Water Act is to provide protection of water quality consistent with "fishable/swimable" uses, where attainable. In Alabama, waters can be assigned one or more of seven designated uses pursuant to ADEM Administrative Code 335-6-11. These uses include:

- 1. Outstanding Alabama Water (OAW)
- 2. Public Water Supply (PWS)
- 3. Shellfish Harvesting (SH)
- 4. Swimming and Other Whole Body Water-Contact Sports (S)
- 5. Fish and Wildlife (F&W)
- 6. Limited Warmwater Fishery (LWF)
- 7. Agricultural and Industrial Water Supply (A&I)

Designated uses 1 through 5 in the list above are considered by EPA to be consistent with the "fishable/swimable" goal and, therefore, provide for protection of aquatic life and human health.

The State also has one special designation – Outstanding National Resource Water (ONRW). These high quality waters are protected from new or expanded point sources of pollutants and may be assigned to any one of the first five designated uses in the list above.

Numeric and narrative criteria provide the means to measure the degree to which the quality of waters is consistent with their designated use or uses. The criteria are intended to provide protection of the water quality commensurate with the water's use, to include protection of human health. Narrative criteria generally describe minimum conditions necessary for all uses and may include certain restrictions for specific uses. Numeric criteria include pollutant concentrations or physical characteristics necessary to protect a specific designated use. Alabama's narrative and numeric criteria are defined in ADEM Administrative Code 335-6-10.

The state's antidegradation policy provides for protection of high quality waters that constitute an outstanding national resource (Tier 3), waters whose quality exceeds the levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water (Tier 2), and existing instream water uses and the level of water quality necessary to protect the existing uses (Tier 1). In Tier 3 waters, ADEM Administrative Code 335-6-10-.10 prohibits new or expanded point source discharges. In Tier 2 waters, ADEM Administrative Code 335-6-10-.04 provides for new or expanded discharge of pollutants only after intergovernmental coordination, public participation, and a demonstration that the new or expanded discharge is necessary for important economic or social development. Alabama's water quality standards regulations (ADEM Administrative Code 335-6-10 and 335-6-11) are included in the **Appendix** of this document.

#### 3.0 Waterbody Categorization

The water quality assessment process begins with the collection, compilation, and evaluation of water quality data and information for the purpose of determining if a waterbody is supporting all of its designated uses. It is imperative that the data and information used in the process be of adequate quality and provides an accurate indication of the water quality conditions in the waterbody since decisions arising from the assessment process may have long-term consequences. Issues of data sufficiency and data quality must be addressed to ensure that use support decisions are based on accurate data and information. However, the minimum data requirements discussed in this methodology are not intended to exclude data and information from the assessment process but are a guide for use in designing monitoring activities to assess the State's surface waters and to ensure that decisions are made using the best available data. The goal is to accurately describe the status of surface waters where possible and to identify waters where more information is needed to make use support decisions.

The use support assessment process considers all existing and readily available data and information with a goal of placing waterbodies in one of five separate categories. This process is specific to the highest designated use assigned to the waterbody and is described by the flow chart depicted in **Figure 1**.

Outstanding Alabama Limited Warmwater Agricultural & Industrial Public Water Supply Swimming Shellfish Harvesting Fish & Wildlife Water Supply Water Fishery OAW Use Support PWS Use Support S Use Support SH Use Support F&W Use Support LWF Use Support A&I Use Support Assessment Assessment Assessment Assessment Assessment Assessment Assessment Category I Category II Category Category Category Category Category Category Category lla lla lla lla lla lla lla Category Category Category Category Category Category Category llb llb llb llb llb llb llb Category III Category III Category III Category II Category III Category III Category III Category \ Category V Category V Category V Category V Category V Category V approved TMDL Category Category Category Category Category Category Category IVa IVa IVa IVa IVa IVa IVa other other other other other other other Category Category Category Category Category Category Category IVb IVb IVb IVb IVb IVb IVb pollution pollution pollution pollution pollution pollution pollution Category Category Category Category Category Category Category IVc IVc IVc IVc IVc IVc IVc

Figure 1 Alabama's Waterbody Assessment Process

Waterbody data and information are evaluated using the use support assessment methodology and the waterbody is assigned to one of the following categories.

#### Category 1

Waters that are attaining all applicable water quality standards.

#### Category 2

Waters for which existing and readily available data, which meets the State's requirements as described in Section 4.9, supports a determination that some water quality standards are met and there is insufficient data to determine if remaining water quality standards are met. Attainment status of the remaining standards is unknown because data is insufficient. Waters for which the minimum data requirements (as described later) have not been met will be placed in Category 2.

1. Category 2A

For these waters available data does not satisfy minimum data requirements but there is a high potential for use impairment based on the limited data. These waters will be given a higher priority for additional data collection.

2. Category 2B

For these waters available data does not satisfy minimum data requirements but there is a low potential for use impairment based on the limited data. These waters will be included in future basin monitoring rotations as resources allow.

#### Category 3

Waters for which there is no data or information to determine if any applicable water quality standard is attained or impaired. These waters will be considered unassessed.

#### Category 4

Waters in which one or more applicable water quality standards are not met but establishment of a TMDL is not required.

1. Category 4A

Waters for which all TMDLs needed to result in attainment of all applicable WQSs have been approved or established by EPA.

2. *Category 4B* 

Waters for which other required control measures are expected to attain applicable water quality standards in a reasonable period of time. Adequate documentation is required to indicate that the proposed control mechanisms will address all major pollutant sources and should result in the issuance of more stringent effluent limitations required by either Federal, State, or local authority or the implementation of "other pollution control requirements (e.g., best management practices) required by local, state, or federal authority" that are stringent enough to implement applicable water quality standards. Waters will be evaluated on a case by case basis to determine if the proposed control measures or activities under another program can be expected to address the cause of use impairment within a reasonable time period. A reasonable time period may vary depending on the degree of technical difficulty or extent of the modifications to existing measures needed to achieve water quality standards. EPA's 2006 assessment and listing guidance offers additional clarification of what might be expected of waters placed in Category 4b.

*3. Category* 4*C* 

Waters in which the impairment is not caused by a pollutant. This would include waters which are impaired due to natural causes or pollution. A pollutant is defined in Section 502(6) of the Clean Water Act (CWA) as "spoil, solid waste, incinerator residue, sewerage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt, and industrial, municipal, and agricultural waste discharged into water." Pollution is defined as "the man-made or man-induced alteration of the chemical, physical, or radiological integrity of a waterbody." Invasive plants and animal species are considered pollution.

#### Category 5

Waters in which a pollutant has caused or is suspected of causing impairment. If the impairment is caused by an identified pollutant the water should be placed in Category 5. All "exsisting and readily available data and information" will be used to determine when a water should be placed in Category 5. Waters in this category comprise the State's list of impaired waters or §303(d) list.

When the information used to assess the waterbody consist primarily of observed conditions, (limited water quality data, water quality data older than six years, or estimated impacts from observed or suspected activities), the assessment is generally referred to as an evaluated assessment (Category 2). Evaluated assessments usually require the use of some degree of professional judgment by the person making the assessment and these assessments are not considered sufficient to place waters in or to remove waters from the impaired category (Category 5) or the fully supporting category (Category 1).

Monitored assessments (Categories 1 and 5) are based on existing and readily available chemical, physical, and/or biological data collected during the previous six years, using commonly accepted and well-documented methods. Existing and readily available data are data that have been collected or assembled by the Department or other groups or agencies and are available to the public. Data older than six years old may be used on a case-by-case basis when assessing waters that are not currently included in Category 1 or Category 5. (For example, older data could be used if conditions, such as land use, have not changed.) Much of the remainder of this document will pertain to the use of monitoring data to make use support determinations.

#### 4.0 The Water Quality Assessment Process

The water quality assessment process is different for each of Alabama's seven designated uses because each use is protected by specific numeric and narrative water quality criteria. As such, the methodology for assigning a given waterbody to one of the five categories may have different data requirements and thresholds for determining the waterbody's use support status. In addition, interpretation of narrative criteria may differ by classified use and waterbody type. Data and information that may be considered when assessing state waters could include water chemistry data such as chemical specific concentration data, land use or land cover data, physical data such as water temperature and conductivity, habitat evaluations, biological data such as macroinvertebrate and fish community assessments, and bacteriological data such as fecal coliform or enterococci counts. Waters classified as "Fish and Wildlife" or higher must provide protection of the aquatic life use. All classifications must provide protection of the human health use.

Alabama's designated uses embody a tiered approach to aquatic life protection. The assessment process recognizes this by allowing for different minimum data requirements and varying criteria exceedance thresholds. For example, in waters classified as OAW, Alabama's highest designated use, the assessment methodology requires less data and allows for fewer exceedances of a toxic criterion to be considered for inclusion in Category 5. The assessment process for waters classified as A&I, Alabama's lowest designated use, requires more data and allows for slightly more exceedances of toxic criteria. This sliding scale assessment approach provides for existing differences in the aquatic communities and habitat conditions represented by streams with Alabama's various designated uses.

In order to ensure consistent and accurate assessment of a waterbody's support status and proper categorization of the waterbody, minimum data requirements must be defined that address data quality and data quantity. Data requirements will not only be dictated by the classified use of the waterbody but also by the waterbody type to account for the different monitoring strategies that may be used for different waterbody types. The minimum data requirements are expected to guide future water quality monitoring activities and provide the basis for making use support decisions. However, in those cases where a data set may not include all of the elements specified by the minimum data requirements, a decision to include the water in Category 5 can still be made provided the available data indicates a clear impairment and the cause of the impairment is evident. These decisions will be made on a case by case basis and the decision will be documented in the ADB.

In the assessment methodology, the terms "Level IV WMB-I", "Level III WMB-EPT", "Fish IBI", "habitat assessment", "conventional parameter samples", "pesticide/herbicide samples", "inorganic samples", "chlorophyll *a* samples", and "fish tissue analysis" are used. For the purposes of this assessment methodology, these terms will have the following meanings.

#### Level IV WMB-I:

• An intensive multihabitat assessment of the macroinvertebrate community in a wadeable stream involving the collection of macroinvertebrates for identification and enumeration in a laboratory

#### Level III WMB-EPT:

• A screening-level multihabitat assessment of the macroinvertebrate community in a stream focusing on the collection, field processing and enumeration of the pollution-sensitive Ephemeroptera, Plecoptera, and Trichoptera taxa

#### <u>Fish IBI:</u>

• A multihabitat fish community assessment method developed by the Geological Survey of Alabama (O'Neil and Shepard, 1998) for streams in the Black Warrior and Cahaba River basins

#### Habitat assessment:

• An assessment of available aquatic habitat in a stream which considers habitat characteristics important to supporting a diverse and health aquatic community

<u>Conventional parameter samples</u> will include analyses for the following constituents:

- Collector Name
- Date (Month, Day, Year)
- Time (24 hr)
- Air Temperature, °C
- Water Temperature, °C
- Total Stream Depth at Sampling Point, feet
- Sample Collection Depth, feet
- Dissolved Oxygen (DO), mg/l
- Conductivity, µmhos/cm @ 25C
- Salinity, ppt (coastal waters only)
- pH, s.u.
- Turbidity, NTU (with Nephelometer, not multiprobe)
- Weather Conditions
- Stream Flow (where appropriate)
- Five-day Carbonaceous Biochemical Oxygen Demand (CBOD5), mg/l
- Alkalinity, mg/l
- Total Suspended Solids (TSS), mg/l
- Total Dissolved Solids (TDS), mg/l
- Dissolved Reactive Phosphorus (DRP), mg/l (field filtered, separate bottle)
- Ammonia Nitrogen (NH3-N), mg/l
- Nitrate + Nitrite Nitrogen (NO3+ NO2-N), mg/l
- Total Kjeldahl Nitrogen (TKN), mg/l
- Total Phosphorus (Total-P), mg/l
- Hardness, mg/l as CaCO<sub>3</sub> (measured when metals samples are collected)

**<u>Pesticide/Herbicide samples</u>** will include analyses for the following constituents:

- Organochlorine Pesticides by method SW8081A
- Organophosphorus Pesticides by method SW8141
- Chlorinated Herbicides by method SW8151

• Atrazine by Immunoassay

Inorganic (metals) samples will include analyses for the following constituents:

- "Dissolved" Antimony (Sb), ug/l
- "Dissolved" Arsenic<sup>+3</sup> (As<sup>+3</sup>), ug/l
- "Dissolved" Cadmium (Cd), ug/l
- "Dissolved" Chromium<sup>+3</sup> (Cr<sup>+3</sup>), ug/l
- "Dissolved" Copper (Cu), ug/l
- "Dissolved Lead (Pb), ug/l
- "Dissolved" Nickel (Ni), ug/l
- "Dissolved" Silver (Ag), ug/l
- "Dissolved" Thallium (Tl), ug/l
- "Dissolved" Zinc (Zn), ug/l
- "Total" Mercury (Hg), ug/l
- "Total" Selenium (Se), ug/l
- "Dissolved" Selenium (Se), ug/l

#### **Bacteriological Samples**

- Fecal coliform, colonies/100 ml in non-coastal waters and Shellfish Harvesting waters
- o Enterococci, colonies/100 ml in coastal waters

<u>Chlorophyll *a* samples</u> will include the collection of photic zone composite water samples to be processed in accordance with ADEM SOP # 2063 Chlorophyll *a* Collection and Processing.

<u>Fish tissue analysis</u> will include collection and analyses of fish for the following constituents:

- Arsenic
- Cadmium
- Mercury
- Selenium
- Lead
- Chlordane
- 4,4-DDD
- 4,4-DDE
- 4,4-DDT
- 2,4-DDD
- 2.4-DDE
- 2,4-DDT
- Chlorpyrifos
- Dieldrin
- Endosulfan I
- Endosulfan II
- Endrin

- Lindane
- Heptachlor
- Heptachlor Epoxide
- Hexachlorobenzene
- Mirex
- Toxaphene
- PCBs
- Dioxin
- Percent lipids

Fish sampling and tissue preparation procedures are described in the ADEM Standard Operating Procedures And Quality Control Assurance Manual Volume III – Fish Sampling And Tissue Preparation For Bioaccumulative Contaminants (SOP).

Chronic aquatic life criteria will be used to assess a waterbody's use support where the designated use specifies such criteria. In those cases where both human health criteria and chronic aquatic life criteria are included, the more stringent of the criteria will determine the waterbody's use support status. The assessment process, including minimum data requirements and the number of chronic criteria exceedances, is described for each designated use in the remainder of the document.

#### 4.1 Outstanding Alabama Waters (OAW)

The best usage of waters assigned this classification are those activities consistent with the natural characteristics of the waters. Waterbodies assigned the OAW use are high quality waters that constitute an outstanding Alabama resource, such as waters of state parks and wildlife refuges and waters of exceptional recreational or ecological significance. Beneficial uses encompassed within this classification include: aquatic life support and wildlife propagation, fish and shellfish harvesting and consumption, water contact recreation, agricultural irrigation, livestock watering and industrial cooling and process water supply.

#### 4.1.1 Minimum Data Requirement for OAW Waters

For waters with the OAW classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

| SOP# | Title                                                             |
|------|-------------------------------------------------------------------|
| 2040 | Stream Flow Abbreviated Measurement Method                        |
| 2041 | SW Temperature Field Measurements                                 |
| 2042 | SW pH Field Measurements                                          |
| 2043 | SW Specific Conductivity Field Measurements                       |
| 2044 | SW Turbidity Field Measurements                                   |
| 2045 | SW Dissolved Oxygen Field Measurements                            |
| 2046 | Photic Zone Measurements and Visibility Determinations            |
| 2048 | Continuous SW Quality Monitoring Using Datasondes                 |
| 2061 | General SW Quality Sample Collection                              |
| 2062 | Dissolved Reactive Phosphorus (DRP) Collection & Field Processing |
| 2063 | Chlorophyll_a Collection & Field Processing                       |
| 2064 | Fecal Coliform Sample Collection                                  |
| 2065 | Sediment Sampling                                                 |
| 9021 | Quality Control Samples and Field Measurements                    |
| 9025 | Field Equipment Cleaning Procedures                               |
| 9040 | Station, Sample ID & Chain of Custody Procedures                  |
| 6300 | Physical Characterization                                         |
| 6301 | Habitat Assessment                                                |

- ADEM SOP/QCA Manual Volume 2 Aquatic Macroinvertebrate Assessment (2005)
- ADEM SOP/QCA Manual Volume 5 Algal Growth Potential Testing (2004)

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include wadeable rivers and streams, non-wadeable rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. In addition, the minimum data requirement may change if pollutant sources upstream of the monitoring location are likely. Failure to meet the minimum data requirement for any waterbody type will place the waterbody in Category 2. The following list and **Figure 2** describe the minimum data requirements for assessing waters classified as OAW.

- Wadeable River or Stream
  - 1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or 1 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or 1 Level III WMB-EPT plus 1 fish community assessment (IBI). In addition, a habitat assessment must be completed with each biological assessment. Currently, metrics for the fish IBI have been calibrated only in the Black Warrior and Cahaba River basins.
  - 3 conventional parameter samples (including samples for nutrient analysis)
  - 3 bacteriological samples
  - 3 pesticide / herbicide samples
  - 3 inorganic samples
- Non-wadeable River or Stream
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 5 bacteriological samples (1 geometric mean)
  - o 3 pesticide / herbicide samples
  - o 3 inorganic samples
- Reservoirs and Embayments
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 3 bacteriological samples
  - o 1 fish tissue analysis from the reservoir mainstem

- 7 chlorophyll a samples collected between April and October (For the Tennessee River Basin: 6 chlorophyll a samples collected between April and September). Results from critical period sampling (i.e., August sample only) will be used with other critical period data to evaluate chlorophyll a trends at a given sampling location.
- Estuary or Coastal Waters
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 10 bacteriological samples (2 geometric means)
  - o 1 fish tissue analysis

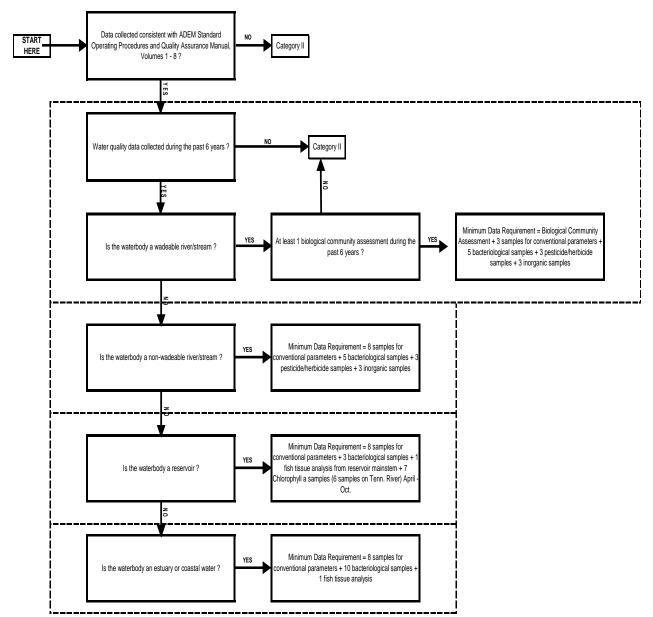



Figure 2 Minimum Data Requirements for the OAW Designated Use

0

Biological community assessment means:

1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or 1 Level III Wadeable Multi-habitat Bioassessment – EPT Families (WMB-EPT) or

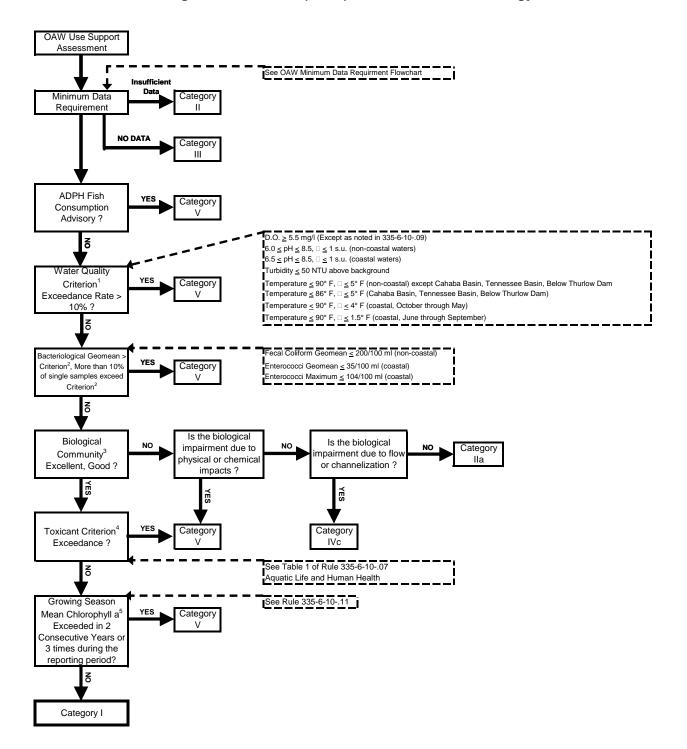
Level III WMB-EPT plus 1 fish community assessment (IBI)

#### 4.1.2 Use Support Assessment for OAW Waters

Once the minimum data requirements have been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the OAW use (Category 1) or not fully supporting the OAW use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, shellfish harvesting closure notices, chemical specific data, bacteriological data, biological community assessments, habitat assessments, periphyton assessments, and toxicity evaluations.

The OAW-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish/shellfish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- The Level IV WMB-I assessment result is "good" or "excellent", or the Level III WMB-EPT assessment is "good" or "excellent" or the Level III WMB-EPT assessment is "good" or "excellent" and the fish community IBI is "fair", "good", or "excellent" (Wadeable streams only).
- The growing season mean chlorophyll *a* criterion has not been exceeded where such a criterion has been established. In making this determination, chlorophyll a values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion.
- There is not an exceedance of any toxic pollutant criterion during the previous six years.
- There are no exceedances of conventional parameters, except due to natural conditions.
- Bacteriological sample results from a single sample in excess of 200 colonies fecal coliform per 100 ml will require a follow-up collection of 5 samples collected during a 30 day period to calculate the geometric mean fecal coliform density in reservoirs and wadeable streams. If the geometric mean fecal coliform density is less than or equal to 200 colonies/100 ml the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters designated as OAW the geometric mean of enterococci sample must be less than 35 colonies/100 ml and not more than 10% of the individual samples (as determined by the binomial distribution function and Table 2) can exceed 104 colonies/100 ml.


The OAW-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The Level IV WMB-I assessment result is less than "good", or the Level III WMB-EPT assessment is less than "good" or the Level III WMB-EPT assessment is less than "good" or the fish community IBI is less than "fair". In addition, a potential anthropogenic cause for the degraded condition must be identified (Wadeable streams only).

- There is an exceedance of a conventional parameter for other than natural causes.
- There is an exceedance of any toxic pollutant criterion during the previous six years.
- The geometric mean fecal coliform density exceeds 200 colonies/100 ml in follow-up samples collected in response to an exceedance of 200 colonies/100 ml in a single sample. In coastal waters the geometric mean enterococci density exceeds 35 colonies/100 ml.
- The growing season mean chlorophyll *a* criterion has been exceeded where such a criterion has been established. In making this determination, chlorophyll *a* values in excess of the criterion which are due to natural conditions (e.g., extreme hydrologic events such as drought or floods) will not be considered as an excursion of the criterion. When a growing season mean chlorophyll <u>a</u> value exceeds the criterion, the reservoir will be identified for resampling the following year and enough samples will be collected to ensure that the minimum data requirements necessary to calculate a growing season mean are met.

Figure 3 illustrates the assessment process for OAW waters.

Figure 3 Outstanding Alabama Water (OAW) Assessment Methodology



1 Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources

2 Bacteriological Criterion refers to both the single sample maximum and geometric mean, see discussion in Section 4.1.2

3 Biological community refers to macroinvertebrates and/or fish in wadeable rivers/streams only (See Minimum Data Requirments)

4 Toxicant Criterion refers to toxics listed in 335-6-10-.07

5 Applies only to reservoirs with established Chlorophyll a criteria and not during extreme hydrologic events

Special Note - Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. These

#### 4.2 Public Water Supply (PWS)

The best usage of waters assigned this classification is as a source of water supply for drinking or food-processing purposes after approved treatment. Waterbodies assigned the PWS use are considered safe for drinking or food-processing purposes if subjected to treatment approved by the Department equal to coagulation, sedimentation, filtration and disinfection, with additional treatment if necessary to remove naturally present impurities. Beneficial uses encompassed within this classification include: aquatic life support and wildlife propagation, fish and shellfish harvesting and consumption, drinking and food-processing water supply, water contact recreation, agricultural irrigation, livestock watering and industrial cooling and process water supply.

#### 4.2.1 Minimum Data Requirement for PWS Waters

For waters with the PWS classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

| SOP# | Title                                                             |
|------|-------------------------------------------------------------------|
| 2040 | Stream Flow Abbreviated Measurement Method                        |
| 2041 | SW Temperature Field Measurements                                 |
| 2042 | SW pH Field Measurements                                          |
| 2043 | SW Specific Conductivity Field Measurements                       |
| 2044 | SW Turbidity Field Measurements                                   |
| 2045 | SW Dissolved Oxygen Field Measurements                            |
| 2046 | Photic Zone Measurements and Visibility Determinations            |
| 2048 | Continuous SW Quality Monitoring Using Datasondes                 |
| 2061 | General SW Quality Sample Collection                              |
| 2062 | Dissolved Reactive Phosphorus (DRP) Collection & Field Processing |
| 2063 | Chlorophyll_a Collection & Field Processing                       |
| 2064 | Fecal Coliform Sample Collection                                  |
| 2065 | Sediment Sampling                                                 |
| 9021 | Quality Control Samples and Field Measurements                    |
| 9025 | Field Equipment Cleaning Procedures                               |
| 9040 | Station, Sample ID & Chain of Custody Procedures                  |
| 6300 | Physical Characterization                                         |
| 6301 | Habitat Assessment                                                |

- ADEM SOP/QCA Manual Volume 2 Aquatic Macroinvertebrate Assessment (2005)
- ADEM SOP/QCA Manual Volume 5 Algal Growth Potential Testing (2004)

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If

these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include wadeable rivers and streams, non-wadeable rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. Failure to meet the minimum data requirement will place the waterbody in Category 2. The following list and **Figure 4** describe the minimum data requirement for assessing waters classified as PWS.

- Wadeable River or Stream
  - 1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or 2 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or 1 Level III WMB-EPT plus 1 fish community assessment (IBI). In addition, a habitat assessment must be completed with each biological assessment. Currently, metrics for the fish IBI have been calibrated only in the Black Warrior and Cahaba River basins.
  - 3 conventional parameter samples (including samples for nutrient analysis)
  - o 3 bacteriological samples

#### OR

- 8 conventional parameter samples (including samples for nutrient analysis)
- o 10 bacteriological samples (2 geometric mean samples)
- o 3 pesticide / herbicide samples
- o 3 inorganic samples
- Non-wadeable River or Stream
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 10 bacteriological samples (2 geometric mean samples)
  - o 3 pesticide / herbicide samples
  - 3 inorganic samples
- Reservoirs and Embayments
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - 3 bacteriological samples
  - o 1 fish tissue analysis from the reservoir mainstem
  - 7 chlorophyll <u>a</u> samples collected between April and October (For the Tennessee River Basin: 6 chlorophyll <u>a</u> samples collected between April and September). Results from critical period sampling (i.e., August sample only) will be used with other critical period data to evaluate chlorophyll a trends at a given sampling location.

- Estuary or Coastal Waters
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 10 bacteriological samples (2 geometric mean samples)
  - 1 fish tissue analysis

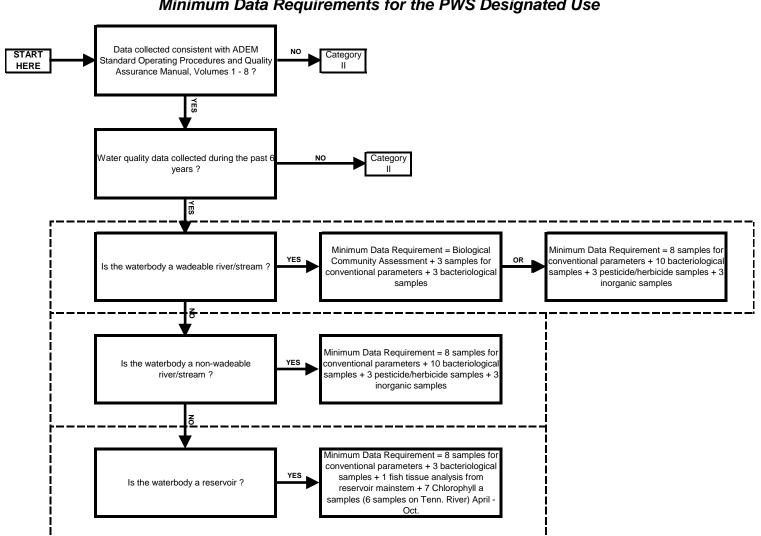



Figure 4 Minimum Data Requirements for the PWS Designated Use

23

Biological community assessment means:

1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or

2 Level III Wadeable Multi-habitat Bioassessments - EPT Families (WMB-EPT) or

1 Level III WMB-EPT plus 1 fish community assessment (IBI)

#### 4.2.2 Use Support Assessment for PWS Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the PWS use (Category 1) or not fully supporting the PWS use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, shellfish harvesting closure notices, chemical specific data, bacteriological data, biological community assessments, habitat assessments, periphyton assessments, drinking water system compliance records, and toxicity evaluations.

The PWS-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish/shellfish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- The Level IV WMB-I assessment result is "fair", "good" or "excellent", or both Level III WMB-EPT assessments are "fair", "good" or "excellent" or the Level III WMB-EPT assessment is "fair", "good" or "excellent" and the fish community IBI is "fair", "good", or "excellent". (Wadeable streams only)
- The growing season mean chlorophyll <u>a</u> criterion has not been exceeded in two consecutive years where such a criterion has been established unless a drinking water system withdrawing from waterbody is not in compliance with a THM requirement. In making this determination, chlorophyll <u>a</u> values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion.
- There is no more than one exceedance of a particular toxic pollutant criterion during the previous six years.
- The water quality criteria exceedance rate for conventional parameters is not more than 10% as determined using the binomial distribution function and Table 2. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity.
- Bacteriological sample results from a single sample in excess of 200 colonies fecal coliform per 100 ml in non-coastal waters and in excess of 35 colonies enterococci per 100 ml in coastal waters will necessitate a follow-up collection of 5 samples during a 30 day period to calculate the geometric mean density. If the geometric mean fecal coliform density in non-coastal waters is less than or equal to 200 colonies/100 ml (June through September) or less than or equal to 1000 colonies/100ml (October through May) the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters (June through September) the geometric mean enterococci density must be less than 35 colonies / 100 ml and 10% or less (as determined using the binomial distribution function and Table 2) of the single samples must be less than 158 colonies/100 ml (June through September) or less than 275 colonies/100 ml (October through May).

The PWS-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The Level IV WMB-I assessment result is less than "fair", or either of the Level III WMB-EPT assessments are less than "fair" or the Level III WMB-EPT assessment is less than "fair" and the fish community IBI is less than "fair". In addition, a potential anthropogenic cause for the degraded condition must be identified using observations made during the sampling events or from information contained in the Department's geographic information system. (Wadeable streams only)
- The water quality criteria exceedance rate for conventional parameters is more than 10% as defined in Table 2.
- There is more than one exceedance of a particular toxic pollutant criterion during the previous six years.
- In non-coastal waters the geometric mean fecal coliform density exceeded 200 colonies/100 ml in follow-up samples collected between June and September in response to an exceedance of 200 colonies/100 ml in a single sample. During October through May the geometric mean fecal coliform density exceeded 1000 colonies/100ml. In coastal waters the enterococci geometric mean density exceeded 35 colonies/100 ml during June through September or more than 10% of the individual samples (as defined in Table 2) exceeded 158 colonies/100 ml or 275 colonies/100 ml during October through May.
- The growing season mean chlorophyll a criterion has been exceeded in two consecutive years or three times during the previous six years where such a criterion has been established or after one exceedance of the chlorophyll a criterion if a drinking water system is out of compliance with the THM requirement. In making this determination, chlorophyll a values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion. However, one exceedance of the chlorophyll a criterion may be sufficient justification for inclusion of a water in Category 5 when the exceedance is determined to be result of increasing nutrient loading from anthropogenic sources. These determinations will be made on a case by case basis and the decision will be documented in the ADB. In any case, when a growing season mean chlorophyll a value exceeds the criterion, the reservoir will be identified for re-sampling the following year and enough samples will be collected to ensure that the minimum data requirements necessary to calculate a growing season mean are met.

Figure 5 illustrates the assessment process for PWS waters.

Figure 5
Public Water Supply (PWS) Categorization Methodology



1 Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources

2 Bacteriological Criterion refers to both the single sample maximum and geometric mean, see discussion in Section 4.2.2

3 Biological community refers to macroinvertebrates and/or fish in wadeable rivers/streams only (See Minimum Data Requirments)

4 Toxicant Criterion refers to toxics listed in 335-6-10-.07

5 Applies only to reservoirs with established Chlorophyll a criteria and not during extreme hydrologic events

Special Note - Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. These

4.3 Swimming and Other Whole Body Water-Contact Sports (S)

The best usage of waters assigned this classification is for swimming and other whole body water-contact sports. Waterbodies assigned the S use, under proper sanitary supervision by the controlling health authorities, will meet accepted standards of water quality for outdoor swimming places and will be considered satisfactory for swimming and other whole body water-contact sports. Beneficial uses encompassed within this classification include: aquatic life support and wildlife propagation, fish and shellfish harvesting and consumption, water contact recreation, agricultural irrigation, livestock watering and industrial cooling and process water supply.

#### 4.3.1 Minimum Data Requirement for S Waters

For waters with the S classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

| SOP# | Title                                                             |
|------|-------------------------------------------------------------------|
| 2040 | Stream Flow Abbreviated Measurement Method                        |
| 2041 | SW Temperature Field Measurements                                 |
| 2042 | SW pH Field Measurements                                          |
| 2043 | SW Specific Conductivity Field Measurements                       |
| 2044 | SW Turbidity Field Measurements                                   |
| 2045 | SW Dissolved Oxygen Field Measurements                            |
| 2046 | Photic Zone Measurements and Visibility Determinations            |
| 2048 | Continuous SW Quality Monitoring Using Datasondes                 |
| 2061 | General SW Quality Sample Collection                              |
| 2062 | Dissolved Reactive Phosphorus (DRP) Collection & Field Processing |
| 2063 | Chlorophyll_a Collection & Field Processing                       |
| 2064 | Fecal Coliform Sample Collection                                  |
| 2065 | Sediment Sampling                                                 |
| 9021 | Quality Control Samples and Field Measurements                    |
| 9025 | Field Equipment Cleaning Procedures                               |
| 9040 | Station, Sample ID & Chain of Custody Procedures                  |
| 6300 | Physical Characterization                                         |
| 6301 | Habitat Assessment                                                |

- ADEM SOP/QCA Manual Volume 2 Aquatic Macroinvertebrate Assessment (2005)
- ADEM SOP/QCA Manual Volume 5 Algal Growth Potential Testing (2004)

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include wadeable rivers

and streams, non-wadeable rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. Failure to meet the minimum data requirement will place the waterbody in Category 2. The following list and **Figure 6** describe the minimum data requirement for assessing waters classified as S.

- Wadeable River or Stream
  - 1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or 2 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or 1 Level III WMB-EPT plus 1 fish community assessment (IBI). In addition, a habitat assessment must be completed with each biological assessment. Currently, metrics for the fish IBI have been calibrated only in the Black Warrior and Cahaba River basins.
  - 3 conventional parameter samples (including samples for nutrient analysis)
  - o 10 bacteriological samples (2 geometric mean samples)

#### OR

- 8 conventional parameter samples (including samples for nutrient analysis)
- o 10 bacteriological samples (2 geometric mean samples)
- o 3 pesticide / herbicide samples
- Non-wadeable River or Stream
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 10 bacteriological samples (2 geometric mean samples)
  - 3 pesticide / herbicide samples
  - o 3 inorganic samples
- Reservoirs and Embayments
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 3 bacteriological samples
  - o 1 fish tissue analysis from the reservoir mainstem
  - 7 chlorophyll <u>a</u> samples collected between April and October (For the Tennessee River Basin: 6 chlorophyll <u>a</u> samples collected between April and September). Results from critical period sampling (i.e., August sample only) will be used with other critical period data to evaluate chlorophyll a trends at a given sampling location.
- Estuary or Coastal Waters

- 8 conventional parameter samples (including samples for nutrient analysis)
- o 10 bacteriological samples (2 geometric mean samples)

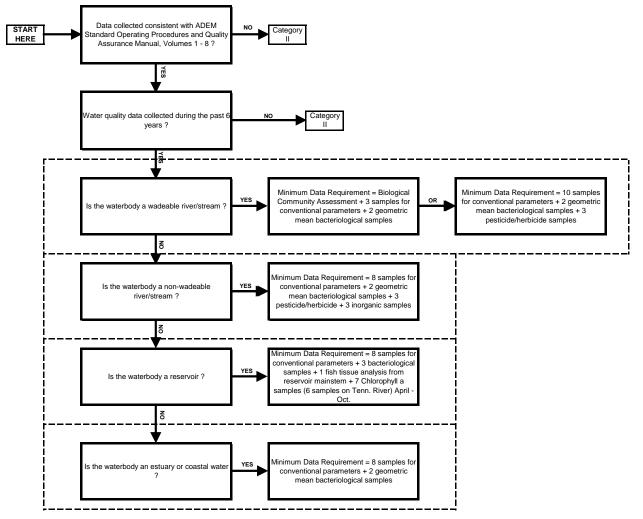



Figure 6 Minimum Data Requirements for the S Designated Use

Biological community assessment means:

1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or 2 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or

1 Level III WMB-EPT plus 1 fish community assessment (IBI)

#### 4.3.2 Use Support Assessment for S Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the S use (Category 1) or not fully supporting the S use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, shellfish harvesting closure notices, chemical specific data, bacteriological data, biological community assessments, habitat assessments, periphyton assessments, beach closure notices and toxicity evaluations.

The S-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish/shellfish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- The Level IV WMB-I assessment result is "fair", "good" or "excellent", or at least one of the Level III WMB-EPT assessments is "fair", "good" or "excellent" or the Level III WMB-EPT assessment is "fair", "good" or "excellent" and the fish community IBI is "fair", "good", or "excellent". (Wadeable streams only)
- There is no more than one exceedance of a particular toxic pollutant criterion during the previous six years.
- The water quality criteria exceedance rate for conventional parameters is not more than 10% as determined using the binomial distribution function and Table 2. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity. Determination of the 10% exceedance rate is discussed in Section 4.8.
- Bacteriological sample results from a single sample in excess of 200 colonies fecal coliform per 100 ml will require a follow-up collection of 5 samples collected during a 30 day period to calculate the geometric mean fecal coliform density in reservoirs. If the geometric mean fecal coliform density is less than or equal to 200 colonies/100 ml the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters designated as S the geometric mean of enterococci sample must be less than 35 colonies/100 ml and not more than 10% of the individual samples (as determined by the binomial distribution function and Table 2) can exceed 104 colonies/100 ml.
- The growing season mean chlorophyll <u>a</u> criterion has not been exceeded in two consecutive years where such a criterion has been established. In making this determination, chlorophyll <u>a</u> values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion.

The S-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The Level IV WMB-I assessment result is less than "fair", or both of the Level III WMB-EPT assessments are less than "fair" or the Level III WMB-EPT assessment is less than "fair" and the fish community IBI is

less than "fair". In addition, a potential anthropogenic cause for the degraded condition must be identified. (Wadeable streams only)

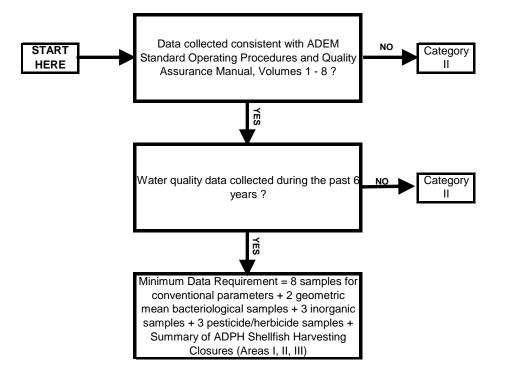
- The water quality criteria exceedance rate for conventional parameters is more than 10% as defined in Table 2.
- There is more than one exceedance of a particular toxic pollutant criterion during the previous six years.
- In reservoirs the geometric mean fecal coliform density exceeds 200 colonies/100 ml in follow-up samples collected in response to an exceedance of 200 colonies/100 ml in a single sample. In coastal waters designated as S the geometric mean of enterococci sample must be less than 35 colonies/100 ml and not more than 10% of the individual samples (as determined by the binomial distribution function and Table 2) can exceed 104 colonies/100 ml.
- For reservoirs with established chlorophyll <u>a</u> criteria, a criterion has been exceeded in two consecutive years or three times during the previous six years. In making this determination, chlorophyll <u>a</u> values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion. However, one exceedance of the chlorophyll <u>a</u> criterion may be sufficient justification for inclusion of a water in Category 5 when the exceedance is determined to be the result of increasing nutrient loading from anthropogenic sources. These determinations will be made on a case by case basis and the decision will be documented in the ADB. In any case, when a growing season mean chlorophyll <u>a</u> value exceeds the criterion, the reservoir will be identified for re-sampling the following year and enough samples will be collected to ensure that the minimum data requirements necessary to calculate a growing season mean are met.

Figure 7 illustrates the assessment process for S waters.

#### 4.4 Shellfish Harvesting (SH)

The best usage of waters assigned this classification is the propagation and harvesting of shellfish (oysters) for sale or for use as a food product. Waterbodies assigned the SH use will meet the sanitary and bacteriological standards included in the *National Shellfish Sanitation Program Model Ordinance, 1999, Chapter IV*, published by the Food and Drug Administration, U.S. Department of Health and Human Services and the requirements of the Alabama Department of Public Health. The waters will also be of a quality suitable for the propagation of fish and other aquatic life, including shrimp and crabs. Beneficial uses encompassed within this classification include: aquatic life support and wildlife propagation, fish and shellfish harvesting and consumption, water contact recreation, agricultural irrigation, livestock watering and industrial cooling and process water supply.

#### 4.4.1 Minimum Data Requirement for SH Waters


For waters with the SH classification the available data must have been collected consistent with the following standard operating procedures (SOP) manual:

| SOP# | Title                                                             |
|------|-------------------------------------------------------------------|
| 2040 | Stream Flow Abbreviated Measurement Method                        |
| 2041 | SW Temperature Field Measurements                                 |
| 2042 | SW pH Field Measurements                                          |
| 2043 | SW Specific Conductivity Field Measurements                       |
| 2044 | SW Turbidity Field Measurements                                   |
| 2045 | SW Dissolved Oxygen Field Measurements                            |
| 2046 | Photic Zone Measurements and Visibility Determinations            |
| 2048 | Continuous SW Quality Monitoring Using Datasondes                 |
| 2061 | General SW Quality Sample Collection                              |
| 2062 | Dissolved Reactive Phosphorus (DRP) Collection & Field Processing |
| 2063 | Chlorophyll_a Collection & Field Processing                       |
| 2064 | Fecal Coliform Sample Collection                                  |
| 2065 | Sediment Sampling                                                 |
| 9021 | Quality Control Samples and Field Measurements                    |
| 9025 | Field Equipment Cleaning Procedures                               |
| 9040 | Station, Sample ID & Chain of Custody Procedures                  |
| 6300 | Physical Characterization                                         |
| 6301 | Habitat Assessment                                                |

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. The following list and **Figure 8** describe the minimum data requirement for assessing waters classified as SH.

- 8 conventional parameter samples (including samples for nutrient analysis)
- o 10 bacteriological samples (2 geometric mean samples)
- o 3 inorganic samples
- o 3 pesticide/herbicide samples
- Summary of ADPH shellfish harvesting closure notices for Areas I, II, and III

### Figure 8 Minimum Data Requirements for the SH Designated Use



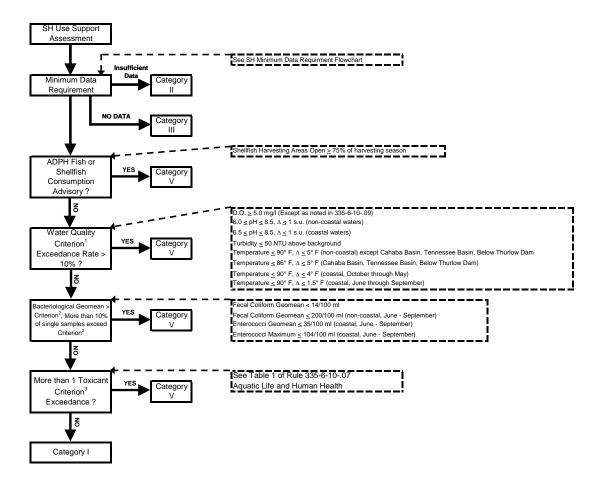
#### 4.4.2 Use Support Assessment for SH Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the SH use (Category 1) or not fully supporting the SH use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, shellfish harvesting closure notices, chemical specific data, bacteriological data, and toxicity evaluations.

The SH-classified waterbody is placed in Category 1 if:

• There is no fish/shellfish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody and the ADPH

"conditionally approved" shellfish harvesting areas (Areas I, II, and III) are open at least 75% of the year;


- There is no more than one exceedance of a particular toxic pollutant criterion during the previous six years and;
- The water quality criteria exceedance rate for conventional parameters is not more than 10% as determined using the binomial distribution function for the sample sizes shown in Table 2. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity. Determination of the 10% exceedance rate is discussed in Section 4.8.
- The geometric mean of 5 fecal coliform samples collected during a 30-day period must be less than or equal to 14 colonies/100 ml and no more than 10% of the samples can exceed 43 colonies/100 ml. In addition, during June through September the geometric mean enterococci density must be less than 35 colonies/100 ml and 10% or less (as determined using the binomial distribution function and Table 2) of the single samples must be less than 104 colonies/100 ml.

The SH-classified waterbody is placed in Category 5 if:

- There is a fish consumption advisory issued by the ADPH or the shellfish growing areas are "conditionally open" or "conditionally restricted" or;
- The water quality criteria exceedance rate for conventional parameters is more than 10% as determined using the binomial distribution function for the sample sizes shown in Table 2 or;
- The geometric mean of 5 fecal coliform samples collected during a 30-day period is greater than 14 colonies/100 ml or more than 10% of the samples exceed 43 colonies/100 ml. In addition, during June through September the geometric mean enterococci density is greater than 35 colonies/100 ml and more than 10% (as determined using the binomial distribution function and Table 2) of the single samples are greater than 104 colonies/100 ml.
- There is more than one exceedance of a particular toxic pollutant criterion during the previous six years.

Figure 9 illustrates the assessment process for SH waters.

Figure 9 Shellfish Harvesting (SH) Categorization Methodology



1 Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources

2 Bacteriological Criterion refers to both the single sample maximum and geometric mean

3 Toxicant Criterion refers to toxics listed in 335-6-10-.07

Special Note - Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. These criteria relate to condition of waters as affected by the discharge of sewage, industrial wastes, or other wastes,

not to conditions resulting from natural forces. See 335-6-10-.05(4)

#### 4.5 Fish and Wildlife (F&W)

The best usage of waters assigned this classification includes fishing, the propagation of fish, aquatic life, and wildlife, and any other usage except swimming and water-contact sports or as a source of water supply for drinking or food-processing purposes. Waterbodies assigned the F&W classification will be suitable for fish, aquatic life and wildlife propagation. The quality of salt and estuarine waters to which this classification is assigned will also be suitable for the propagation of shrimp and crabs. In addition, it is recognized that these waters may be used for incidental water contact and recreation during June through September, except in the vicinity of wastewater discharges or other conditions beyond the control of the ADPH. These waters will, under proper sanitary supervision by the controlling health authorities, meet accepted standards of water quality for outdoor swimming places and will be considered satisfactory for swimming and other whole body water-contact sports during the months of June through September.

#### 4.5.1 Minimum Data Requirement for F&W Waters

For waters with the F&W classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

| SOP# | Title                                                             |
|------|-------------------------------------------------------------------|
| 2040 | Stream Flow Abbreviated Measurement Method                        |
| 2041 | SW Temperature Field Measurements                                 |
| 2042 | SW pH Field Measurements                                          |
| 2043 | SW Specific Conductivity Field Measurements                       |
| 2044 | SW Turbidity Field Measurements                                   |
| 2045 | SW Dissolved Oxygen Field Measurements                            |
| 2046 | Photic Zone Measurements and Visibility Determinations            |
| 2048 | Continuous SW Quality Monitoring Using Datasondes                 |
| 2061 | General SW Quality Sample Collection                              |
| 2062 | Dissolved Reactive Phosphorus (DRP) Collection & Field Processing |
| 2063 | Chlorophyll_a Collection & Field Processing                       |
| 2064 | Fecal Coliform Sample Collection                                  |
| 2065 | Sediment Sampling                                                 |
| 9021 | Quality Control Samples and Field Measurements                    |
| 9025 | Field Equipment Cleaning Procedures                               |
| 9040 | Station, Sample ID & Chain of Custody Procedures                  |
| 6300 | Physical Characterization                                         |
| 6301 | Habitat Assessment                                                |

- ADEM SOP/QCA Manual Volume 2 Aquatic Macroinvertebrate Assessment (2005)
- ADEM SOP/QCA Manual Volume 5 Algal Growth Potential Testing (2004)

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete

rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include wadeable rivers and streams, non-wadeable rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. Failure to meet the minimum data requirement will place the waterbody in Category 2. The following list and **Figure 10** describe the minimum data requirement for assessing waters classified as F&W.

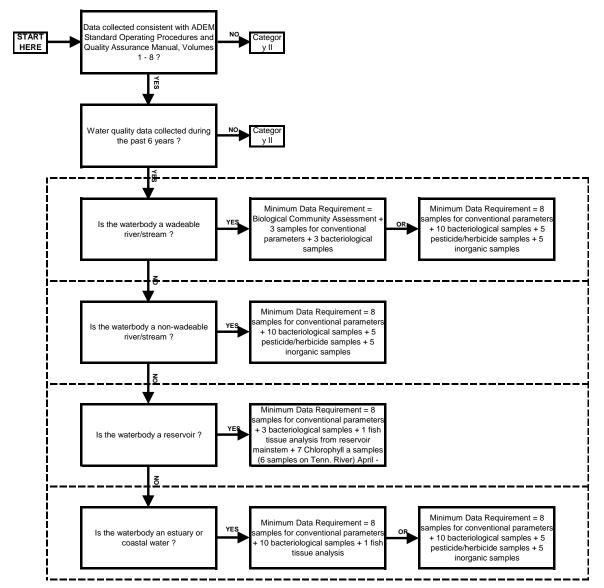
- Wadeable River or Stream
  - 1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or 2 Level III Wadeable Multi-habitat Bioassessments – EPT Families (WMB-EPT) or 1 Level III WMB-EPT plus 1 fish community assessment (IBI). In addition, a habitat assessment must be completed with each biological assessment. Currently, metrics for the fish IBI have been calibrated only in the Black Warrior and Cahaba River basins.
  - 3 conventional parameter samples (including samples for nutrient analysis)
  - o 3 bacteriological samples

#### OR

- 8 conventional parameter samples (including samples for nutrient analysis)
- o 10 bacteriological samples (2 geometric mean samples)
- o 5 pesticide / herbicide samples
- o 5 inorganic samples
- Non-wadeable River or Stream
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 10 bacteriological samples (2 geometric mean samples)
  - o 5 pesticide / herbicide samples
  - o 5 inorganic samples

**Reservoirs and Embayments** 

- 8 conventional parameter samples (including samples for nutrient analysis)
- o 3 bacteriological samples
- o 1 fish tissue analysis from the reservoir mainstem
- 7 chlorophyll *a* samples collected between April and October (For the Tennessee River Basin: 6 chlorophyll *a* samples collected between April and September). Results from critical period sampling (i.e., August sample only) will be used with other critical


period data to evaluate chlorophyll a trends at a given sampling location.

- Estuary or Coastal Waters
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 10 bacteriological samples (2 geometric mean samples)
  - o 1 fish tissue analysis

#### OR

- 8 conventional parameter samples (including samples for nutrient analysis)
- o 10 bacteriological samples (2 geometric mean samples)
- 5 pesticide/herbicide samples
- o 5 inorganic samples

Figure 10 Minimum Data Requirements for the F&W Designated Use



Biological community assessment means:

1 Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) or

2 Level III Wadeable Multi-habitat Bioassessments - EPT Families (WMB-EPT) or

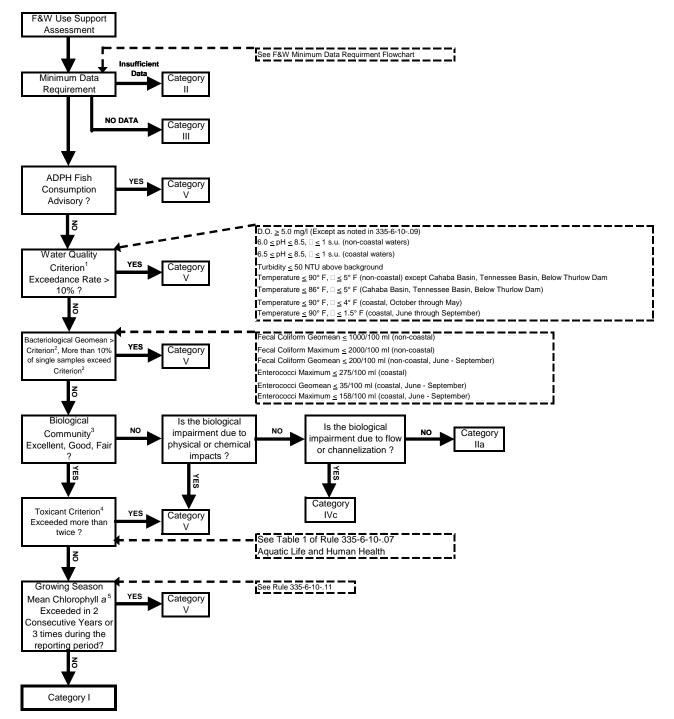
1 Level III WMB-EPT plus 1 fish community assessment (IBI)

#### 4.5.2 Use Support Assessment for F&W Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the F&W use (Category 1) or not fully supporting the F&W use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, chemical specific data, biological community assessments, bacteriological data, beach closure notices and toxicity evaluations.

The F&W-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- There are no more than two exceedances of a particular toxic pollutant criterion during the previous six years.
- The Level IV WMB-I assessment result is "fair", "good" or "excellent", or either of the Level III WMB-EPT assessments are "fair", "good" or "excellent" or the Level III WMB-EPT assessment is "fair", "good" or "excellent" and the fish community IBI is "fair", "good", or "excellent". (Wadeable steams only)
- For reservoirs with established chlorophyll <u>a</u> criteria, a criterion has not been exceeded in two consecutive years. In making this determination, chlorophyll <u>a</u> values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion.
- The water quality criteria exceedance rate for conventional parameters is not more than 10%. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity. Determination of the 10% exceedance rate is discussed in Section 4.8.
- In reservoirs and wadeable streams with biological assessments, bacteriological sample results from a single sample in excess of 200 colonies fecal coliform per 100 ml in non-coastal waters and in excess of 35 colonies enterococci per 100 ml in coastal waters will necessitate a follow-up collection of 5 samples during a 30 day period to calculate the geometric mean density. If the geometric mean fecal coliform density in non-coastal waters is less than or equal to 200 colonies/100 ml (June through September) or less than or equal to 1000 colonies/100ml (October through May) and 10%, as defined in Table 2, or less of the single samples results are less than 2000 colonies/100 ml, the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters (June through September) the geometric mean enterococci density must be less than 35 colonies / 100 ml and 10% or less (as determined using the binomial distribution function and Table 2) of the single samples must be less than 158 colonies/100 ml (June through September) or less than 275 colonies/100 ml (October through May). Use


of the 10% rule will only be applied when there is at least the minimum number of samples.

The F&W-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The water quality criteria exceedance rate for conventional parameters is more than 10% as defined in Table 2.
- The Level IV WMB-I assessment result is less than "fair", or both of the Level III WMB-EPT assessments are less than "fair" or the Level III WMB-EPT assessment is less than "fair" and the fish community IBI is less than "fair". In addition, a potential anthropogenic cause for the degraded condition must be identified. (Wadeable streams only)
- The geometric mean fecal coliform density in non-coastal waters is greater than 200 colonies/100 ml (June through September) or more than 1000 colonies/100ml (October through May) and or more than 10% of the single samples results are greater than 2000 colonies/100 ml. In coastal waters (June through September) the geometric mean enterococci density is greater than 35 colonies / 100 ml and more than 10% (as determined using the binomial distribution function and Table 2) of the single samples is greater than 158 colonies/100 ml (June through September) or more than 275 colonies/100 ml (October through May). Use of the 10% rule will only be applied to data sets containing at least the minimum number of samples.
- There are more than two exceedances of a particular toxic pollutant criterion during the previous six years.
- For reservoirs with established chlorophyll <u>a</u> criteria, a criterion has been exceeded in two consecutive years or three times during the previous six years. In making this determination, chlorophyll <u>a</u> values in excess of the criterion which are due to extreme hydrologic events (i.e., droughts and floods) will not be considered as an exceedance of the criterion. However, one exceedance of the chlorophyll a criterion may be sufficient justification for inclusion of a water in Category 5 when the exceedance is determined to be the result of increasing nutrient loading from anthropogenic sources. These determinations will be made on a case by case basis and the decision will be documented in the ADB. In any case, when a growing season mean chlorophyll <u>a</u> value exceeds the criterion, the reservoir will be identified for re-sampling the following year and enough samples will be collected to ensure that the minimum data requirements necessary to calculate a growing season mean are met.

Figure 11 illustrates the assessment process for F&W waters.

Figure 11 Fish and Wildlife (F&W) Categorization Methodology



1 Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources

2 Bacteriological Criterion refers to both the single sample maximum and geometric mean, see discussion in Section 4.5.2

3 Biological community refers to macroinvertebrates and/or fish in wadeable rivers/streams only (See Minimum Data Requirments)

4 Toxicant Criterion refers to toxics listed in 335-6-10-.07

5 Applies only to reservoirs with established Chlorophyll a criteria and not during extreme hydrologic events

#### 4.6 Limited Warmwater Fishery (LWF)

For the months of December through April the best usage of waters assigned this classification includes fishing, the propagation of fish, aquatic life, and wildlife, and any other usage except swimming and water-contact sports or as a source of water supply for drinking or food-processing purposes. Waterbodies assigned the LWF classification will be suitable for fish, aquatic life and wildlife propagation except during the months of May through November. During May through November the quality of waters to which this classification is assigned will be suitable for agricultural irrigation, livestock watering, industrial cooling and process water supplies, and any other usage, except fishing, bathing, recreational activities, including water-contact sports, or as a source of water supply for drinking or food-processing purposes.

#### 4.6.1 Minimum Data Requirement for LWF Waters

For waters with the LWF classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:

| SOP# | Title                                                             |
|------|-------------------------------------------------------------------|
| 2040 | Stream Flow Abbreviated Measurement Method                        |
| 2041 | SW Temperature Field Measurements                                 |
| 2042 | SW pH Field Measurements                                          |
| 2043 | SW Specific Conductivity Field Measurements                       |
| 2044 | SW Turbidity Field Measurements                                   |
| 2045 | SW Dissolved Oxygen Field Measurements                            |
| 2046 | Photic Zone Measurements and Visibility Determinations            |
| 2048 | Continuous SW Quality Monitoring Using Datasondes                 |
| 2061 | General SW Quality Sample Collection                              |
| 2062 | Dissolved Reactive Phosphorus (DRP) Collection & Field Processing |
| 2064 | Fecal Coliform Sample Collection                                  |
| 2065 | Sediment Sampling                                                 |
| 9021 | Quality Control Samples and Field Measurements                    |
| 9025 | Field Equipment Cleaning Procedures                               |
| 9040 | Station, Sample ID & Chain of Custody Procedures                  |
| 6300 | Physical Characterization                                         |
| 6301 | Habitat Assessment                                                |

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. Failure to meet the minimum data requirement will place the waterbody in Category 2. The following list and **Figure 12** describe the minimum data requirements for assessing waters classified as LWF.

- River or Stream (Wadeable and Non-wadeable)
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - 5 bacteriological samples (1 geometric mean sample)
  - o 3 pesticide / herbicide samples
  - o 3 inorganic samples
- Reservoirs and Embayments
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 3 bacteriological samples
  - o 1 fish tissue analysis from the reservoir mainstem
- Estuary or Coastal Waters
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 5 bacteriological samples (1 geometric mean sample)

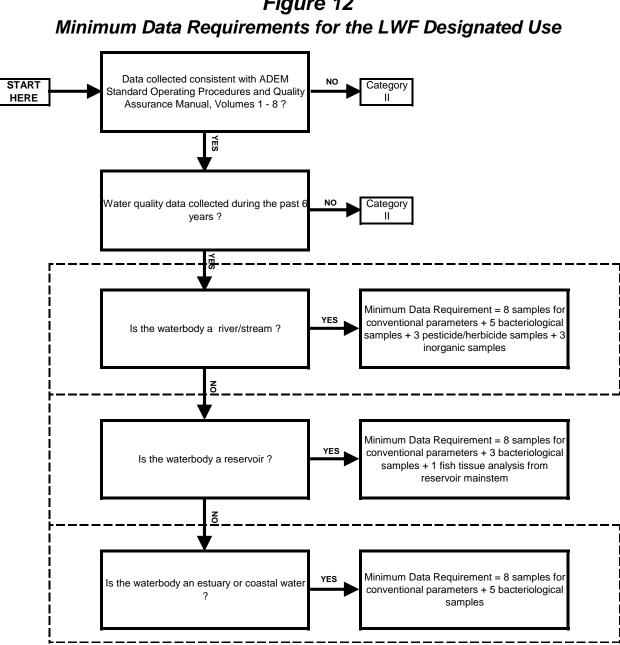


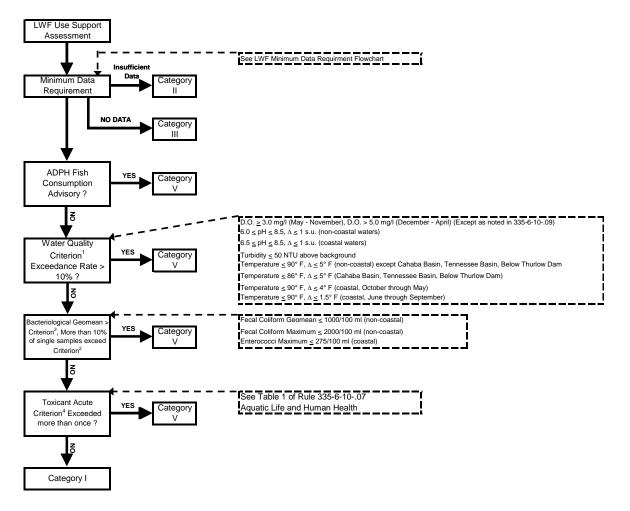

Figure 12

#### 4.6.2 Use Support Assessment for LWF Waters

Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the LWF use (Category 1) or not fully supporting the LWF use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, chemical specific data, bacteriological data, and toxicity evaluations. However, at the present time there is no available protocol for use of biological assessment results to assess use support in LWFclassified waters. The Department's current SOP for conducting biological assessments employs the use of reference sites located in least impacted watersheds and is intended to assess the "fishable" use.

The LWF-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- There is no more than one exceedance of a toxic pollutant acute criterion (May through November) during the previous six years. There is no more than one exceedance of a particular toxic pollutant chronic criterion (December through April) during the previous six years.
- The water quality criteria exceedance rate for conventional parameters is not more than 10%. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity. Determination of the 10% exceedance rate is discussed in Section 4.8.
- In reservoirs, bacteriological sample results from a single sample in excess of 1000 colonies fecal coliform per 100 ml will necessitate a follow-up collection of 5 samples during a 30 day period to calculate the geometric mean density. If the geometric mean fecal coliform density is less than or equal to 1000 colonies/100 ml and 10% or less of the single sample results are less than 2000 fecal coliform colonies/100 ml, the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters 10% or less (as determined using the binomial distribution function and Table 2) of the single samples must be less than 275 enterococci colonies/100 ml. In non-coastal rivers and streams the geometric mean fecal coliform density is less than 1000 colonies/100 ml and 10% (as defined in Table 2) or less of the single sample results are less than or equal to 2000 fecal coliform colonies/100 ml. Use of the 10% rule will only be applied when there is at least the minimum number of samples.


The LWF-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The water quality criteria exceedance rate for conventional parameters is more than 10%.

- The geometric mean fecal coliform density is greater than 1000 colonies/100 ml or more than 10% of the single sample results are greater than 2000 fecal coliform colonies/100 ml. In coastal waters more than 10% (as determined using the binomial distribution function and Table 2) of the single samples are greater than 275 enterococci colonies/100 ml. Use of the 10% rule will only be applied when there is at least the minimum number of samples.
- There are two or more exceedances of a particular toxic pollutant acute criterion (May through November) during the previous six years. There are two or more exceedances of a particular toxic pollutant chronic criterion (December through April) during the previous six years.

Figure 13 illustrates the assessment process for LWF waters.

Figure 13 Limited Warmwater Fishery (LWF) Categorization Methodology



1 Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources

2 Bacteriological Criterion refers to both the single sample maximum and geometric mean, see discussion in Section 4.6.2

4 Applies only to reservoirs with established Chlorophyll a criteria and not during extreme hydrologic events

Special Note - Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. These criteria relate to condition of waters as affected by the discharge of sewage, industrial wastes, or other wastes,

not to conditions resulting from natural forces. See 335-6-10-.05(4)

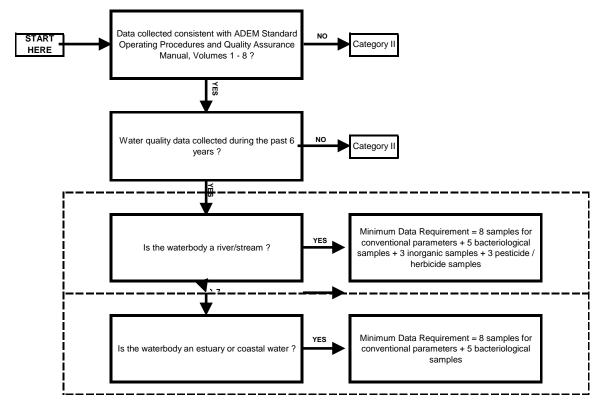
<sup>3</sup> Toxicant Criterion refers to toxics listed in 335-6-10-.07

#### 4.7 Agricultural and Industrial Water Supply (A&I)

Best usage of waters assigned this classification include agricultural irrigation, livestock watering, industrial cooling and process water supplies, and any other usage, except fishing, bathing, recreational activities, including water-contact sports, or as a source of water supply for drinking or food-processing purposes. The waters, except for the natural impurities that may be present, will be suitable for agricultural irrigation, livestock watering, industrial cooling waters, and fish survival. The waters will be usable after special treatment, as may be needed under each particular circumstance, for industrial process water supplies. This classification includes watercourses in which natural flow is intermittent and non-existent during droughts and which may, of necessity, receive treated waste from existing municipalities and industries, both now and in the future.

#### 4.7.1 Minimum Data Requirement for A&I Waters

For waters with the A&I classification the available data must have been collected consistent with the following standard operating procedures (SOP) manuals:


| SOP# | Title                                                             |
|------|-------------------------------------------------------------------|
| 2040 | Stream Flow Abbreviated Measurement Method                        |
| 2041 | SW Temperature Field Measurements                                 |
| 2042 | SW pH Field Measurements                                          |
| 2043 | SW Specific Conductivity Field Measurements                       |
| 2044 | SW Turbidity Field Measurements                                   |
| 2045 | SW Dissolved Oxygen Field Measurements                            |
| 2046 | Photic Zone Measurements and Visibility Determinations            |
| 2048 | Continuous SW Quality Monitoring Using Datasondes                 |
| 2061 | General SW Quality Sample Collection                              |
| 2062 | Dissolved Reactive Phosphorus (DRP) Collection & Field Processing |
| 2064 | Fecal Coliform Sample Collection                                  |
| 2065 | Sediment Sampling                                                 |
| 9021 | Quality Control Samples and Field Measurements                    |
| 9025 | Field Equipment Cleaning Procedures                               |
| 9040 | Station, Sample ID & Chain of Custody Procedures                  |
| 6300 | Physical Characterization                                         |
| 6301 | Habitat Assessment                                                |

In addition, the data must have been collected within the last six years. The six year timeframe would capture all data collected by ADEM during one complete rotation of the five year monitoring schedule currently used by the Department. Failure to satisfy both of these conditions places the waterbody in Category 2. If these two conditions are met, the determination of the minimum data requirement is dependent upon the waterbody type. Waterbody types include wadeable rivers and streams, non-wadeable rivers and streams, reservoirs and reservoir embayments, and estuary and coastal waters. Failure to meet the minimum data requirement will place the waterbody in Category 2. The following list and

Figure 14 describe the minimum data requirement for assessing waters classified as A&I.

- River or Stream
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 5 bacteriological samples (1 geometric mean sample)
  - 3 inorganic samples
  - o 3 pesticide / herbicide samples
- Reservoirs and Embayments
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 3 bacteriological samples
  - o 1 fish tissue analysis from the reservoir mainstem
- Estuary or Coastal Waters
  - 8 conventional parameter samples (including samples for nutrient analysis)
  - o 5 bacteriological samples (1 geometric mean sample)

## Figure 14 Minimum Data Requirements for the A&I Designated Use



#### 4.7.2 Use Support Assessment for A&I Waters

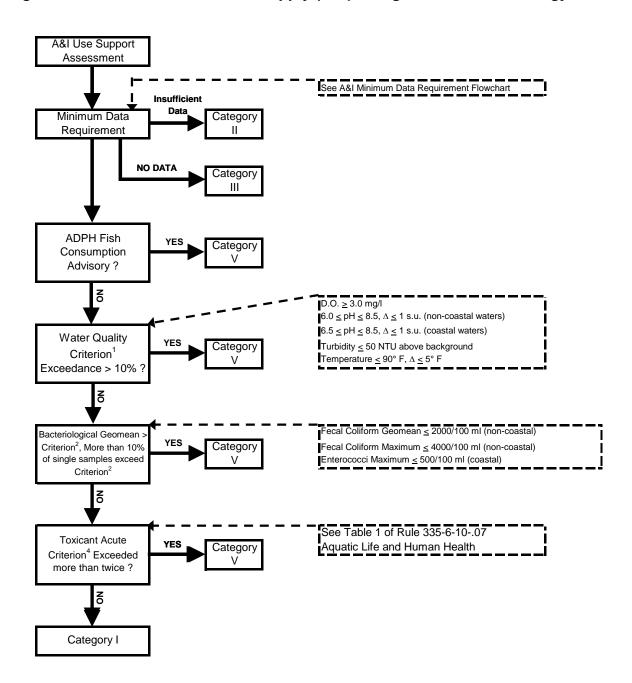
Once the minimum data requirement has been met an assessment of the data can be completed resulting in the categorization of the waterbody as either fully supporting the A&I use (Category 1) or not fully supporting the A&I use (Category 5). The assessment process considers the available data and may include any fish consumption advisories, chemical specific data, biological community assessments, bacteriological data, beach closure notices and toxicity evaluations.

The A&I-classified waterbody is placed in Category 1 if all of the following are true:

- There is no fish consumption advisory issued by the Alabama Department of Public Health (ADPH) for the waterbody.
- There are no more than two exceedances of a toxic pollutant acute criterion during the previous six years.
- The water quality criteria exceedance rate for conventional parameters is not more than 10%. Conventional parameters include dissolved oxygen, pH, temperature (where influenced by a heated discharge), and turbidity. Determination of the 10% exceedance rate is discussed in Section 4.8.
- In reservoirs, bacteriological sample results from a single sample in excess of 2000 colonies fecal coliform per 100 ml will necessitate a follow-up collection of 5 samples during a 30 day period to calculate the geometric mean density. If the geometric mean fecal coliform density is less than or equal to 2000 colonies/100 ml and 10% or less of the single sample results are less than 4000 fecal coliform colonies/100 ml, the waterbody will be considered fully meeting the bacteria criteria for this designated use. In coastal waters 10% or less (as determined using the binomial distribution function and Table 2) of the single samples must be less than 500 enterococci colonies/100 ml. In non-coastal rivers and streams the geometric mean fecal coliform density is less than 2000 colonies/100 ml and 10% or less of the single samples have a fecal coliform density of less than or equal to 4000 colonies/100 ml. Use of the 10% rule will only be applied when there is at least the minimum number of samples.

The A&I-classified waterbody is placed in Category 5 if any of the following are true:

- There is a fish consumption advisory issued by the ADPH.
- The water quality criteria exceedance rate for conventional parameters is more than 10% (as defined in Table 2).
- The geometric mean fecal coliform density is greater than 2000 colonies/100 ml or more than 10% (as defined in Table 2) of the single sample results are greater than 4000 fecal coliform colonies/100 ml. In coastal waters more than 10% (as determined using the binomial distribution function and Table 2) of the single samples are more than 500 enterococci colonies/100 ml. In non-coastal rivers and streams the


geometric mean fecal coliform density is greater than 2000 colonies/100 ml and more than 10% of the single samples have a fecal coliform density of greater than 4000 colonies/100 ml. Use of the 10% rule will only be applied when there is at least the minimum number of samples.

• There are more than two exceedances of an acute criterion for a toxic pollutant during the previous six years.

Figure 15 illustrates the assessment process for A&I waters.

# Figure 15

Agricultural and Industrial Water Supply (A&I) Categorization Methodology



1 Water Quality Criterion refers to pH, Dissolved Oxygen, turbidity, and temperature resulting from heat sources

<sup>2</sup> Bacteriological Criterion refers to both the single sample maximum and geometric mean, see discussion in Section 4.7.2 3 Toxicant Criterion refers to toxics listed in 335-6-10-.07

<sup>4</sup> Applies only to reservoirs with established Chlorophyll a criteria and not during extreme hydrologic events

Special Note - Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. These criteria relate to condition of waters as affected by the discharge of sewage, industrial wastes, or other wastes, not to conditions resulting from natural forces. See 335-6-10-.05(4)

#### 4.8 Other Data considerations and Requirements

#### 4.8.1 Use of the 10% Rule

Seasonal variation in water quality conditions, non-anthropogenic impacts (natural conditions), sampling frequency and number of samples collected, and the temporal and spatial sampling coverage of the waterbody must be considered when evaluating water quality data to determine whether a waterbody is fully supporting its designated uses. Most states, including Alabama, determine a waterbody's use support status based on the percent of measured values exceeding a given water quality criterion. Based on USEPA guidance, 10 percent is commonly used as the maximum percent of measurements that may exceed the criterion for waters fully supporting their designated uses. For any given set of samples the percent exceedance indicated by the number of samples which exceed a given criterion is only an estimate of the true percent exceedance for the waterbody segment. As a result, it is important that a level of confidence be assigned to the estimate of percent exceedance for a given set of samples.

Hypothesis testing can be used to make this estimate. When making a decision about whether a water should be included in Category 5 on the basis of data for conventional pollutants, the null hypothesis is that the water is not impaired and sufficient data must be collected to minimize the probability that this assumption is incorrect (Type I error). For the purpose of this methodology, a 90% confidence level will be used so that we can say for a given sample size with a given number of criterion exceedances we are 90% confident that the true exceedance percentage is greater than 0.1 (10%). Using the binomial distribution it is possible to determine the number of exceedances out of a given number of samples which will result in a greater than 10 percent exceedance rate at approximately the 90% confidence level. This is the number of exceedances need to reject the null hypothesis.

When making a decision about whether a water in Category 5 should be removed to Category 1 for a particular conventional pollutant, the null hypothesis is that the water is impaired and sufficient data must be collected to minimize the probability that this assumption is incorrect. Again, a 90% confidence level will be used in the binomial distribution function to estimate the number of samples required to be 90% confident that the water is truly not impaired.

#### 4.8.2 Use of Data Older than Six Years

#### More recent data shall take precedence over older data if:

The newer data indicate a change in water quality and the change is related to changes in pollutant loading to the watershed or improved pollution control mechanisms in the watershed contributing to the assessed area. Or, the Department determines that the older data do not meet the data quality requirements of this methodology or are no longer representative of the water quality of the segment. Data older than six years will generally not be considered valid, for the purpose of initially placing a water in Category 1 or Category 5, except that data and information older than six years will be considered in the assessment process when such data/information is determined to be reliable. Data older than six years may be used to demonstrate that a waterbody was placed in the wrong category (Category 1 or Category 5) when the original water quality assessment was completed. Also, data older that six years may be used if the data was not considered during a previous reporting cycle and there is evidence that conditions affecting water quality have not changed since the original data was collected. Waters will not be removed from Category 5 on the basis of age of data. However, water may be removed from Category 1 to Category 2 on the basis of age of data when there is evidence that water quality conditions are likely to have changed since the water was originally placed in Category 1.

#### 4.8.3 Use of Accurate Location Data

Accurate location data is required to ensure the appropriate use classification is applied, as well as confirming that sampling stations are located outside of regulatory mixing zones where water quality criteria do not apply. The monitoring data is acceptable if the locations are correct to within 200 feet. Digital spatial data (GIS or GPS) or latitude/longitude information obtained from USGS 7.5 minute quadrangle maps are acceptable methods of providing location information.

#### <u>4.8.4 Use of Temporally Independent Samples and Data from Continuous</u> <u>Monitoring</u>

When relying solely upon chemical data to determine designated use support, at least ten temporally independent samples of chemical and physical conditions obtained during a time period that includes conditions considered critical for the particular pollutant of interest are needed. Independent samples, for the purpose of parameters other than bacteria and in-situ water quality measurements, will have been collected at least four days apart. Samples collected at the same location less than four days apart shall be considered as one sample for the purpose of determining compliance with toxic pollutant criteria, with the mean value used to represent the sampling period.

For conventional parameters measured using continuous monitoring instruments such as multi-probe datasondes, compliance with the applicable criteria will be determined at the regulatory depth established for dissolved oxygen measurements. This depth is five feet in water that is ten feet or more in total depth or is at mid-depth in water that is less than ten feet in total depth. Hourly measurements of dissolved oxygen, temperature, and pH data collected using continuous monitoring equipment will be assessed using the same binomial distribution function used for discrete sampling of these parameters. When measurements are made more frequently than hourly, the hourly values will be calculated as the mean of the measured values within each hour. <u>4.8.5 Use of Fish / Shellfish Consumption Advisories and Shellfish Growing</u> <u>Area Classifications</u>

In October 2000 EPA issued guidance to states regarding the use of fish and shellfish consumption advisories (EPA, 2000). The guidance recommended that states consider certain information when determining if designated uses were impaired, including consumption advisories for fish and shellfish and certain shellfish growing area classifications. The following is an excerpt from the EPA guidance.

"Certain shellfish growing area classifications should be used as part of determinations of attainment of water quality standards and listing of impaired waterbodies. Shellfish growing area classifications are developed by the National Shellfish Sanitation Program (NSSP) using water column and tissue data (where available), and information from sanitary surveys of the contributing watershed, to protect public health. The States review these NSSP classifications every three years. There are certain NSSP classifications that are not appropriate to consider, and certain data and information that should not be considered independently of the classification (unless the data and information were not used in the development or review of the classification). These instances are: "Prohibited" classifications set as a precautionary measure due to the proximity of wastewater treatment discharges, or absence of a required sanitary survey; shellfish tissue pathogen data (which can fluctuate based on short-term conditions not representative of general water quality); or short-term actions to place growing areas in the closed status."

The ADPH, Seafood Program, regulates shellfish harvesting in coastal waters of Alabama. The ADPH has designated four areas in Mobile Bay and adjacent coastal waters and classifies shellfish harvesting waters within these areas as "conditionally open", "conditionally restricted", "unclassified", and "prohibited". Area I waters comprise most of Mobile Bay south of East Fowl River and west of Bon Secour Bay and including Mississippi Sound. Area II waters include Grand Bay and Portersville Bay with exceptions near wastewater discharges. Area III waters are located in Bon Secour Bay and east of a line drawn from Fort Morgan to Mullet Point. Area IV is located in approximately the northern half of Mobile Bay.

Most of the waters designated as Shellfish Harvesting are classified as "conditionally open". These harvesting areas are closed when the river stage on the Mobile River at Bucks, Alabama reaches a river stage of 8.0 feet above mean sea level and a public notice announcing the closure is published. These procedures are described in detail in the Conditional Area Management Plan developed by ADPH (ADPH, 2001).

For purposes of making use support decisions relative to the SH designated use, the Department will consider "conditionally open" and "conditionally restricted" waters as impaired and will include these water in Category 5. In "prohibited" and "unclassified" waters the Department will use water column bacteria sampling results to determine use support. When the applicable bacteria criterion is exceeded in more than 10% of the samples as determined using the binomial distribution function and Table 2, these waters will be included in Category 5.

The October 2000 EPA guidance concerning the use of fish and shellfish consumption advisories for protection of human health also recommended that state's include waters in Category 5 when there was a consumption advisory which suggested either limited consumption or no consumption of fish due to the presence of toxics in fish tissue. The following is an excerpt from the guidance.

"When deciding whether to identify a water as impaired, States, Territories, and authorized Tribes need to determine whether there are impairments of designated uses and narrative criteria, as well as the numeric criteria. Although the CWA does not explicitly direct the use of fish and shellfish consumption advisories or NSSP classifications to determine attainment of water quality standards, States, Territories, and authorized Tribes are required to consider all existing and readily available data and information to identify impaired waterbodies on their section 303(d) lists. For purposes of determining whether a waterbody is impaired and should be included on a section 303(d) list, EPA considers a fish or shellfish consumption advisory, a NSSP classification, and the supporting data, to be existing and readily available data and information that demonstrates non-attainment of a section 101(a) "fishable" use when:

1. the advisory is based on fish and shellfish tissue data,

2. a lower than "Approved" NSSP classification is based on water column and shellfish tissue data (and this is not a precautionary "Prohibited" classification or the state water quality standard does not identify lower than "Approved" as attainment of the standard)

3. the data are collected from the specific waterbody in question and

4. the risk assessment parameters (e.g., toxicity, risk level, exposure duration and consumption rate) of the advisory or classification are cumulatively equal to or less protective than those in the State, Territory, or authorized Tribal water quality standards."

This listing and assessment methodology will consider fish consumption advisories issued by the ADPH as an indication of impaired use in all State waters. However, there may be circumstances under which these waters could be placed in a category other than Category 5. For example, it may be appropriate to place certain waters in Category 4b when activities are ongoing under another restoration program with the goal of restoring the water to fully supporting its uses. These decisions will be made on a case by case basis and documented in the ADB.

#### 4.8.6 Use of Biological Assessments

Biological assessments compare data from biological surveys and other direct measurements of resident biota in surface waters to established biological criteria and assess the waterbody's degree of use support. Alabama has not established numeric biological criteria (except in the case of chlorophyll <u>a</u> in reservoirs) and, as a result, biological data are used as a means of applying narrative criteria contained in Alabama's water quality criteria document (ADEM Administrative Code Chapter 335-6-10). ADEM has been gathering biological assessment data for streams across Alabama since the 1970s. In the early 1990's the Department began assessing the biological health of wadeable streams using the USEPA Rapid Bioassessment Protocol (Level III Wadeable Multi-habitat Bioassessment (WMB-EPT)) and the Intensive Wadeable Multi-habitat Bioassessment (WMB-I)). USEPA has offered the following technical considerations when using biological data to make use support determinations.

- A waterbody's use support should be based on a comparison of site-specific biological data to a reference condition established for the ecoregion in which the waterbody is located.
- A multimetric approach to bioassessment is recommended.
- The use of a standardized index or sampling period is recommended.
- Standard operation procedures and a quality assurance program should be established.
- A determination of the performance characteristics of the bioassessment methodology is suggested.
- An identification of the appropriate number of sampling sites that are representative of the waterbody is also recommended.

Biological assessment data will be used in combination with other surface water quality data or information to arrive at an overall use support determination. However, EPA recommends that biological data should be weighted more heavily than other types of data when integrating information to make use support determinations since biological data provide a more direct indication of the condition of the aquatic community. Alabama's assessment methodology has weighted biological data more heavily by requiring at least one biological assessment for certain use classifications and stream types and by reducing the number of water quality samples needed when a biological assessment is available. However, the biological assessment must include a habitat assessment conducted at the time of the biological sampling. When available, periphyton assessment data and algal growth potential tests results will be used to refine stressor identification.

In this methodology, several bioassessment methodologies can be used to assess aquatic life use support. Two Level III Wadeable Multi-habitat Bioassessments -EPT Families (WMB-EPT) are required since these assessments are intended for screening purposes only. A combination of one WMB-EPT assessment and one fish IBI assessment is sufficient but only in the Cahaba and Black Warrior River basins since the metric ranges for the fish IBI have been calibrated only to the Cahaba and Black Warrior River basins. Alternatively, one Level IV Intensive Wadeable Multi-habitat Bioassessment (WMB-I) would be sufficient for assessing aquatic life use support. These methodologies are described in detail in the Department's SOPs referenced earlier. Occasionally it may be appropriate to place a water in Category 5 based on a single screening level assessment (WMB-EPT) when there is a clear indication of impairment and the cause is readily apparent. In addition, when assessment results vary significantly between the macroinvertebrate and fish communities, it may be appropriate place the waterbody in Category 5 when there is an indication of the cause for the discrepancy. These decisions will be made on a case by case basis in consultation with the biologist(s) responsible for conducting the assessment and will be documented in the ADB.

A multi-agency, multi-year effort is currently underway to develop fish IBI metrics for all of Alabama's river basins. As the effort progresses across the state, fish IBI assessments will be incorporated into the use support assessment process. The project is expected be completed by 2011, provided that sufficient funding is available,.

#### 4.8.7 Use of Data Collected by Others

Data collected by other agencies, industry or industry groups, neighboring states, and watershed groups will be considered and evaluated provided the data meet the minimum data requirements specified for each designated use and comply with the quality control and quality assurance requirements discussed in Section 4.9. Examples of other agencies and groups collecting water quality data in Alabama include, but are not limited to, the following agencies and groups:

- USGS
- USEPA
- Tennessee Valley Authority
- National Oceanic and Atmospheric Administration
- United States Fish and Wildlife Service
- Mobile Bay National Estuary Program
- Dauphin Island Sea Lab
- Geological Survey of Alabama
- Natural Resources Conservation Service
- Soil and Water Conservation Districts
- Alabama Department of Conservation and Natural Resources
- Alabama Clean Water Partnership
- Alabama Department of Public Health
- Alabama Department of Transportation

- Citizen and Watershed Groups
- Industries and municipalities conducting river monitoring pursuant to NPDES or CWA Section 401 requirements

Data submitted by third parties for consideration should include documentation describing the data, including a study plan or SOP, and certification that the data were (or were not) collected consistent with the requirements presented in this methodology.

#### 4.8.8 Use of Bacteria Data

Waterbody segments are sampled for bacteria either as part of a special study, routine ambient monitoring, or as part of the Department's Beach Monitoring Program. Bacteria of the fecal coliform group are currently used as indicators of the possible presence of pathogens in non-coastal waters. In coastal waters, bacteria of the enterococci group are used as indicators of the possible presence of pathogens. Alabama's bacteria criteria are summarized for each designated use in **Table 1**.

When assessing the geometric means of bacteria samples, one excursion will generally be sufficient to determine impairment as long as the total number of geometric means is less than eight. When eight or more geometric means are available for assessment, impairment will be determined using Table 2. In addition, both the geometric mean and single sample maximum criteria must be met when the number of individual samples is less than eight. For eight or more individual samples, Table 2 will be used to determine impairment based on exceedances of the single sample criterion.

# Table 1Alabama's Bacteria Criteria

| Outstanding<br>Alabama<br>Water<br>(OAW)                                                                                                                                      | Public<br>Water<br>Supply<br>(PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                        | Swimming<br>and Other<br>Whole<br>Body<br>Water-<br>Contact<br>Sports (S)                                                                                        | Shellfish<br>Harvesting<br>(SH)                                                                                                                                                                                                                                                                                     | Fish and<br>Wildlife<br>(F&W)                                                                                                                                                                                                                                                                                                                                                                                 | Limited<br>Warmwater<br>Fishery<br>(LWF)                                                                                                                                       | Agricultural<br>and<br>Industrial<br>Water<br>Supply<br>(A&I)                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coastal<br>Waters:<br>Enterococci -<br>Geometric<br>mean $\leq 35$<br>Single Max. $\leq 104$<br>Non-coastal<br>Waters:<br>Fecal Coliform<br>-<br>Geometric<br>mean $\leq 200$ | Coastal<br>Waters:<br>Enterococci<br>– June<br>through<br>Sept.<br>Geometric<br>mean $\leq 35$<br>Single<br>Max. $\leq 158$<br>Enterococci<br>– Oct.<br>through<br>May<br>Single<br>Max. $\leq 275$<br>Non-<br>coastal<br>Waters:<br>Fecal<br>Coliform –<br>June<br>through<br>Sept.<br>Geometric<br>mean $\leq 200$<br>Oct.<br>through<br>May<br>Geometric<br>mean $\leq 1000$<br>Single<br>Max. $\leq 275$<br>Non-<br>coastal<br>Waters:<br>Fecal<br>Coliform –<br>June | Coastal<br>Waters:<br>Enterococci -<br>Geometric<br>mean ≤ 35<br>Single Max.<br>≤104<br>Non-coastal<br>Waters:<br>Fecal<br>Coliform –<br>Geometric<br>mean ≤ 200 | Coastal<br>Waters:<br>Not to exceed<br>FDA limits <sup>1</sup><br>for fecal<br>coliform<br>bacteria<br>Enterococci –<br>June through<br>Sept.<br>Geometric<br>mean $\leq 35$<br>Single Max. $\leq$<br>104<br>Non-coastal<br>Waters:<br>Fecal<br>Coliform –<br>June through<br>Sept.<br>Geometric<br>mean $\leq 200$ | Coastal<br>Waters:<br>Enterococci<br>– June<br>through<br>Sept.<br>Geometric<br>mean $\leq 35$<br>Single<br>Max. $\leq 158$<br>Enterococci<br>– Oct.<br>through<br>May<br>Single<br>Max. $\leq 275$<br>Non-<br>coastal<br>Waters:<br>Fecal<br>Coliform –<br>June<br>through<br>Sept.<br>Geometric<br>mean $\leq 200$<br>Oct.<br>through<br>May<br>Geometric<br>mean $\leq 1000$<br>Single<br>Max. $\leq 2000$ | Coastal<br>Waters:<br>Enterococci<br>Single Max. $\leq$<br>275<br>Non-coastal<br>Waters:<br>Fecal Coliform<br>-<br>Geometric<br>mean $\leq$ 1000<br>Single Max. $\leq$<br>2000 | Coastal<br>Waters:<br>Enterococci<br>Single Max. $\leq$ 500<br>Non-coastal<br>Waters:<br>Fecal Coliform<br>-<br>Geometric<br>mean $\leq$ 2000<br>Single Max. $\leq$ 4000 |

<sup>&</sup>lt;sup>1</sup> Not to exceed the limits specified in the latest edition of the <u>National Shellfish Sanitation Program Manual of</u> <u>Operations, Sanitation of Shellfish Growing Areas</u> (1999), published by the Food and Drug Administration, U.S. Department of Health and Human Services.

#### 4.8.9 Consideration of Stream Flow and Method Detection Limits

During toxicant sampling in rivers or streams the measured flow must be at or above the 7Q10 value for that location. In cases where the applicable water quality criterion is less than the method detection limit (MDL) for a particular pollutant and the concentration for the pollutant is reported as less than detection (<MDL), the Department will evaluate the data consistent with EPA guidance provided in "*Guidance for Data Quality Assessment*", EPA QA/G-9, QA00 UPDATE, EPA, July 2000 and will use the approach that is appropriate for the data set.

These requirements are intended to ensure that existing water quality conditions are accurately portrayed, do not characterize transitional conditions, and that obsolete or inaccurate data are not used. In addition, the minimum data requirements may change on a case by case basis if pollutant sources upstream of the monitoring locations are likely. This determination will be made using information obtained from the Department's geographic information system or other databases. Failure to meet the minimum data requirements for any waterbody type will place the waterbody in Category 2.

#### 4.9 Quality Control / Quality Assurance Requirements

All data (including chemical, physical, and biological) should be collected and analyzed consistent with the SOPs presented earlier. Study plans should reference the SOP appropriate for the type of data being collected and should discuss how data quality will be documented. This should include a discussion of the quality control procedures followed during sample collection and analysis. These procedures should describe the number and type of field and laboratory quality control samples for the project, if appropriate for the type of sampling being conducted, field blanks, equipment blanks, split samples, duplicate samples, the name of the laboratory performing the analyses, name of the laboratory contact person, and the number and type of laboratory quality control samples.

While the Department will consider any existing and readily available data and information, the Department reserves the right to not use data or information in making use support decisions which do not comply with the minimum data requirements presented in this document. The decision not to use certain data will be documented in the ADB. The Department applies best professional judgment when considering datasets smaller than the specified minimum data requirements. In such instances, use support decisions are made on a case by case basis in consideration of ancillary data and information such as watershed characteristics, known pollutant sources, water quality trends or other environmental indicators.

#### <u>4.10 Minimum Sample Size and Allowable Number of Water Quality Criterion</u> <u>Exceedances</u>

**Table 2** shows the allowable number of exceedances for various samples sizes up to 199 samples. The Department's annual sampling plans and available resources generally allow for at least eight samples per sampling location except in reservoirs where fewer samples (i.e. 3 samples) may be collected due to sample holding time and resource

constraints. The number of exceedances in each range of sample sizes was calculated using the binomial distribution function. This number is the number of exceedances of a particular water quality criterion needed to say with 90% confidence that the criterion is exceeded in more than 10% of the population represented by the available samples. This table will be used to determine the number of exceedances of Alabama numeric water quality criteria listed in ADEM Administrative Code 335-6-10 (for dissolved oxygen, temperature, turbidity, pH, and bacteria), consistent with the assessment methodology for each use discussed earlier, necessary to establish that a waterbody segment is not fully supporting its designated uses. This approach is consistent with ADEM Administrative Code 335-6-10 which recognizes that natural conditions may cause sporadic excursions of numeric water quality criteria and with EPA's 1997 305(b) guidance. For conventional water quality parameters, there must be at least eight temporally independent samples collected during the previous six year period to be considered adequate for making use support determinations, except where fewer samples are determined to be adequate as discussed earlier. As used in this context, temporally independent means that the samples were collected at an interval appropriate to capture the expected variation in the parameter. For example, dissolved oxygen, temperature and pH measurements should capture the normal diurnal variation that occurs in the parameters and temporal independence may occur in several hours (i.e. morning versus afternoon). Measurements for turbidity and bacteria should typically be at least 24 hours apart.

It is the intent of the methodology to ensure that an adequate number of samples are available for use in the assessment process and for developing future monitoring plans. Smaller sample sizes may be appropriate in certain circumstances where there is a clear indication that exceedances of the criteria are not due to natural conditions. For example, a data set comprised of fewer than the required minimum number of samples collected monthly may be sufficient to determine that a waterbody is not supporting its use when a significant number (more than two) exceed a particular criterion. Conversely, a data set with fewer than the required minimum number of samples collected monthly may be sufficient to determine that a waterbody is fully supporting its use if none of the samples exceed any of the criteria and there is sufficient supporting information to support this conclusion (i.e. biological assessment indicates full use support). The decision to use smaller data sets for making use support decisions will be made on a case by case basis using best professional judgment. The basis for these decisions will be documented in the ADB.

# Table 2

# Minimum Number of Samples Exceeding the Numeric Criterion Necessary for Listing\*

| Sample Size | Number of Exceedances | Sample Size  | Number of Exceedances |
|-------------|-----------------------|--------------|-----------------------|
|             |                       |              |                       |
| 8 thru 11   | 2                     | 97 thru 104  | 14                    |
| 12 thru 18  | 3                     | 105 thru 113 | 15                    |
| 19 thru 25  | 4                     | 114 thru 121 | 16                    |
| 26 thru 32  | 5                     | 122 thru 130 | 17                    |
| 33 thru 40  | 6                     | 131 thru 138 | 18                    |
| 41 thru 47  | 7                     | 139 thru 147 | 19                    |
| 48 thru 55  | 8                     | 148 thru 156 | 20                    |
| 56 thru 63  | 9                     | 157 thru 164 | 21                    |
| 64 thru 71  | 10                    | 165 thru 173 | 22                    |
| 72 thru 79  | 11                    | 174 thru 182 | 23                    |
| 80 thru 88  | 12                    | 183 thru 191 | 24                    |
| 89 thru 96  | 13                    | 192 thru 199 | 25                    |

\* - For conventional parameters, including bacteria, at the 90 percent confidence level

### 5.0 Removing a Waterbody from Category 5

Waterbodies may be removed from a 303(d) list (category 5) for various reasons, including:

- Assessment of more recent water quality data demonstrates that the waterbody is meeting all applicable water quality standards. (Move to Category 1)
- A review of the original listing decision demonstrates that the waterbody should not have been included in Category 5. (Move to Category 1 or Category 2)
- TMDL has been completed. (Move to Category 4a)
- Other pollution control requirements are reasonably expected to result in the attainment of the water quality standards in the near future. These requirements must be specifically applicable to the particular water quality problem. (Move to Category 4b)
- Impairment is not caused by a pollutant. (Move to Category 4c)
- Natural causes When it can be demonstrated the exceedance of a numeric water quality criterion is due to natural conditions and not to human disturbance activities, the water may be removed from Category 5. (Move to Category 1)

**Table 3** shows the allowable number of exceedances of criteria for conventional pollutants for various sample sizes and a 90% confidence level. This table will be used to determine the number of allowable exceedances of Alabama numeric water quality criteria for pollutants listed in ADEM Administrative Code 335-6-10, with the exception of chlorophyll *a* criteria and the toxics criteria listed in the appendix to ADEM Administrative Code 335-6-10, for the waterbody to be removed from a 303(d) list for a specific pollutant (move to Category 1). In addition, the original basis for listing the waterbody will be considered as a part of the delisting process. Included in this evaluation will be a review of pollutant sources to determine which ones may have been removed or remediated, changes in land practices or uses, installation of new treatment facilities or best management practices, and changes in stream hydrology or morphology.

# Table 3

# Maximum Number of Samples Exceeding the Numeric Criterion Necessary for Delisting\*

| Sample Size | Number of Exceedances | Sample Size  | Number of Exceedances |
|-------------|-----------------------|--------------|-----------------------|
|             |                       |              |                       |
| 8 thru 21   | 0                     | 104 thru 115 | 7                     |
| 22 thru 37  | 1                     | 116 thru 127 | 8                     |
| 38 thru 51  | 2                     | 128 thru 139 | 9                     |
| 52 thru 64  | 3                     | 140 thru 151 | 10                    |
| 65 thru 77  | 4                     | 152 thru 163 | 11                    |
| 78 thru 90  | 5                     | 164 thru 174 | 12                    |
| 91 thru 103 | 6                     | 175 thru 186 | 13                    |

\* - For conventional parameters, including bacteria, at the 90 percent confidence level

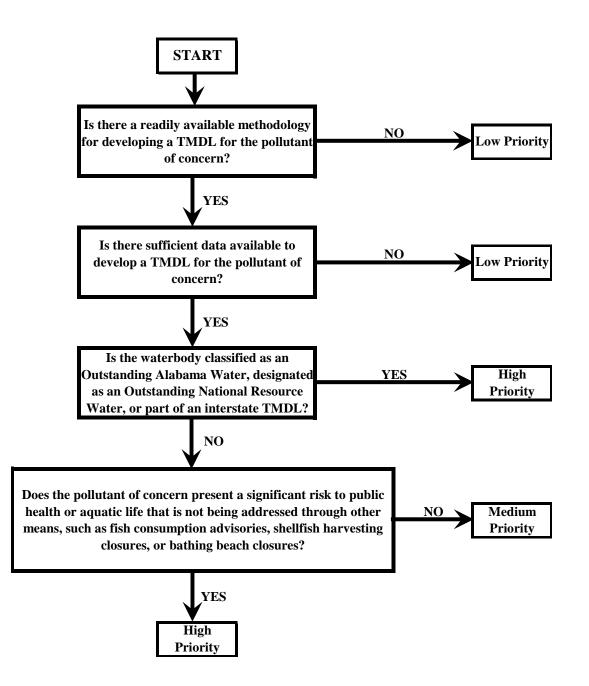
When a waterbody has been included in Category 5 due to a fish consumption advisory, the waterbody will be moved to Category 1 when subsequent fish tissue results indicate that pollutant concentrations have declined and a fish consumption advisory is no longer needed. The determination that a fish consumption advisory is no longer needed is made by the Alabama Department of Public Health.

For waters originally placed in Category 5 due to a specific toxic pollutant or specific toxic pollutants, there should be no violations of the appropriate criteria in a minimum of 8 samples collected over a three year period before the cause of impairment is removed or the water is placed in Category 1.

## 6.0 Estimating the Size of the Assessed Waterbody

Waterbodies are assessed on the basis of assessment units. Assessment units vary in size depending on the waterbody type, watershed characteristics, designated use, and the location of monitoring stations. In most cases, individual assessments will lie completely within a designated use or multiple uses. For example, an assessment unit will not generally be partially within one designated use and partially within a different designated use. However, assessment units may be assigned more than one designated use. For example, an assessment unit may have classified uses of both Fish and Wildlife and Public Water Supply provided both uses are assigned to the entire assessment unit. An assessment unit may be defined as a stream, the mainstem of a river, embayment, portion of a lake or reservoir, or a part of an estuary or coastal water.

A monitoring unit is defined as the watershed draining to, or close to, a sampling location and is made up of many assessment units (individual reaches). A monitoring unit will generally have a drainage area of more than 10 square miles and will be characterized by a predominant land use / land cover. When it is necessary to better characterize assessment units within the larger monitoring units, new monitoring units can be delineated based on the location of the additional sampling location or locations. Water quality data and information gathered at a sampling location which defines a monitoring unit will be the primary means for assigning a use support status to assessment units within the monitoring unit.


The spatial extent of each monitoring unit will be determined using information contained in the Department's Geographic Information System (GIS). Specifically, stream coverages contained within the National Hydrography Dataset (NHD) will be the basis for determining the size of assessed waters. This database of natural and constructed surface waters is a comprehensive set of digital spatial data that contains information about surface water features such as lakes, ponds, streams, rivers, springs and wells. Within the NHD, surface water features are combined to form "reaches", which provide the framework for linking water-related data to the NHD surface drainage network. These linkages enable the analysis and display of these water-related data in upstream and downstream order. Characteristics such as stream length or reservoir area can be aggregated within a monitoring unit to estimate the size of assessed waters.

## 7.0 Ranking and Prioritizing Impaired Waters

Waters in Category 5 will be prioritized based on the nature of the pollutant of concern. Pollutants that relate directly to human health issues rank "high", while more conventional water quality parameters rank "medium" while other non-conventional or legacy pollutant impacts such as contaminated sediments, or impaired habitat rank "low". An example of high priority pollutants are toxics. Dissolved oxygen, pH, and unionized ammonia are examples of medium priority. **Figure 16** describes the general approach to assigning a ranking to each TMDL included in Category 5. However, the TMDL development schedule may not always consider only the ranking of the impaired waterbody. The following factors may be used to determine the timing for the development of the TMDL.

- TMDL complexity
- Pollutants of concern
- Need for additional data and information
- Sources of the pollutants
- Severity of the impairment
- Spatial extent of impairment
- Designated uses of the waterbodies
- General watershed management activities (e.g. 319 grant activities and watershed management planning)
- Existence of endangered and sensitive aquatic species
- Degree of public interest and support for particular waterbodies.

**Figure 16** Alabama's TMDL Prioritization Strategy



Waters which are currently listed on the §303(d) list will have their TMDL developed within 8 to 13 years unless they become eligible for delisting. TMDLs for Category 5 waters will be developed no later than 13 years after the water is first placed in Category 5.

The Integrated Monitoring Report will include proposed schedules (both long term and annually) for the development of TMDLs.

The Department will communicate with bordering states concerning the status of shared waters. When requested, the state will provide data concerning shared waters to the adjacent state.

## 8.0 Schedule for Assessing State Waters

The State has developed a Watershed Management Schedule and has been operating under the rotating basin plan since 1997. This schedule has the state divided into 5 river basin groups which are sampled on a five year rotating basis. The rotating basin schedule is as follows:

- 2005 Alabama, Coosa, and Tallapoosa River Basins
- 2006 Escatawpa, Lower Tombigbee, Upper Tombigbee, and Mobile River Basins
- 2007 Cahaba and Black Warrior River Basins
- 2008 Tennessee River Basin
- 2009 Chipola, Choctawhatchee, Perdidio-Escambia, and Chattahoochee River Basins
- 2010 Tallapoosa, Alabama, and Coosa River Basins
- 2011 Escatawpa, Lower Tombigbee, Upper Tombigbee, and Mobile River Basins

The Integrated Monitoring and Assessment Report will include a comprehensive monitoring and assessment plan that describes the state's proposed schedule for the following two years. Elements of this plan include: a description of the sampling approach (i.e. rotating basin and fixed ambient), and a list of the parameters to be collected (i.e. physical, chemical, and biological). The report will also include a schedule (both long term and annually) for collecting data and information for basic assessments and for TMDLs.

## 9.0 Public Participation

The Integrated Report will combine the Water Quality Inventory Report (§305(b)) with the Impaired Waterbodies (§303(d)) listing. Category 5 in the Integrated Report is considered to be the Impaired Waterbodies list. The remaining categories are considered the Water Quality Inventory. This methodology lays out the framework for assessing data and determining which of the five categories the waterbody will be assigned to. The entire Integrated List will follow the same public process as the §303(d) listing but Categories 1 through 4 and the monitoring schedule will be provided for informational purposes only since these schedules are subject to change as resources allow.

The Department will solicit the submittal of data and information for use in developing the Integrated Report. The public notice requesting data will be published in four major newspapers in the state and on the Department's Website. The time period for submitting data will be

specified in the public notice. The data must be received by the Department by October 31 in the year prior to the report being due to EPA. Data submitted after the specified period will be considered in the development of subsequent Integrated Reports. The Department reviews all existing and readily available data and is committed to using only data with acceptable quality assurance to develop the Integrated Report. Only electronic data or data available in published reports are considered "readily available". Typically, the Department uses Microsoft databases (i.e., Excel, Access) or the Water Resources Database (WRDB) for database management and retrieval.

The Department will publish notice of the availability of the Integrated Water Quality Monitoring and Assessment Methodology and Draft Integrated Report in four major newspapers of general circulation throughout the State and on the Department Website. Adjacent states, federal and interstate agencies shall also be noticed as necessary. The Department will coordinate with neighboring states during the development of the Integrated Report, as needed. The comment period on a proposed Category 5 (§303(d)) list will be a minimum of 30 days.

The Integrated Report, which will include the integrated List, expected monitoring schedules, TMDL schedules, as well as any other information usually included in the §305(b) Report, will be submitted to the USEPA as required by §305(b) of the Clean Water Act. The Department will post the availability of the Integrated Report on its web page at that time.

# 10.0 References

ADEM, 2004. Alabama's 2004 Integrated Water Quality Monitoring & Assessment Report. Alabama Department of Environmental Management. Montgomery, AL

ADEM, 2005. ADEM Administrative Code R. 335-6-10, Water Quality Criteria. Alabama Department of Environmental Management, Montgomery, AL.

ADEM, 2005. ADEM Administrative Code R. 335-6-11, Water Use Classifications for Interstate and Intrastate Waters. Alabama Department of Environmental Management, Montgomery, AL.

ADPH, 2001. ADPH, Seafood Branch. Area I-II-III Triennial Report – 1999, 2000, 2001. Alabama Department of Public Health, Montgomery, AL.

EPA, 2000. Guidance: Use of Fish and Shellfish Advisories and Classifications in 303(d) and 305(b) Listing Decisions, Geoffrey H. Grubbs and Robert H. Wayland, III, October 24, 2000. United States Environmental Protection Agency, Washington, DC.

EPA, 2005. Guidance for 2006 Assessment, Listing, and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 3314 of the Clean Water Act; United States Environmental Protection Agency. Washington, DC.

O'Neil, P.E., and T.E. Shepard, 1998. Standard operating procedure manual for sampling freshwater fish communities and application of the index of biotic integrity for assessing biological condition of flowing, wadeable streams in Alabama. ADEM Contract No. AGY7042. Geological Survey of Alabama, Tuscaloosa, Alabama.

# <u>APPENDIX</u>

#### ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT WATER DIVISION - WATER QUALITY PROGRAM

#### CHAPTER 335-6-10 WATER QUALITY CRITERIA

# TABLE OF CONTENTS

| 335-6-1001 | Purpose                                                     |
|------------|-------------------------------------------------------------|
| 335-6-1002 | Definitions                                                 |
| 335-6-1003 | Water Use Classifications                                   |
| 335-6-1004 | Antidegradation Policy                                      |
| 335-6-1005 | General Conditions Applicable to All Water Quality Criteria |
| 335-6-1006 | Minimum Conditions Applicable to All State Waters           |
| 335-6-1007 | Toxic Pollutant Criteria Applicable to State Waters         |
| 335-6-1008 | Waste Treatment Requirements                                |
| 335-6-1009 | Specific Water Quality Criteria                             |
| 335-6-1010 | Special Designations                                        |
| 335-6-1011 | Water Quality Criteria Applicable to Specific Lakes         |
| 335-6-1012 | Implementation of the Antidegradation Policy                |

#### 335-6-10-.01 Purpose.

(1) Title 22, Section 22-22-1 et seq., Code of Alabama 1975, includes as its purpose "... to conserve the waters of the State and to protect, maintain and improve the quality thereof for public water supplies, for the propagation of wildlife, fish and aquatic life and for domestic, agricultural, industrial, recreational and other legitimate beneficial uses; to provide for the prevention, abatement and control of new or existing water pollution; and to cooperate with other agencies of the State, agencies of other states and the federal government in carrying out these objectives."

(2) Water quality criteria, covering all legitimate water uses, provide the tools and means for determining the manner in which waters of the State may be best utilized, provide a guide for determining waste treatment requirements, and provide the basis for standards of quality for State waters and portions thereof. Water quality criteria are not intended to freeze present uses of water, nor to exclude other uses not now possible. They are not a device to insure the lowest common denominator of water quality, but to encourage prudent use of the State's water resources and to enhance their quality and productivity commensurate with the stated purpose of Title 22, Section 22-22-1 et seq., Code of Alabama 1975.

(3) Water quality criteria herein set forth have been developed by the Commission for those uses of surface waters known and expected to exist over the State.

They are based on present scientific knowledge, experience and judgment. Characteristics or parameters included in the criteria are those of fundamental significance to a determination of water quality and are those which are and can be routinely monitored and compared to data that are generally available. It is the intent that these criteria will be applied only after reasonable opportunity for mixture of wastes with receiving waters has been afforded. The reasonableness of the opportunity for mixture of wastes and receiving waters shall be judged on the basis of the physical characteristics of the receiving waters and approval by the Department of the method in which the discharge is physically made.

Author: James E. McIndoe.

**Statutory Authority:** <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8.

**History:** May 5, 1967. **Amended:** June 19, 1967; July 17, 1972; February 26, 1973; May 30, 1977; December 19, 1977; February 4, 1981; March 2, 1990; April 3, 1991.

#### 335-6-10-.02 Definitions.

(1) "<u>Commission</u>" means the Environmental Management Commission, established by the Environmental Management Act, <u>Code of Alabama</u> 1975, §§ 22-22A-1 to 22-22A-16.

(2) "<u>Department</u>" means the Alabama Department of Environmental Management, established by the Alabama Environmental Management Act, <u>Code of</u> <u>Alabama</u> 1975, §§ 22-22A-1 to 22-22A-16.

(3) "<u>Existing Uses</u>" means those legitimate beneficial uses of a water body attained in fact on or after November 28, 1975, whether or not they are included as classified uses in ADEM Administrative Code Rule 335-6-11-.02.

(4) "<u>Industrial Waste</u>" means liquid or other wastes resulting from any process of industry, manufacture, trade or business or from the development of natural resources.

(5) "<u>NPDES</u>" means National Pollutant Discharge Elimination System.

(6) "<u>Other Wastes</u>" means all other substances, whether liquid, gaseous or solid, from all other sources including, but not limited to, any vessels, or other conveyances traveling or using the waters of this State, except industrial wastes or sewage, which may cause pollution of any waters of the State.

(7) "<u>Pollutant</u>" includes but is not limited to dredged spoil, solid waste, incinerator residue, filter backwash, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal, and agricultural waste discharged into water. Pollutant does not mean (a) sewage from vessels; or (b) water, gas, or other material which is injected into a well to facilitate production of oil or gas, or water derived in association with oil or gas production and disposed of in a well, if the well used either to facilitate production or for disposal purposes is approved by authority of the State, and if the Department determines that such injection or disposal will not result in the degradation of ground or surface water resources.

(8) "<u>Pollution</u>" means the discharge of a pollutant or combination of pollutants.

(9) "<u>Sewage</u>" means water-carried human wastes from residences, buildings, industrial establishments or other places including, but not limited to, any vessels, or other conveyances traveling or using the waters of this State, together with such ground, surface, storm or other waters as may be present.

(10) "<u>State Waters</u>" or "<u>Waters of the State</u>" means all waters of any river, stream, watercourse, pond, lake, coastal, or surface water, wholly or partially within the State, natural or artificial. This does not include waters which are entirely confined and retained completely upon the property of a single individual, partnership or corporation unless such waters are used in interstate commerce.

#### Author: James E. McIndoe.

**Statutory Authority:** <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8.

**History:** May 5, 1967. **Amended:** June 19, 1967; July 17, 1972; February 26, 1973; May 30, 1977; December 19, 1977; February 4, 1981; March 2, 1990; April 3, 1991.

#### 335-6-10-.03 Water Use Classifications.

- (1) Outstanding Alabama Water
- (2) Public Water Supply
- (3) Swimming and Other Whole Body Water-Contact Sports
- (4) Shellfish Harvesting
- (5) Fish and Wildlife
- (6) Limited Warmwater Fishery
- (7) Agricultural and Industrial Water Supply

Author: James E. McIndoe.

Statutory Authority: <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8.

**History:** May 5, 1967. **Amended:** June 19, 1967; July 17, 1972; February 26, 1973; May 30, 1977; December 19, 1977; February 4, 1981; December 30, 1992; September 7, 2000.

#### 335-6-10-.04 Antidegradation Policy.

(1) The purpose and intent of the water quality standards is to conserve the waters of the State of Alabama and to protect, maintain and improve the quality thereof for public water supplies, for the propagation of wildlife, fish and aquatic life, and for domestic, agricultural, industrial, recreational and other legitimate beneficial uses; and to provide for the prevention, abatement and control of new or existing water pollution.

(2) Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. Uses and the water quality to support such uses were established through public participation in the initial establishment, and periodic review, of water quality standards. Should the Department determine that an existing use is not encompassed in the classification of a waterbody, that use shall be recognized.

(3) Where the quality of the waters exceed levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that quality shall be maintained and protected, except that a new or increased discharge of pollutants may be allowed, after intergovernmental coordination and public participation pursuant to applicable permitting and management processes, when the person proposing the new or increased discharge of pollutants demonstrates that the proposed discharge is necessary for important economic or social development. In such cases, water quality adequate to protect existing uses fully shall be maintained. All new and existing point source discharges shall be subject to the highest statutory and regulatory requirements, and nonpoint source discharges shall use best management practices adequate to protect water quality consistent with the Department's nonpoint source control program.

(4) Where high quality waters constitute an outstanding National resource, such as waters of national and state parks and wildlife refuges and waters of exceptional recreational or ecological significance, that water quality shall be maintained and protected.

(5) Developments constituting a new or increased source of thermal pollution shall assure that such release will not impair the propagation of a balanced indigenous population of fish and aquatic life.

(6) In applying these policies and requirements, the State of Alabama will recognize and protect the interests of the federal government. Toward this end the Department will consult and cooperate with the Environmental Protection Agency on all matters affecting the federal interest.

Author: James E. McIndoe.

Statutory Authority: <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8.

**History:** May 5, 1967. **Amended:** June 19, 1967; July 17, 1972; February 26, 1973; May 30, 1977; December 19, 1977; February 4, 1981; March 2, 1990; April 3, 1991.

#### 335-6-10-.05 General Conditions Applicable to All Water Quality Criteria.

(1) The quality of any waters receiving sewage, industrial wastes or other wastes, regardless of their use, shall be such as will not cause the best usage of any other waters to be adversely affected by such sewage, industrial wastes or other wastes.

(2) Tests or analytical procedures to determine compliance or noncompliance with water quality criteria shall be in accordance with the methods specified in 40 CFR 136.3 (2003). Where other tests or analytical procedures are found to be more applicable and satisfactory, these may be used upon acceptance and approval by the Department.

(3) In making any tests or analytical determinations to determine compliance or noncompliance with water quality criteria, samples shall be collected in such manner and at such locations approved by a duly authorized representative of the Department as being representative of the receiving waters after reasonable opportunity for dilution and mixture with the wastes discharged thereto. Mixing zones, i.e., that portion of the receiving waters where mixture of effluents and natural waters take place, shall not preclude passage of free-swimming and drifting aquatic organisms to the extent that their populations are significantly affected.

(4) Natural waters may, on occasion, have characteristics outside of the limits established by these criteria. The criteria contained herein relate to the condition of waters as affected by the discharge of sewage, industrial wastes or other wastes, not to conditions resulting from natural forces.

(5) All waters, where attainable, shall be suitable for recreation in and on the waters during the months of June through September except that recreational use is not recommended in the vicinity of discharges or other conditions which the Department or the Department of Public Health does not control.

(6) Where necessary to attain compliance with a new water quality standard, existing permits for the discharge of wastewaters shall be modified or reissued to limit the discharge of a substance causing or contributing to the failure of a water of the state to meet the new standard. Compliance with the modified limit shall be required as soon as practical, but in all cases within three years of the adoption of the new standard.

#### Author: James E. McIndoe.

Statutory Authority: <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8.

**History:** May 5, 1967. **Amended:** June 19, 1967; July 17, 1972; February 26, 1973; May 30, 1977; December 19, 1977; February 4, 1981; March 2, 1990; April 3, 1991; January 14, 2005.

**335-6-10-.06** <u>Minimum Conditions Applicable to All State Waters</u>. The following minimum conditions are applicable to all State waters, at all places and at all times, regardless of their uses:

(a) State waters shall be free from substances attributable to sewage, industrial wastes or other wastes that will settle to form bottom deposits which are unsightly, putrescent or interfere directly or indirectly with any classified water use.

(b) State waters shall be free from floating debris, oil, scum, and other floating materials attributable to sewage, industrial wastes or other wastes in amounts sufficient to be unsightly or interfere directly or indirectly with any classified water use.

(c) State waters shall be free from substances attributable to sewage, industrial wastes or other wastes in concentrations or combinations which are toxic or harmful to human, animal or aquatic life to the extent commensurate with the designated usage of such waters.

#### Author: James E. McIndoe.

**Statutory Authority:** <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8.

**History:** May 5, 1967. **Amended:** June 19, 1967; July 17, 1972; February 26, 1973; May 30, 1977; December 19, 1977; February 4, 1981.

#### 335-6-10-.07 Toxic Pollutant Criteria Applicable to State Waters.

(1) The U. S. Environmental Protection Agency has listed the chemical constituents given in Table 1 as toxic pollutants pursuant to Section 307(a)(1) of the Federal Water Pollution Control Act (FWPCA). Concentrations of these toxic pollutants in State waters shall not exceed the criteria indicated in Table 1 to the extent commensurate with the designated usage of such waters.

(a) The freshwater and marine aquatic life criteria for certain of the pollutants are dependent on hardness or pH. For these pollutants, the criteria are given by the following equations. In the hardness-dependent equations for metals, a conversion factor converts the total recoverable value to a criterion expressed as the dissolved fraction in the water column. All numeric values listed for metals in Table 1 at the end of this chapter are expressed as dissolved metals unless otherwise noted.

- 1. Cadmium
- (i) freshwater acute aquatic life:

conc. 
$$(\mu g/l) = (e^{(1.0166[\ln(hardness in mg/l as CaCO_3)]-3.924)})(CF);$$
 (Eq. 1)

conversion factor (CF) = 1.136672-[ln(hardness)(0.041838)]

(ii) freshwater chronic aquatic life:

conc. 
$$(\mu g/l) = (e^{(0.7409[\ln(hardness in mg/l as CaCO_3)]-4.719)})(CF);$$
 (Eq. 2)

conversion factor (CF) = 1.101672-[ln(hardness)(0.041838)]

2. Chromium (trivalent) (i) freshwater acute aquatic life: conc.  $(\mu g/l) = (e^{(0.8190[\ln(hardness in mg/l as CaCO_3)]+3.7256)})(CF);$ (Eq. 3)conversion factor (CF) = 0.316(ii) freshwater chronic aquatic life: conc.  $(\mu g/l) = (e^{(0.8190[\ln(hardness in mg/l as CaCO_3)]+0.6848)})(CF);$ (Eq. 4)conversion factor (CF) = 0.8603. Copper (i) freshwater acute aquatic life: conc.  $(\mu g/l) = (e^{(0.9422[\ln(hardness in mg/l as CaCO_3)]-1.700)})(CF);$ (Eq. 5) conversion factor (CF) = 0.960(ii) freshwater chronic aquatic life: conc.  $(\mu g/l) = (e^{(0.8545[\ln(hardness in mg/l as CaCO_3)]-1.702)})(CF);$ (Eq. 6) conversion factor (CF) = 0.9604. Lead (i) freshwater acute aquatic life: conc.  $(\mu g/l) = (e^{(1.273[ln(hardness in mg/l as CaCO_3)]-1.460)})(CF):$ (Eq. 7) conversion factor (CF) = 1.46203-[ln(hardness)(0.145712)] (ii) freshwater chronic aquatic life: conc.  $(\mu g/l) = (e^{(1.273[\ln(hardness in mg/l as CaCO_3)]-4.705)})(CF);$ (Eq. 8) conversion factor (CF) = 1.46203-[ln(hardness)(0.145712)] 5. Nickel (i) freshwater acute aquatic life: conc.  $(\mu g/l) = (e^{(0.8460[\ln(hardness in mg/l as CaCO_3)]+2.255)})(CF);$ (Eq. 9)conversion factor (CF) = 0.998

10-7

(ii) freshwater chronic aquatic life: conc.  $(ug/l) = (e^{(0.8460[ln(hardness in mg/l as CaCO_3)]+0.0584)})(CF);$ (Eq. 10)conversion factor (CF) = 0.9976. Pentachlorophenol (i) freshwater acute aquatic life: conc.  $(\mu g/l) = e^{[1.005(pH)-4.869]}$ (Eq. 11) (ii) freshwater chronic aquatic life: conc.  $(\mu g/l) = e^{[1.005(pH)-5.134]}$ (Eq. 12) 7. Silver (i) freshwater acute aquatic life: conc.  $(\mu g/l) = (e^{(1.72[\ln(hardness in mg/l as CaCO_3)]-6.59)})(CF): (Eq. 13)$ conversion factor (CF) = 0.858. Zinc (i) freshwater acute aquatic life: conc.  $(\mu g/l) = (e^{(0.8473[\ln(hardness in mg/l as CaCO_3)]+0.884)})(CF):$ (Eq. 14) conversion factor (CF) = 0.978(ii) freshwater chronic aquatic life: conc.  $(\mu g/l) = (e^{(0.8473[\ln(hardness in mg/l as CaCO_3)]+0.884)})(CF):$ (Eq. 15)conversion factor (CF) = 0.986

(b) The marine aquatic life criteria apply only to interstate and coastal waters of the Mobile River - Mobile Bay Basin and interstate and coastal waters of the Perdido River Basin, as identified in Rule 335-6-11-.02 of the Department's regulations. The acute aquatic life criteria apply to all waters of the State. The chronic aquatic life criteria apply only to waters classified Outstanding Alabama Water, Public Water Supply, Swimming and Other Whole Body Water-Contact Sports, Shellfish Harvesting, Fish and Wildlife, and Limited Warmwater Fishery, as identified in Rule 335-6-11-.02 of the Department's regulations.

(c) For the purpose of establishing effluent limitations pursuant to Chapter 335-6-6 of the Department's regulations, the minimum 7-day low flow that occurs once in

10 years  $(7Q_{10})$  shall be the basis for applying the chronic aquatic life criteria, except as noted in Rule 335-6-10-.09(6), and the minimum 1-day low flow that occurs once in 10 years  $(1Q_{10})$  shall be the basis for applying the acute aquatic life criteria, except as noted in Rule 335-6-10-.09(7)(c)(5). Where a permit specifies a minimum flow greater than  $7Q_{10}$ , the specified minimum flow may be used as the basis for applying the acute and chronic aquatic life criteria for that permit.

(d) Except as noted in Table 1, two human health criteria are provided for each pollutant--a criterion for consumption of water and fish, and a criterion for consumption of fish only. For certain pollutants, the human health criterion for consumption of water and fish may represent a maximum contaminant level (MCL) developed under the Safe Drinking Water Act.

1. For pollutants classified by the U.S. Environmental Protection Agency as non-carcinogens, the criteria shall be given by the following equations, except where numeric values are given in Table 1.

| (i) Consumption of water and fish:                         |          |  |
|------------------------------------------------------------|----------|--|
| conc. $(mg/l) = (HBW \times RfD)/[(FCR \times BCF) + WCR]$ | (Eq. 16) |  |
| (ii) Consumption of fish only:                             |          |  |
| conc. $(mg/l) = (HBW \times RfD)/(FCR \times BCF)$         | (Eq. 17) |  |
| where: HBW = human body weight, set at 70 kg               |          |  |
| RfD = reference dose, in mg/(kg-day)                       |          |  |
| FCR = fish consumption rate, set at 0.030 kg/day           |          |  |
| BCF = bioconcentration factor, in l/kg                     |          |  |

WCR = water consumption rate, set at 2 l/day

(iii) The values used for the reference dose (RfD) shall be values available through the U.S. Environmental Protection Agency's Integrated Risk Information System (IRIS), and values used for the bioconcentration factor (BCF) shall be values contained in ambient water quality criteria documents published by the U.S. Environmental Protection Agency, except where other values are established pursuant to subparagraph (1)(g). The RfD and BCF values for specific pollutants are provided in Appendix A.

2. For pollutants classified by the U.S. Environmental Protection Agency as carcinogens, the criteria shall be given by the following equations, except where numeric values are given in Table 1.

(i) Consumption of water and fish:

conc.  $(mg/l) = (HBW \times RL)/(CPF \times [(FCR \times BCF) + WCR])$  (Eq. 18)

(ii) Consumption of fish only:

conc.  $(mg/l) = (HBW \times RL)/(CPF \times FCR \times BCF)$  (Eq. 19)

where: HBW = human body weight, set at 70 kg

RL = risk level, set at 1 x 10<sup>-5</sup>

CPF = cancer potency factor, in (kg-day)/mg

FCR = fish consumption rate, set at 0.030 kg/day

BCF = bioconcentration factor, in l/kg

WCR = water consumption rate, set at 2 l/day

(iii) The values used for the cancer potency factor (CPF) shall be values available through the U.S. Environmental Protection Agency's Integrated Risk Information System (IRIS), and values used for the bioconcentration factor (BCF) shall be values contained in ambient water quality criteria documents published by the U.S. Environmental Protection Agency, except where other values are established pursuant to subparagraph (1)(g). The CPF and BCF values for specific pollutants are provided in Appendix A.

(e) The criteria given in Table 1 for consumption of water and fish, or computed from equation 16 or equation 18 for consumption of water and fish, shall apply only to those waters of the State classified Public Water Supply, as identified in Rule 335-6-11-.02 of the Department's regulations. The criteria given in Table 1 for consumption of fish only, or computed from equation 17 or equation 19 for consumption of fish only, shall apply to all waters of the State.

(f) For the purposes of establishing effluent limitations pursuant to Chapter 335-6-6 of the Department's regulations, the minimum 7-day low flow that occurs once in 10 years ( $7Q_{10}$ ) shall be the basis for applying the human health criteria for pollutants classified as non-carcinogens, and the mean annual flow shall be the basis for applying the human health criteria for pollutants classified as carcinogens; except that where a permit specifies a minimum flow greater than  $7Q_{10}$ , the specified minimum flow may be used as the basis for applying the human health criteria for pollutants classified as non-carcinogens for that permit.

(g) Numeric criteria may be computed by the Department from equations 16, 17, 18, and 19 using values for the reference dose (RfD), cancer potency factor (CPF), and bioconcentration factor (BCF) determined by the Department in consultation with the State Department of Public Health after review of information available from sources other than the U.S. Environmental Protection Agency's Integrated Risk Information System (IRIS) or ambient water quality criteria documents. Such criteria, or the RfD,

CPF, and BCF values used to compute criteria, shall not be effective until adopted following established rulemaking procedures.

#### Author: James E. McIndoe.

**Statutory Authority:** <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8.

**History:** March 2, 1990. **Amended:** April 3, 1991; May 28, 1992; August 29, 1994; May 30, 1997; September 7, 2000; January 12, 2001; January 14, 2005; September 21, 2005; May 29, 2007.

**335-6-10-.08** <u>Waste Treatment Requirements</u>. The following treatment requirements apply to all industrial waste discharges, sewage treatment plants, and combined waste treatment plants:

As a minimum, secondary treatment or "equivalent to secondary (a) treatment" as provided for in rules and regulations promulgated by the U.S. Environmental Protection Agency at 40 CFR Part 133 (1990), shall be applied to all waste discharges. The term "secondary treatment" is applied to biologically degradable waste and is interpreted to mean a facility which at design flow is capable of removing substantially all floating and settleable solids and to achieve a minimum removal of 85 percent of both the 5-day biochemical oxygen demand and suspended solids which, in the case of municipal wastes, is generally considered to produce an effluent quality containing a BOD<sub>5</sub> concentration of 30 mg/l and a suspended solids concentration of 30 mg/l. For municipal waste treatment facilities with effluent concentration limitations that are more stringent than secondary treatment, minimum removal of 85 percent of both the 5-day biochemical oxygen demand and suspended solids shall be at the Department's discretion. Disinfection, where necessary, will also be required. Waste treatment requirements also include those established under the provisions of Sections 301, 304, 306, and 307 of the Federal Water Pollution Control Act (FWPCA). In addition, the Department may require secondary treatment of biologically degradable industrial wastewaters when the application of guidelines published under federal law do not produce a similar reduction in the parameters of concern. In the application of this requirement, consideration will be given to efficiencies achieved through in-process improvements.

(b) In all cases an analysis of water use and flow characteristics for the receiving stream shall be provided to determine the degree of treatment required. Where indicated by the analysis, a higher degree of treatment may be required.

(c) The minimum 7-day low flow that occurs once in 10 years shall be the basis for design criteria.

Author: James E. McIndoe.

**Statutory Authority:** <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8.

**History:** May 5, 1967. **Amended:** June 19, 1967; July 17, 1972; February 26, 1973; May 30, 1977; December 19, 1977; February 4, 1981; March 2, 1990; April 3, 1991; January 14, 2005.

#### 335-6-10-.09 Specific Water Quality Criteria.

#### (1) OUTSTANDING ALABAMA WATER

(a) Best usage of waters: activities consistent with the natural characteristics of the waters.

(b) Conditions related to best usage:

1. High quality waters that constitute an outstanding Alabama resource, such as waters of state parks and wildlife refuges and waters of exceptional recreational or ecological significance, may be considered for classification as an Outstanding Alabama Water (OAW).

- (c) Specific criteria:
- 1. Sewage, industrial wastes, or other wastes:

(i) Existing point source discharges to an Outstanding Alabama Water shall be allowed; however, within three years of assignment of the OAW classification or at permit renewal, whichever is later, existing point sources shall be required to meet the effluent limitations specified for new point source discharges in subparagraph (ii) hereof.

(ii) New point source discharges or expansions of existing point source discharges shall not be allowed unless a thorough evaluation of all practicable treatment and disposal alternatives by the permit applicant has demonstrated to the satisfaction of the Department that there is no feasible alternative to discharge to the waters classified OAW. At a minimum, domestic wastewater discharges shall be required to meet monthly average effluent limitations of 15 mg/l biochemical oxygen demand (5-day), 3 mg/l ammonia nitrogen, and 6 mg/l dissolved oxygen, and shall be required to provide disinfection of the effluent. Non-domestic wastewater discharges shall be required to provide a comparably stringent level of treatment as determined by the Department.

(iii) Effluent limitations for new point source discharges or expansions of existing point source discharges to waters upstream of, or tributary to, waters classified OAW shall be established by the Department such that the impact of the discharge within the waters classified OAW is no greater than if the discharge occurred at the OAW boundary at the treatment levels specified in subparagraph (ii) hereof.

(iv) All NPDES permits shall contain toxics limits that will ensure compliance with all applicable water quality standards. Such limits shall be acute and chronic toxicity limits for individual toxic substances, whole effluent toxicity limits, or both. For permittees subject to whole effluent toxicity limitations, both acute and chronic testing will be required. Whole effluent acute toxicity will be demonstrated if the effluent causes more than 10 percent mortality of test organisms when tested at an effluent concentration of 100 percent. For permittees whose discharge will result in an in-stream waste concentration of 10 percent or more, whole effluent chronic toxicity limits will be based on an in-stream concentration of 100 percent; for permittees whose discharge will result in an in-stream waste concentration of less than 10 percent, whole effluent chronic toxicity limits will be based on the in-stream waste concentration.

(v) Nonpoint source discharges shall use best management practices adequate to protect water quality consistent with the Department's nonpoint source control program.

(vi) All NPDES permits and nonpoint sources shall incorporate or employ water pollution prevention or waste reduction measures as established by the Department.

2. pH: sewage, industrial wastes or other wastes shall not cause the pH to deviate more than one unit from the normal or natural pH, nor be less than 6.0, nor greater than 8.5. For salt waters and estuarine waters to which this classification is assigned, wastes as herein described shall not cause the pH to deviate more than one unit from the normal or natural pH, nor be less than 6.5, nor greater than 8.5.

3. Temperature:

(i) The maximum temperature in streams, lakes, and reservoirs, other than those in river basins listed in subparagraph (ii) hereof, shall not exceed 90 °F.

(ii) The maximum temperature in streams, lakes, and reservoirs in the Tennessee and Cahaba River Basins, and for that portion of the Tallapoosa River Basin from the tailrace of Thurlow Dam at Tallassee downstream to the junction of the Coosa and Tallapoosa Rivers which has been classified by the Alabama Department of Conservation and Natural Resources as supporting smallmouth bass, sauger, or walleye, shall not exceed 86 °F.

(iii) The maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 5 °F in streams, lakes, and reservoirs in non-coastal and non-estuarine areas.

(iv) The maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 4 °F in coastal or estuarine waters during the period October through May, nor shall the rise exceed 1.5 °F during the period June through September. (v) In lakes and reservoirs there shall be no withdrawal from, nor discharge of heated waters to, the hypolimnion unless it can be shown that such discharge or withdrawal will be beneficial to water quality.

(vi) In all waters the normal daily and seasonal temperature variations that were present before the addition of artificial heat shall be maintained, and there shall be no thermal block to the migration of aquatic organisms.

(vii) Thermal permit limitations in NPDES permits may be less stringent than those required by subparagraphs (i) - (iv) hereof when a showing by the discharger has been made pursuant to Section 316 of the Federal Water Pollution Control Act (FWPCA), 33 U.S.C. § 1251 <u>et seq</u>. or pursuant to a study of an equal or more stringent nature required by the State of Alabama authorized by Title 22, Section 22-22-9(c), <u>Code of Alabama</u> 1975, that such limitations will assure the protection and propagation of a balanced, indigenous population of shellfish, fish and wildlife, in and on the body of water to which the discharge is made. Any such demonstration shall take into account the interaction of the thermal discharge component with other pollutants discharged.

4. Dissolved oxygen:

(i) For a diversified warm water biota, including game fish, daily dissolved oxygen concentrations shall not be less than 5.5 mg/l at all times; except under extreme conditions due to natural causes, it may range between 5.5 mg/l and 4 mg/l, provided that the water quality is favorable in all other parameters. The normal seasonal and daily fluctuations shall be maintained above these levels. In no event shall the dissolved oxygen level be less than 4 mg/l due to hydroelectric turbine discharges from existing hydroelectric generation impoundments. All new hydroelectric generation units to existing impoundments, shall be designed so that the discharge will contain at least 5.5 mg/l dissolved oxygen where practicable and technologically possible. The Environmental Protection Agency, in cooperation with the State of Alabama and parties responsible for impoundments, shall develop a program to improve the design of existing facilities.

(ii) In coastal waters, surface dissolved oxygen concentrations shall not be less than 5.5 mg/l, except where natural phenomena cause the value to be depressed.

(iii) In estuaries and tidal tributaries, dissolved oxygen concentrations shall not be less than 5.5 mg/l, except in dystrophic waters or where natural conditions cause the value to be depressed.

(iv) In the application of dissolved oxygen criteria referred to above, dissolved oxygen shall be measured at a depth of 5 feet in waters 10 feet or greater in depth; and for those waters less than 10 feet in depth, dissolved oxygen criteria will be applied at mid-depth.

5. Toxic substances attributable to sewage, industrial wastes, or other wastes: only such amounts, whether alone or in combination with other substances, as will not exhibit acute toxicity or chronic toxicity, as demonstrated by effluent toxicity testing or

by application of numeric criteria given in Rule 335-6-10-.07, to fish and aquatic life, including shrimp and crabs in estuarine or salt waters or the propagation thereof.

6. Taste, odor, and color-producing substances attributable to sewage, industrial wastes, or other wastes: only such amounts, whether alone or in combination with other substances, as will not exhibit acute toxicity or chronic toxicity, as demonstrated by effluent toxicity testing or by application of numeric criteria given in Rule 335-6-10-.07, to fish and aquatic life, including shrimp and crabs in estuarine and salt waters or adversely affect the propagation thereof; impair the palatability or marketability of fish and wildlife or shrimp and crabs in estuarine and salt waters; or unreasonably affect the aesthetic value of waters for any use under this classification.

7. Bacteria: in non-coastal waters, bacteria of the fecal coliform group shall not exceed a geometric mean of 200 colonies/100 ml. In coastal waters, bacteria of the enterococci group shall not exceed a geometric mean of 35 colonies/100 ml nor exceed a maximum of 104 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours.

8. Radioactivity: the concentrations of radioactive materials present shall not exceed the requirements of the State Department of Public Health.

9. Turbidity: there shall be no turbidity of other than natural origin that will cause substantial visible contrast with the natural appearance of waters or interfere with any beneficial uses which they serve. Furthermore, in no case shall turbidity exceed 50 Nephelometric units above background. Background will be interpreted as the natural condition of the receiving waters without the influence of man-made or man-induced causes. Turbidity levels caused by natural runoff will be included in establishing background levels.

# (2) **PUBLIC WATER SUPPLY**

(a) Best usage of waters: source of water supply for drinking or food-processing purposes.\*

(b) Conditions related to best usage: the waters, if subjected to treatment approved by the Department equal to coagulation, sedimentation, filtration and disinfection, with additional treatment if necessary to remove naturally present impurities, and which meet the requirements of the Department, will be considered safe for drinking or food-processing purposes.

(c) Other usage of waters: it is recognized that the waters may be used for incidental water contact and recreation during June through September, except that water

**<sup>\*</sup> NOTE:** In determining the safety or suitability of waters for use as sources of water supply for drinking or food-processing purposes after approved treatment, the Commission will be guided by the physical and chemical standards specified by the Department.

contact is strongly discouraged in the vicinity of discharges or other conditions beyond the control of the Department or the Alabama Department of Public Health.

(d) Conditions related to other usage: the waters, under proper sanitary supervision by the controlling health authorities, will meet accepted standards of water quality for outdoor swimming places and will be considered satisfactory for swimming and other whole body water-contact sports.

(e) Specific criteria:

1. Sewage, industrial wastes, or other wastes: none which are not effectively treated or controlled in accordance with Rule 335-6-10-.08.

2. pH: sewage, industrial wastes or other wastes shall not cause the pH to deviate more than one unit from the normal or natural pH, nor be less than 6.0, nor greater than 8.5.

3. Temperature:

(i) The maximum temperature in streams, lakes, and reservoirs, other than those in river basins listed in subparagraph (ii) hereof, shall not exceed 90 °F.

(ii) The maximum temperature in streams, lakes, and reservoirs in the Tennessee and Cahaba River Basins, and for that portion of the Tallapoosa River Basin from the tailrace of Thurlow Dam at Tallassee downstream to the junction of the Coosa and Tallapoosa Rivers which has been designated by the Alabama Department of Conservation and Natural Resources as supporting smallmouth bass, sauger, or walleye, shall not exceed 86 °F.

(iii) The maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 5 °F in streams, lakes, and reservoirs in non-coastal and non-estuarine areas.

(iv) The maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 4 °F in coastal or estuarine waters during the period October through May, nor shall the rise exceed 1.5 °F during the period June through September.

(v) In lakes and reservoirs there shall be no withdrawal from, nor discharge of heated waters to, the hypolimnion unless it can be shown that such discharge or withdrawal will be beneficial to water quality.

(vi) In all waters the normal daily and seasonal temperature variations that were present before the addition of artificial heat shall be maintained, and there shall be no thermal block to the migration of aquatic organisms.

(vii) Thermal permit limitations in NPDES permits may be less stringent than those required by subparagraphs (i) - (iv) hereof when a showing by the discharger has

been made pursuant to Section 316 of the Federal Water Pollution Control Act (FWPCA), 33 U.S.C.§ 1251 <u>et seq</u>. or pursuant to a study of an equal or more stringent nature required by the State of Alabama authorized by Title 22, Section 22-22-9(c), <u>Code of Alabama</u>, 1975, that such limitations will assure the protection and propagation of a balanced, indigenous population of shellfish, fish and wildlife, in and on the body of water to which the discharge is made. Any such demonstration shall take into account the interaction of the thermal discharge component with other pollutants discharged.

4. Dissolved oxygen:

(i) For a diversified warm water biota, including game fish, daily dissolved oxygen concentrations shall not be less than 5 mg/l at all times; except under extreme conditions due to natural causes, it may range between 5 mg/l and 4 mg/l, provided that the water quality is favorable in all other parameters. The normal seasonal and daily fluctuations shall be maintained above these levels. In no event shall the dissolved oxygen level be less than 4 mg/l due to discharges from existing hydroelectric generation impoundments. All new hydroelectric generation impoundments, including addition of new hydroelectric generation units to existing impoundments, shall be designed so that the discharge will contain at least 5 mg/l dissolved oxygen where practicable and technologically possible. The Environmental Protection Agency, in cooperation with the State of Alabama and parties responsible for impoundments, shall develop a program to improve the design of existing facilities.

(ii) In coastal waters, surface dissolved oxygen concentrations shall not be less than 5 mg/l, except where natural phenomena cause the value to be depressed.

(iii) In estuaries and tidal tributaries, dissolved oxygen concentrations shall not be less than 5 mg/l, except in dystrophic waters or where natural conditions cause the value to be depressed.

(iv) In the application of dissolved oxygen criteria referred to above, dissolved oxygen shall be measured at a depth of 5 feet in waters 10 feet or greater in depth; and for those waters less than 10 feet in depth, dissolved oxygen criteria will be applied at mid-depth.

5. Toxic substances; color producing; heated liquids; or other deleterious substances attributable to sewage, industrial wastes, or other wastes: only such amounts, whether alone or in combination with other substances, and only such temperatures as will not render the waters unsafe or unsuitable as a source of water supply for drinking or food-processing purposes, or exhibit acute toxicity or chronic toxicity, as demonstrated by effluent toxicity testing or by application of numeric criteria given in Rule 335-6-10-.07, to fish, wildlife and aquatic life, or adversely affect the aesthetic value of waters for any use under this classification.

6. Taste and odor producing substances attributable to sewage, industrial wastes, or other wastes: only such amounts, whether alone or in combination with other substances or wastes, as will not cause taste and odor difficulties in water supplies which

cannot be corrected by treatment as specified under subparagraph (b), or impair the palatability of fish.

7. Bacteria:

(i) In non-coastal waters, bacteria of the fecal coliform group shall not exceed a geometric mean of 1,000 colonies/100 ml; nor exceed a maximum of 2,000 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours. In coastal waters, bacteria of the enterococci group shall not exceed a maximum of 275 colonies/100 ml in any sample.

(ii) For incidental water contact and recreation during June through September, the bacterial quality of water is acceptable when a sanitary survey by the controlling health authorities reveals no source of dangerous pollution and when the geometric mean fecal coliform organism density does not exceed 200 colonies/100 ml in non-coastal waters. In coastal waters, bacteria of the enterococci group shall not exceed a geometric mean of 35 colonies/100 ml nor exceed a maximum of 158 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours. When the geometric mean bacterial organism density exceeds these levels, the bacterial water quality shall be considered acceptable only if a second detailed sanitary survey and evaluation discloses no significant public health risk in the use of the waters. Waters in the immediate vicinity of discharges of sewage or other wastes likely to contain bacteria harmful to humans, regardless of the degree of treatment afforded these wastes, are not acceptable for swimming or other whole body water-contact sports.

8. Radioactivity: no radionuclide or mixture of radionuclides shall be present at concentrations greater than those specified by the requirements of the State Department of Public Health.

9. Turbidity: there shall be no turbidity of other than natural origin that will cause substantial visible contrast with the natural appearance of waters or interfere with any beneficial uses which they serve. Furthermore, in no case shall turbidity exceed 50 Nephelometric units above background. Background will be interpreted as the natural condition of the receiving waters, without the influence of man-made or man-induced causes. Turbidity levels caused by natural runoff will be included in establishing background levels.

# (3) SWIMMING AND OTHER WHOLE BODY WATER-CONTACT SPORTS

(a) Best usage of waters: swimming and other whole body water-contact sports.\*

**<sup>\*</sup> NOTE:** In assigning this classification to waters intended for swimming and water-contact sports, the Commission will take into consideration the relative proximity of discharges of wastes and will recognize

(b) Conditions related to best usage: the waters, under proper sanitary supervision by the controlling health authorities, will meet accepted standards of water quality for outdoor swimming places and will be considered satisfactory for swimming and other whole body water-contact sports. The quality of waters will also be suitable for the propagation of fish, wildlife and aquatic life. The quality of salt waters and estuarine waters to which this classification is assigned will be suitable for the propagation and harvesting of shrimp and crabs.

(c) Specific criteria:

1. Sewage, industrial wastes, or other wastes: none which are not effectively treated or controlled in accordance with Rule 335-6-10-.08.

2. pH: sewage, industrial wastes or other wastes shall not cause the pH to deviate more than one unit from the normal or natural pH, nor be less than 6.0, nor greater than 8.5. For estuarine waters and salt waters to which this classification is assigned, wastes as described herein shall not cause the pH to deviate more than one unit from the normal or natural pH, nor be less than 6.5, nor greater than 8.5.

3. Temperature:

(i) The maximum temperature in streams, lakes, and reservoirs, other than those in river basins listed in subparagraph (ii) hereof, shall not exceed 90 °F.

(ii) The maximum temperature in streams, lakes, and reservoirs in the Tennessee and Cahaba River Basins, and for that portion of the Tallapoosa River Basin from the tailrace of Thurlow Dam at Tallassee downstream to the junction of the Coosa and Tallapoosa Rivers which has been designated by the Alabama Department of Conservation and Natural Resources as supporting smallmouth bass, sauger, or walleye, shall not exceed 86 °F.

(iii) The maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 5 °F in streams, lakes, and reservoirs in non-coastal and non-estuarine areas.

(iv) The maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 4 °F in coastal or estuarine waters during the period October through May, nor shall the rise exceed 1.5 °F during the period June through September.

(v) In lakes and reservoirs there shall be no withdrawal from, nor discharge of heated waters to, the hypolimnion unless it can be shown that such discharge or withdrawal will be beneficial to water quality.

the potential hazards involved in locating swimming areas close to waste discharges. The Commission will not assign this classification to waters, the bacterial quality of which is dependent upon adequate disinfection of waste and where the interruption of such treatment would render the water unsafe for bathing.

(vi) In all waters the normal daily and seasonal temperature variations that were present before the addition of artificial heat shall be maintained, and there shall be no thermal block to the migration of aquatic organisms.

(vii) Thermal permit limitations in NPDES permits may be less stringent than those required by subparagraphs (i) - (iv) hereof when a showing by the discharger has been made pursuant to Section 316 of the Federal Water Pollution Control Act (FWPCA), 33 U.S.C. § 1251 <u>et seq</u>. or pursuant to a study of an equal or more stringent nature required by the State of Alabama authorized by Title 22, Section 22-22-9(c), <u>Code of Alabama</u>, 1975, that such limitations will assure the protection and propagation of a balanced, indigenous population of shellfish, fish and wildlife, in and on the body of water to which the discharge is made. Any such demonstration shall take into account the interaction of the thermal discharge component with other pollutants discharged.

4. Dissolved oxygen:

(i) For a diversified warm water biota, including game fish, daily dissolved oxygen concentrations shall not be less than 5 mg/l at all times; except under extreme conditions due to natural causes, it may range between 5 mg/l and 4 mg/l, provided that the water quality is favorable in all other parameters. The normal seasonal and daily fluctuations shall be maintained above these levels. In no event shall the dissolved oxygen level be less than 4 mg/l due to discharges from existing hydroelectric generation impoundments. All new hydroelectric generation impoundments, including addition of new hydroelectric generation units to existing impoundments, shall be designed so that the discharge will contain at least 5 mg/l dissolved oxygen where practicable and technologically possible. The Environmental Protection Agency, in cooperation with the State of Alabama and parties responsible for impoundments, shall develop a program to improve the design of existing facilities.

(ii) In coastal waters, surface dissolved oxygen concentrations shall not be less than 5 mg/l, except where natural phenomena cause the value to be depressed.

(iii) In estuaries and tidal tributaries, dissolved oxygen concentrations shall not be less than 5 mg/l, except in dystrophic waters or where natural conditions cause the value to be depressed.

(iv) In the application of dissolved oxygen criteria referred to above, dissolved oxygen shall be measured at a depth of 5 feet in waters 10 feet or greater in depth; and for those waters less than 10 feet in depth, dissolved oxygen criteria will be applied at mid-depth.

5. Toxic substances; color producing substances; odor producing substances; or other deleterious substances attributable to sewage, industrial wastes, or other wastes: only such amounts, whether alone or in combination with other substances or wastes, as will not render the water unsafe or unsuitable for swimming and water-contact sports; exhibit acute toxicity or chronic toxicity, as demonstrated by effluent toxicity testing or by application of numeric criteria given in Rule 335-6-10-.07, to fish, wildlife, and

aquatic life or, where applicable, shrimp and crabs; impair the palatability of fish, or where applicable, shrimp and crabs; impair the waters for any other usage established for this classification or unreasonably affect the aesthetic value of waters for any use under this classification.

6. Bacteria:

(i) Waters in the immediate vicinity of discharges of sewage or other wastes likely to contain bacteria harmful to humans, regardless of the degree of treatment afforded these wastes\*, are not acceptable for swimming or other whole body watercontact sports.

(ii) In all other areas, the bacterial quality of water is acceptable when a sanitary survey by the controlling health authorities reveals no source of dangerous pollution and when the geometric mean fecal coliform organism density does not exceed 200 colonies/100 ml in non-coastal waters. In coastal waters, bacteria of the enterococci group shall not exceed a geometric mean of 35 colonies/100 ml nor exceed a maximum of 104 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours. When the geometric mean bacterial organism density exceeds these levels, the bacterial water quality shall be considered acceptable only if a second detailed sanitary survey and evaluation discloses no significant public health risk in the use of the waters.

(iii) The policy of nondegradation of high quality waters shall be stringently applied to bacterial quality of recreational waters.

7. Radioactivity: the concentrations of radioactive materials present shall not exceed the requirement of the State Department of Public Health.

8. Turbidity: there shall be no turbidity of other than natural origin that will cause substantial visible contrast with the natural appearance of waters or interfere with any beneficial uses which they serve. Furthermore, in no case shall turbidity exceed 50 Nephelometric units above background. Background will be interpreted as the natural condition of the receiving waters, without the influence of man-made or man-induced causes. Turbidity levels caused by natural runoff will be included in establishing background levels.

# (4) SHELLFISH HARVESTING

<sup>\*</sup> **NOTE**: In assigning this classification to waters intended for swimming and water-contact sports, the Commission will take into consideration the relative proximity of discharges of wastes and will recognize the potential hazards involved in locating swimming areas close to waste discharges. The Commission will not assign this classification to waters, the bacterial quality of which is dependent upon adequate disinfection of waste and where the interruption of such treatment would render the water unsafe for bathing.

(a) Best usage of waters: propagation and harvesting of shellfish for sale or use as a food product.

(b) Conditions related to best usage: waters will meet the sanitary and bacteriological standards included in the *National Shellfish Sanitation Program Model Ordinance*, 1999, *Chapter IV*, published by the Food and Drug Administration, U.S. Department of Health and Human Services and the requirements of the State Department of Public Health. The waters will also be of a quality suitable for the propagation of fish and other aquatic life, including shrimp and crabs.

(c) Other usage of waters: it is recognized that the waters may be used for incidental water contact and recreation during June through September, except that water contact is strongly discouraged in the vicinity of discharges or other conditions beyond the control of the Department or the Alabama Department of Public Health.

(d) Conditions related to other usage: the waters, under proper sanitary supervision by the controlling health authorities, will meet accepted standards of water quality for outdoor swimming places and will be considered satisfactory for swimming and other whole body water-contact sports.

(e) Specific criteria:

1. Sewage, industrial wastes, or other wastes: none which are not effectively treated in accordance with Rule 335-6-10-.08.

2. pH: sewage, industrial wastes or other wastes shall not cause the pH to deviate more than one unit from the normal or natural pH, nor be less than 6.5, nor greater than 8.5.

3. Temperature:

(i) The maximum temperature in streams, lakes, and reservoirs, other than those in river basins listed in subparagraph (ii) hereof, shall not exceed 90 °F.

(ii) The maximum temperature in streams, lakes, and reservoirs in the Tennessee and Cahaba River Basins, and for that portion of the Tallapoosa River Basin from the tailrace of Thurlow Dam at Tallassee downstream to the junction of the Coosa and Tallapoosa Rivers which has been designated by the Alabama Department of Conservation and Natural Resources as supporting smallmouth bass, sauger, or walleye, shall not exceed 86 °F.

(iii) The maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 5 °F in streams, lakes, and reservoirs in non-coastal and non-estuarine areas.

(iv) The maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 4 °F in

coastal or estuarine waters during the period October through May, nor shall the rise exceed 1.5 °F during the period June through September.

(v) In lakes and reservoirs there shall be no withdrawal from, nor discharge of heated waters to, the hypolimnion unless it can be shown that such discharge or withdrawal will be beneficial to water quality.

(vi) In all waters the normal daily and seasonal temperature variations that were present before the addition of artificial heat shall be maintained, and there shall be no thermal block to the migration of aquatic organisms.

(vii) Thermal permit limitations in NPDES permits may be less stringent than those required by subparagraphs (i) - (iv) hereof when a showing by the discharger has been made pursuant to Section 316 of the Federal Water Pollution Control Act (FWPCA), 33 U.S.C. § 1251 <u>et seq</u>. or pursuant to a study of an equal or more stringent nature required by the State of Alabama authorized by Title 22, Section 22-22-9(c), <u>Code of Alabama</u>, 1975, that such limitations will assure the protection and propagation of a balanced, indigenous population of shellfish, fish and wildlife, in and on the body of water to which the discharge is made. Any such demonstration shall take into account the interaction of the thermal discharge component with other pollutants discharged.

4. Dissolved oxygen:

(i) For a diversified warm water biota, including game fish, daily dissolved oxygen concentrations shall not be less than 5 mg/l at all times; except under extreme conditions due to natural causes, it may range between 5 mg/l and 4 mg/l, provided that the water quality is favorable in all other parameters. The normal seasonal and daily fluctuations shall be maintained above these levels. In no event shall the dissolved oxygen level be less than 4 mg/l due to discharges from existing hydroelectric generation impoundments. All new hydroelectric generation impoundments, including addition of new hydroelectric generation units to existing impoundments, shall be designed so that the discharge will contain at least 5 mg/l dissolved oxygen where practicable and technologically possible. The Environmental Protection Agency, in cooperation with the State of Alabama and parties responsible for impoundments, shall develop a program to improve the design of existing facilities.

(ii) In coastal waters, surface dissolved oxygen concentrations shall not be less than 5 mg/l, except where natural phenomena cause the value to be depressed.

(iii) In estuaries and tidal tributaries, dissolved oxygen concentrations shall not be less than 5 mg/l, except in dystrophic waters or where natural conditions cause the value to be depressed.

(iv) In the application of dissolved oxygen criteria referred to above, dissolved oxygen shall be measured at a depth of 5 feet in waters 10 feet or greater in depth; and for those waters less than 10 feet in depth, dissolved oxygen criteria will be applied at middepth.

5. Toxic substances attributable to sewage, industrial wastes, or other wastes: only such amounts, whether alone or in combination with other substances, as will not exhibit acute toxicity or chronic toxicity, as demonstrated by effluent toxicity testing or by application of numeric criteria given in Rule 335-6-10-.07, to fish and aquatic life, including shrimp and crabs; or affect the marketability of fish and shellfish, including shrimp and crabs.

6. Color, taste, and odor-producing substances and other deleterious substances attributable to sewage, industrial wastes, or other wastes: only such amounts, whether alone or in combination with other substances, as will not exhibit acute toxicity or chronic toxicity, as demonstrated by effluent toxicity testing or by application of numeric criteria given in Rule 335-6-10-.07, to fish and shellfish, including shrimp and crabs; adversely affect marketability or palatability of fish and shellfish, including shrimp and crabs; or unreasonably affect the aesthetic value of waters for any use under this classification.

7. Bacteria:

(i) Not to exceed the limits specified in the *National Shellfish Sanitation Program Model Ordinance*, 1999, *Chapter IV*, published by the Food and Drug Administration, U. S. Department of Health and Human Services.

(ii) For incidental water contact and recreation during June through September, the bacterial quality of water is acceptable when a sanitary survey by the controlling health authorities reveals no source of dangerous pollution and when the geometric mean fecal coliform organism density does not exceed 200 colonies/100 ml in non-coastal waters. In coastal waters, bacteria of the enterococci group shall not exceed a geometric mean of 35 colonies/100 ml nor exceed a maximum of 104 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours. When the geometric mean bacterial organism density exceeds these levels, the bacterial water quality shall be considered acceptable only if a second detailed sanitary survey and evaluation discloses no significant public health risk in the use of the waters. Waters in the immediate vicinity of discharges of sewage or other wastes likely to contain bacteria harmful to humans, regardless of the degree of treatment afforded these wastes, are not acceptable for swimming or other whole body water-contact sports.

8. Radioactivity: the concentrations of radioactive materials present shall not exceed the requirements of the State Department of Public Health.

9. Turbidity: there shall be no turbidity of other than natural origin that will cause substantial visible contrast with the natural appearance of waters or interfere with any beneficial uses which they serve. Furthermore, in no case shall turbidity exceed 50 Nephelometric units above background. Background will be interpreted as the natural condition of the receiving waters without the influence of man-made or man-induced causes. Turbidity levels caused by natural runoff will be included in establishing background levels.

#### (5) **FISH AND WILDLIFE**

(a) Best usage of waters: fishing, propagation of fish, aquatic life, and wildlife, and any other usage except for swimming and water-contact sports or as a source of water supply for drinking or food-processing purposes.

(b) Conditions related to best usage: the waters will be suitable for fish, aquatic life and wildlife propagation. The quality of salt and estuarine waters to which this classification is assigned will also be suitable for the propagation of shrimp and crabs.

(c) Other usage of waters: it is recognized that the waters may be used for incidental water contact and recreation during June through September, except that water contact is strongly discouraged in the vicinity of discharges or other conditions beyond the control of the Department or the Alabama Department of Public Health.

(d) Conditions related to other usage: the waters, under proper sanitary supervision by the controlling health authorities, will meet accepted standards of water quality for outdoor swimming places and will be considered satisfactory for swimming and other whole body water-contact sports.

(e) Specific criteria:

1. Sewage, industrial wastes, or other wastes: none which are not effectively treated in accordance with Rule 335-6-10-.08.

2. pH: sewage, industrial wastes or other wastes shall not cause the pH to deviate more than one unit from the normal or natural pH, nor be less than 6.0, nor greater than 8.5. For salt waters and estuarine waters to which this classification is assigned, wastes as herein described shall not cause the pH to deviate more than one unit from the normal or natural pH, nor be less than 6.5, nor greater than 8.5.

3. Temperature:

(i) The maximum temperature in streams, lakes, and reservoirs, other than those in river basins listed in subparagraph (ii) hereof, shall not exceed 90° F.

(ii) The maximum temperature in streams, lakes, and reservoirs in the Tennessee and Cahaba River Basins, and for that portion of the Tallapoosa River Basin from the tailrace of Thurlow Dam at Tallassee downstream to the junction of the Coosa and Tallapoosa Rivers which has been designated by the Alabama Department of Conservation and Natural Resources as supporting smallmouth bass, sauger, or walleye, shall not exceed 86 °F.

(iii) The maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 5 °F in streams, lakes, and reservoirs in non-coastal and non-estuarine areas.

(iv) The maximum in-stream temperature rise above ambient water temperature due to the addition of artificial heat by a discharger shall not exceed 4 °F in coastal or estuarine waters during the period October through May, nor shall the rise exceed 1.5 °F during the period June through September.

(v) In lakes and reservoirs there shall be no withdrawal from, nor discharge of heated waters to, the hypolimnion unless it can be shown that such discharge or withdrawal will be beneficial to water quality.

(vi) In all waters the normal daily and seasonal temperature variations that were present before the addition of artificial heat shall be maintained, and there shall be no thermal block to the migration of aquatic organisms.

(vii) Thermal permit limitations in NPDES permits may be less stringent than those required by subparagraphs (i) - (iv) hereof when a showing by the discharger has been made pursuant to Section 316 of the Federal Water Pollution Control Act (FWPCA), 33 U.S.C. § 1251 <u>et seq</u>. or pursuant to a study of an equal or more stringent nature required by the State of Alabama authorized by Title 22, Section 22-22-9(c), <u>Code of Alabama</u>, 1975, that such limitations will assure the protection and propagation of a balanced, indigenous population of shellfish, fish and wildlife, in and on the body of water to which the discharge is made. Any such demonstration shall take into account the interaction of the thermal discharge component with other pollutants discharged.

4. Dissolved oxygen:

(i) For a diversified warm water biota, including game fish, daily dissolved oxygen concentrations shall not be less than 5 mg/l at all times; except under extreme conditions due to natural causes, it may range between 5 mg/l and 4 mg/l, provided that the water quality is favorable in all other parameters. The normal seasonal and daily fluctuations shall be maintained above these levels. In no event shall the dissolved oxygen level be less than 4 mg/l due to discharges from existing hydroelectric generation impoundments. All new hydroelectric generation impoundments, including addition of new hydroelectric generation units to existing impoundments, shall be designed so that the discharge will contain at least 5 mg/l dissolved oxygen where practicable and technologically possible. The Environmental Protection Agency, in cooperation with the State of Alabama and parties responsible for impoundments, shall develop a program to improve the design of existing facilities.

(ii) In coastal waters, surface dissolved oxygen concentrations shall not be less than 5 mg/l, except where natural phenomena cause the value to be depressed.

(iii) In estuaries and tidal tributaries, dissolved oxygen concentrations shall not be less than 5 mg/l, except in dystrophic waters or where natural conditions cause the value to be depressed.

(iv) In the application of dissolved oxygen criteria referred to above, dissolved oxygen shall be measured at a depth of 5 feet in waters 10 feet or greater in depth; and for

those waters less than 10 feet in depth, dissolved oxygen criteria will be applied at middepth.

5. Toxic substances attributable to sewage, industrial wastes, or other wastes: only such amounts, whether alone or in combination with other substances, as will not exhibit acute toxicity or chronic toxicity, as demonstrated by effluent toxicity testing or by application of numeric criteria given in Rule 335-6-10-.07, to fish and aquatic life, including shrimp and crabs in estuarine or salt waters or the propagation thereof.

6. Taste, odor, and color-producing substances attributable to sewage, industrial wastes, or other wastes: only such amounts, whether alone or in combination with other substances, as will not exhibit acute toxicity or chronic toxicity, as demonstrated by effluent toxicity testing or by application of numeric criteria given in Rule 335-6-10-.07, to fish and aquatic life, including shrimp and crabs in estuarine and salt waters or adversely affect the propagation thereof; impair the palatability or marketability of fish and wildlife or shrimp and crabs in estuarine and salt waters; or unreasonably affect the aesthetic value of waters for any use under this classification.

7. Bacteria:

(i) In non-coastal waters, bacteria of the fecal coliform group shall not exceed a geometric mean of 1,000 colonies/100 ml; nor exceed a maximum of 2,000 colonies/100 ml in any sample. In coastal waters, bacteria of the enterococci group shall not exceed a maximum of 275 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours.

(ii) For incidental water contact and recreation during June through September, the bacterial quality of water is acceptable when a sanitary survey by the controlling health authorities reveals no source of dangerous pollution and when the geometric mean fecal coliform organism density does not exceed 200 colonies/100 ml in non-coastal waters. In coastal waters, bacteria of the enterococci group shall not exceed a geometric mean of 35 colonies/100 ml nor exceed a maximum of 158 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours. When the geometric bacterial coliform organism density exceeds these levels, the bacterial water quality shall be considered acceptable only if a second detailed sanitary survey and evaluation discloses no significant public health risk in the use of the waters. Waters in the immediate vicinity of discharges of sewage or other wastes likely to contain bacteria harmful to humans, regardless of the degree of treatment afforded these wastes, are not acceptable for swimming or other whole body water-contact sports.

8. Radioactivity: the concentrations of radioactive materials present shall not exceed the requirements of the State Department of Public Health.

9. Turbidity: there shall be no turbidity of other than natural origin that will cause substantial visible contrast with the natural appearance of waters or interfere with

any beneficial uses which they serve. Furthermore, in no case shall turbidity exceed 50 Nephelometric units above background. Background will be interpreted as the natural condition of the receiving waters without the influence of man-made or man-induced causes. Turbidity levels caused by natural runoff will be included in establishing background levels.

# (6) LIMITED WARMWATER FISHERY

(a) The provisions of the Fish and Wildlife water use classification at Rule 335-6-10-.09(5) shall apply to the Limited Warmwater Fishery water use classification, except as noted below. Unless alternative criteria for a given parameter are provided in paragraph (e) below, the applicable Fish and Wildlife criteria at paragraph 10-.09(5)(e) shall apply year-round. At the time the Department proposes to assign the Limited Warmwater Fishery classification to a specific waterbody, the Department may apply criteria from other classifications within this chapter if necessary to protect a documented, legitimate existing use.

(b) Best usage of waters (May through November): agricultural irrigation, livestock watering, industrial cooling and process water supplies, and any other usage, except fishing, bathing, recreational activities, including water-contact sports, or as a source of water supply for drinking or food-processing purposes.

(c) Conditions related to best usage (May through November):

1. The waters will be suitable for agricultural irrigation, livestock watering, and industrial cooling waters. The waters will be usable after special treatment, as may be needed under each particular circumstance, for industrial process water supplies. The waters will also be suitable for other uses for which waters of lower quality will be satisfactory.

2. This category includes watercourses in which natural flow is intermittent, or under certain conditions non-existent, and which may receive treated wastes from existing municipalities and industries. In such instances, recognition is given to the lack of opportunity for mixture of the treated wastes with the receiving stream for purposes of compliance. It is also understood in considering waters for this classification that urban runoff or natural conditions may impact any waters so classified.

- (d) Other usage of waters: none recognized.
- (e) Specific criteria:

1. Dissolved oxygen (May through November): treated sewage, industrial wastes, or other wastes shall not cause the dissolved oxygen to be less than 3.0 mg/l. In the application of dissolved oxygen criteria referred to above, dissolved oxygen shall be measured at a depth of 5 feet in waters 10 feet or greater in depth; and for those waters less than 10 feet in depth, dissolved oxygen criteria will be applied at mid-depth.

2. Toxic substances and taste-, odor-, and color-producing substances attributable to treated sewage, industrial wastes, and other wastes: only such amounts as will not render the waters unsuitable for agricultural irrigation, livestock watering, industrial cooling, and industrial process water supply purposes; interfere with downstream water uses; or exhibit acute toxicity or chronic toxicity, as demonstrated by effluent toxicity testing or by application of numeric criteria given in Rule 335-6-10-.07, to fish and aquatic life, including shrimp and crabs in estuarine or salt waters or the propagation thereof. For the purpose of establishing effluent limitations pursuant to Chapter 335-6-6 of the Department's regulations, the minimum 7-day low flow that occurs once in 2 years ( $7Q_2$ ) shall be the basis for applying the chronic aquatic life criteria. The use of the  $7Q_2$  low flow for application of chronic criteria is appropriate based on the historical uses and/or flow characteristics of streams to be considered for this classification.

3. Bacteria: In non-coastal waters, bacteria of the fecal coliform group shall not exceed a geometric mean of 1,000 colonies/100 ml; nor exceed a maximum of 2,000 colonies/100 ml in any sample. In coastal waters, bacteria of the enterococci group shall not exceed a maximum of 275 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours.

#### (7) AGRICULTURAL AND INDUSTRIAL WATER SUPPLY

(a) Best usage of waters: agricultural irrigation, livestock watering, industrial cooling and process water supplies, and any other usage, except fishing, bathing, recreational activities, including water-contact sports, or as a source of water supply for drinking or food-processing purposes.

(b) Conditions related to best usage:

(i) The waters, except for natural impurities which may be present therein, will be suitable for agricultural irrigation, livestock watering, industrial cooling waters, and fish survival. The waters will be usable after special treatment, as may be needed under each particular circumstance, for industrial process water supplies. The waters will also be suitable for other uses for which waters of lower quality will be satisfactory.

(ii) This category includes watercourses in which natural flow is intermittent and non-existent during droughts and which may, of necessity, receive treated wastes from existing municipalities and industries, both now and in the future. In such instances, recognition must be given to the lack of opportunity for mixture of the treated wastes with the receiving stream for purposes of compliance. It is also understood in considering waters for this classification that urban runoff or natural conditions may impact any waters so classified.

(c) Specific criteria:

1. Sewage, industrial wastes, or other wastes: none which are not effectively treated or controlled in accordance with Rule 335-6-10-.08.

2. pH: sewage, industrial wastes or other wastes shall not cause the pH to deviate more than one unit from the normal or natural pH, nor be less than 6.0, nor greater than 8.5. For salt waters and estuarine waters to which this classification is assigned, wastes as herein described shall not cause the pH to deviate more than one unit from the normal or natural pH, nor be less than 6.5, nor greater than 8.5.

3. Temperature: the maximum temperature rise above natural temperatures due to the addition of artificial heat shall not exceed 5 °F in streams, lakes, and reservoirs, nor shall the maximum water temperature exceed 90 °F.

4. Dissolved oxygen: sewage, industrial wastes, or other wastes shall not cause the dissolved oxygen to be less than 3.0 mg/l. In the application of dissolved oxygen criteria referred to above, dissolved oxygen shall be measured at a depth of 5 feet in waters 10 feet or greater in depth; and for those waters less than 10 feet in depth, dissolved oxygen criteria will be applied at mid-depth.

5. Color, odor, and taste-producing substances, toxic substances, and other deleterious substances, including chemical compounds attributable to sewage, industrial wastes, and other wastes: only such amounts as will not render the waters unsuitable for agricultural irrigation, livestock watering, industrial cooling, industrial process water supply purposes, and fish survival, nor interfere with downstream water uses. For the purpose of establishing effluent limitations pursuant to Chapter 335-6-6 of the Department's regulations, the minimum 7-day low flow that occurs once in 10 years  $(7Q_{10})$  shall be the basis for applying the acute aquatic life criteria. The use of the  $7Q_{10}$  low flow for application of acute criteria is appropriate based on the historical uses and/or flow characteristics of streams to be considered for this classification.

6. Bacteria: In non-coastal waters, bacteria of the fecal coliform group shall not exceed a geometric mean of 2,000 colonies/100 ml; nor exceed a maximum of 4,000 colonies/100 ml in any sample. In coastal waters, bacteria of the enterococci group shall not exceed a maximum of 500 colonies/100 ml in any sample. The geometric mean shall be calculated from no less than five samples collected at a given station over a 30-day period at intervals not less than 24 hours.

7. Radioactivity: the concentrations of radioactive materials present shall not exceed the requirements of the State Department of Public Health.

8. Turbidity: there shall be no turbidity of other than natural origin that will cause substantial visible contrast with the natural appearance of waters or interfere with any beneficial uses which they serve. Furthermore, in no case shall turbidity exceed 50 Nephelometric units above background. Background will be interpreted as the natural condition of the receiving waters without the influence of man-made or man-induced causes. Turbidity levels caused by natural runoff will be included in establishing background levels.

#### Author: James E. McIndoe.

**Statutory Authority:** <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8.

**History:** May 5, 1967. **Amended:** June 19, 1967; July 17, 1972; February 26, 1973; May 30, 1977; December 19, 1977; February 4, 1981; March 2, 1990; April 3, 1991; December 30, 1992; September 7, 2000; May 27, 2004; January 14, 2005.

#### 335-6-10-.10 Special Designations.

- (1) OUTSTANDING NATIONAL RESOURCE WATER
- (a) Designation:

1. High quality waters that constitute an outstanding National resource, such as waters of national and state parks and wildlife refuges and waters of exceptional recreational or ecological significance, may be considered for designation as an Outstanding National Resource Water (ONRW). For waters designated as ONRW, existing water quality shall be maintained and protected.

- (b) Specific Criteria:
- 1. Sewage, industrial wastes or other wastes:

(i) No new point source discharges or expansions of existing point source discharges to Outstanding National Resource Waters shall be allowed.

(ii) Existing point source discharges to the Outstanding National Resource Water shall be allowed provided they are treated or controlled in accordance with applicable laws and regulations.

(iii) New point source discharges or expansions of existing point source discharges to waters upstream of, or tributary to, Outstanding National Resource Waters shall be regulated in accordance with applicable laws and regulations, including compliance with water quality criteria for the use classification applicable to the particular water. However, no new point source discharge or expansion of an existing point source discharge to waters upstream of, or tributary to, Outstanding National Resource Waters shall be allowed if such discharge would not maintain and protect water quality within the Outstanding National Resource Water.

(iv) Nonpoint source discharges shall use best management practices adequate to protect water quality consistent with the Department's nonpoint source control program.

Author: James E. McIndoe. Statutory Authority: <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8. 8. History: April 3, 1991.

#### 335-6-10-.11 Water Quality Criteria Applicable to Specific Lakes.

(1) For certain lakes and reservoirs, waterbody-specific criteria are appropriate to enhance nutrient management. The response to nutrient input may vary

significantly lake-to-lake, and for a given lake year-to-year, depending on a number of factors such as rainfall distribution and hydraulic retention time. For this reason, lake nutrient quality targets necessary to maintain and protect existing uses, expressed as chlorophyll <u>a</u> criteria, may also vary lake-to-lake. Because the relationship between nutrient input and lake chlorophyll <u>a</u> levels is not always well-understood, it may be necessary to revise the criteria as additional water quality data and improved assessment tools become available.

(2) The following lake-specific criteria apply to the waters listed below, in addition to any other applicable criteria commensurate with the designated usage of such waters.

#### (a) **The Alabama River Basin**

1. Claiborne Lake: those waters impounded by Claiborne Lock and Dam on the Alabama River. The lake has a surface area of 5,930 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 15 µg/l, as measured at the deepest point, main river channel, dam forebay.

2. Dannelly Lake: those waters impounded by Millers Ferry Lock and Dam on the Alabama River. The lake has a surface area of 17,200 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 17 µg/l, as measured at the deepest point, main river channel, dam forebay.

# (b) The Chattahoochee River Basin

1. Walter F. George Lake: those waters impounded by Walter F. George Lock and Dam on the Chattahoochee River. The lake has a surface area of 45,181 acres at full power pool, 18,672 acres of which are within Alabama. The Alabama-Georgia state line is represented by the west bank of the original river channel, and the points of measurement for the criteria given below are located in Georgia waters.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater, 20th Edition,* 1998): the mean of photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 15  $\mu$ g/l, as measured at the deepest point, main river channel, dam forebay; or 18  $\mu$ g/l, as measured at the deepest point, main river channel, approximately 0.25 miles upstream of U.S. Highway 82.

2. Lake Harding: those waters impounded by Bartletts Ferry Dam on the Chattahoochee River. The lake has a surface area of 5850 acres at full pool, 2,176 acres

of which are within Alabama. The point of measurement for the criterion given below is located in Georgia waters.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  *Edition*, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 15 µg/l, as measured at the deepest point, main river channel, dam forebay.

3. West Point Lake: those waters impounded by West Point Dam on the Chattahoochee River. The lake has a surface area of 25,864 acres at full power pool, 2,765 acres of which are within Alabama. The point of measurement for the criterion given below is located in Georgia waters.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater, 20th Edition,* 1998): the mean of photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 27  $\mu$ g/l, as measured at the LaGrange, Georgia Water Intake.

#### (c) **The Coosa River Basin**

1. Weiss Lake: those waters impounded by Weiss Dam on the Coosa River. The lake has a surface area of 30,200 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater, 20th Edition*, 1998): the mean of photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 20 µg/l, as measured at the deepest point, main river channel, power dam forebay; or 20 µg/l, as measured at the deepest point, main river channel, immediately upstream of causeway (Alabama Highway 9) at Cedar Bluff. If the mean of photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October is significantly less than 20 µg/l for a given year, the Department will re-evaluate the chlorophyll <u>a</u> criteria, associated nutrient management strategies, and available data and information, and recommend changes, if appropriate, to maintain and protect existing uses.

#### (d) The Lower Tombigbee River Basin

1. Coffeeville Lake: those waters impounded by Coffeeville Dam on the Tombigbee River. The lake has a surface area of 8,500 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater, 20th Edition,* 1998): the mean of photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 10  $\mu$ g/l, as measured at the deepest point, main river channel, upstream of the lock canal.

#### (e) The Perdido/Escambia River Basin

1. Lake Jackson: This natural lake, located in Florala, Alabama, has a surface area of 256 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 7 µg/l, as measured at mid-lake.

2. Point A Lake: those waters impounded by Point A Dam on the Conecuh River. The lake has a surface area of 900 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 9 µg/l, as measured at the deepest point, main river channel, dam forebay.

3. Gantt Lake: those waters impounded by Gantt Dam on the Conecuh River. The lake has a surface area of 2,767 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  *Edition*, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 11 µg/l, as measured at the deepest point, main river channel, dam forebay.

#### (f) **The Tallapoosa River Basin**

1. Thurlow Lake: those waters impounded by Thurlow Dam on the Tallapoosa River. The reservoir has a surface area of 574 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 5 µg/l, as measured at the deepest point, main river channel, dam forebay.

2. Yates Lake: those waters impounded by Yates Dam on the Tallapoosa River. The lake has a surface area of 2,000 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  *Edition*, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 5 µg/l, as measured at the deepest point, main river channel, dam forebay.

3. Lake Martin: those waters impounded by Martin Dam on the Tallapoosa River. The lake has a surface area of 40,000 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  *Edition*, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not

exceed 5  $\mu$ g/l, as measured at the deepest point, main river channel, dam forebay; or 5  $\mu$ g/l, as measured at the deepest point main river channel, immediately upstream of Blue Creek embayment; or 5  $\mu$ g/l as measured at the deepest point, main creek channel, immediately upstream of Alabama Highway 63 (Kowaliga) bridge.

4. R.L. Harris Lake: those waters impounded by R.L. Harris Dam on the Tallapoosa River. The lake has a surface area of 10,660 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater, 20th Edition,* 1998): the mean of photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 10  $\mu$ g/l, as measured at the deepest point, main river channel, dam forebay; or 12  $\mu$ g/l, as measured at the deepest point, main river channel, immediately upstream of the Tallapoosa River - Little Tallapoosa River confluence.

#### (g) **The Tennessee River Basin**

1. Pickwick Lake: those waters impounded by Pickwick Dam on the Tennessee River. The reservoir has a surface area of 43,100 acres at full pool, 33,700 acres of which are within Alabama. The point of measurement for the criterion given below is located in Tennessee waters.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through September shall not exceed 18 µg/l, as measured at the deepest point, main river channel, dam forebay.

2. Wilson Lake: those waters impounded by Wilson Dam on the Tennessee River. The lake has a surface area of 15,930 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through September shall not exceed 18 µg/l, as measured at the deepest point, main river channel, dam forebay.

3. Wheeler Lake: those waters impounded by Wheeler Dam on the Tennessee River. The lake has a surface area of 67,100 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through September shall not exceed 18 µg/l, as measured at the deepest point, main river channel, dam forebay.

4. Guntersville Lake: those waters impounded by Guntersville Dam on the Tennessee River. The lake has a surface area of 69,700 acres at full pool, 67,900 of which are within Alabama.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998*): the mean of photic-zone

composite chlorophyll <u>a</u> samples collected monthly April through September shall not exceed 18  $\mu$ g/l, as measured at the deepest point, main river channel, dam forebay.

5. Cedar Creek Lake: those waters impounded by Cedar Creek Dam on Cedar Creek. The reservoir has a surface area of 4,200 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 8 µg/l, as measured at the deepest point, main creek channel, dam forebay.

6. Little Bear Creek Lake: those waters impounded by Little Bear Dam on Little Bear Creek. The reservoir has a surface area of 1,600 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 8 µg/l, as measured at the deepest point, main creek channel, dam forebay.

#### (h) **The Upper Tombigbee River Basin**

1. Demopolis Lake: those waters impounded by Demopolis Dam downstream of the confluence of the Tombigbee and the Black Warrior Rivers. The lake has a surface area of 10,000 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater, 20th Edition,* 1998): the mean of photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 10  $\mu$ g/l, as measured at the deepest point, main river channel, dam forebay.

2. Gainesville Lake: those waters impounded by Gainesville Dam on the Tombigbee River. The lake has a surface area of 6,400 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater, 20th Edition,* 1998): the mean of photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 14  $\mu$ g/l, as measured at the deepest point, main river channel, dam forebay.

#### (i) **The Warrior River Basin**

1. Warrior Lake: those waters impounded by Warrior Lock and Dam on the Black Warrior River. The lake has a surface area of 7,800 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 12 µg/l, as measured at the deepest point, main river channel, dam forebay.

2. Oliver Lake: those waters impounded by William Bacon Oliver Lock and Dam on the Black Warrior River. The lake has a surface area of 800 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  *Edition*, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 12 µg/l, as measured at the deepest point, main river channel, dam forebay.

3. Holt Lake: those waters impounded by Holt Lock and Dam on the Black Warrior River. The lake has a surface area of 3,200 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 16 µg/l, as measured at the deepest point, main river channel, dam forebay.

4. Lake Tuscaloosa: those waters impounded by Lake Tuscaloosa Dam on the North River. The lake has a surface area of 5,885 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 8 µg/l, as measured at the deepest point, main river channel, dam forebay.

5. Bankhead Lake: those waters impounded by John Hollis Bankhead Lock and Dam on the Black Warrior River. The lake has a surface area of 9,200 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  Edition, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 16 µg/l, as measured at the deepest point, main river channel, dam forebay.

6. Smith Lake: those waters impounded by Lewis M. Smith Dam on the Sipsey Fork River. The lake has a surface area of 21,200 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  *Edition*, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 5 µg/l, as measured at the deepest point, main river channel, dam forebay; 5 µg/l, as measured at the deepest point, main river channel, at Duncan Creek/Sipsey River confluence (downstream of the Alabama Highway 257 bridge); and 5 µg/l, as measured at the deepest point, main river channel, immediately downstream of Brushy Creek confluence.

7. Inland Lake: those waters impounded by Inland Lake Dam on the Blackburn Fork of the Little Warrior River. The lake has a surface area of 1,095 acres at full pool.

(i) Chlorophyll <u>a</u> (corrected, as described in *Standard Methods for the Examination of Water and Wastewater*,  $20^{th}$  *Edition*, 1998): the mean of the photic-zone composite chlorophyll <u>a</u> samples collected monthly April through October shall not exceed 6 µg/l, as measured at the deepest point, main river channel, dam forebay.

Author: James E. McIndoe.

Statutory Authority: <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8.

**History:** January 12, 2001. **Amended:** May 16, 2002; May 27, 2004; September 21, 2005.

#### 335-6-10-.12 Implementation of the Antidegradation Policy.

(1) The antidegradation policy at Rule 335-6-10-.04 addresses three categories of waters/uses:

(a) High quality waters that constitute an outstanding national resource (Tier 3);

(b) Waters where the quality exceeds levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water (Tier 2); and

(c) Existing instream water uses and the level of water quality necessary to protect the existing uses (Tier 1).

(2) Tier 3 waters are those waters designated pursuant to the Outstanding National Resource Water (ONRW) special designation at Rule 335-6-10-.10, and are identified in Rule 335-6-11-.02.

(3) Tier 1 waters are:

(a) Those waters (except waters assigned the use classification of Outstanding Alabama Water, which are Tier 2 waters) identified on the most recent EPA-approved Section 303(d) list;

(b) Those waters (except waters assigned the use classification of Outstanding Alabama Water, which are Tier 2 waters) for which attainment of applicable water quality standards has been, or is expected to be, achieved through implementation of effluent limitations more stringent than technology-based controls (BPT, BAT, and secondary treatment); and

(c) Those waters assigned the use classification of Limited Warmwater Fishery or Agricultural and Industrial Water Supply (as identified in Rule 335-6-11-.02).

(4) Tier 2 waters are all other waters (those waters not identified as either Tier 3 waters or Tier 1 waters), including all waters assigned the use classification of Outstanding Alabama Water (as identified in Rule 335-6-11-.02).

(5) All new or expanded discharges to Tier 2 waters (except discharges eligible for coverage under general permits) covered by the NPDES permitting program are potentially subject to the provisions of Rule 335-6-10-.04(3). Applicants for such discharges are required to demonstrate that the proposed discharge is necessary for important economic or social development as a part of the permit application process.

(6) After receipt of a permit application for a potentially covered discharge, the Department will determine whether the proposed discharge is to a Tier 2 water, as defined in paragraph (4) above. Of necessity, this determination will be made on a case-by-case basis.

(7) The basic framework of the permitting process is unchanged for a covered discharge to a Tier 2 water. However, the process is enhanced to document the consideration of Tier 2 provisions. The additional documentation includes:

(a) The Department's determination that the application is for a new or expanded discharge;

(b) The Department's determination that the receiving stream is considered to be a Tier 2 water; and

(c) The Department's determination, based on the applicant's demonstration, that the proposed discharge is necessary for important economic or social development in the area in which the waters are located.

(8) All three items will be documented in the permit file and/or fact sheet, and will be used by the Department in its decision process. The public notice process will be used to announce a preliminary Department decision to deny or to allow a covered discharge to a Tier 2 water, while the final determination will be made concurrently with the final Department decision regarding the permit application for a covered discharge.

(9) Documentation by the applicant shall include:

(a) An evaluation of discharge alternatives completed by a Registered Professional Engineer licensed to practice in the State of Alabama.

1. The applicant shall document the discharge alternatives evaluation by completing and submitting the following forms, or by submitting the same information in another format acceptable to the Department:

(i) ADEM Form 311, Alternatives Analysis; and, as applicable,

(ii) ADEM Form 312, Calculation of Total Annualized Costs for Public-Sector Projects, or ADEM Form 313, Calculation of Total Annualized Costs for Private-Sector Projects. Alternatives with total annualized project costs that are less than 110% of the total annualized project costs for the Tier 2 discharge proposal are considered viable alternatives. (b) A demonstration that the proposed discharge will support important economic or social development in the area in which the waters are located, documented by the applicant's response, in writing, to the following questions. The applicant shall provide supporting information for each response.

1. What environmental or public health problem will the discharger be correcting?

2. How much will the discharger be increasing employment (at its existing facility or as the result of locating a new facility)?

3. How much reduction in employment will the discharger be avoiding?

4. How much additional state or local taxes will the discharger be paying?

5. What public service to the community will the discharger be providing?

6. What economic or social benefit will the discharger be providing to the community?

(10) The following forms are embodied in this rule:

(a) ADEM Form 311 Alternatives Analysis

(b) ADEM Form 312 Calculation of Total Annualized Costs for Public-Sector Projects

(c) ADEM Form 313 Calculation of Total Annualized Costs for Private-Sector Projects

Author: James E. McIndoe.

Statutory Authority: <u>Code of Alabama</u> 1975, §§ 22-22-9, 22-22A-5, 22-22A-6, 22-22A-8. B. History: August 1, 2002

History: August 1, 2002.

### Alternatives Analysis

Applicant/Project:

All new or expanded discharges (except discharges eligible for coverage under general permits) covered by the NPDES permitting program are subject to the provisions of the antidegradation policy. Applicants for such discharges to Tier 2 waters are required to demonstrate "... that the proposed discharge is necessary for important economic or social development." As a part of this demonstration, the applicant must complete an evaluation of the discharge alternatives listed below, to include calculation of total annualized project costs for each technically feasible alternative (using ADEM Form 312 for public-sector projects and ADEM Form 313 for privatesector projects). Alternatives with total annualized project costs that are less than 110% of the total annualized project costs for the Tier 2 discharge proposal are considered viable alternatives.

| Alternative                          | Viable | Non-Viable | Comment |
|--------------------------------------|--------|------------|---------|
|                                      |        |            |         |
| 1 Land Application                   |        |            |         |
|                                      |        |            |         |
| 2 Pretreatment/Discharge to          |        |            |         |
| POTW                                 |        |            |         |
| 3 Relocation of Discharge            |        |            |         |
| 3 Kelocation of Discharge            |        |            |         |
| 4 Reuse/Recycle                      |        |            |         |
|                                      |        |            |         |
| 5 Process/Treatment Alternatives     |        |            |         |
| 6 On-site/Sub-surface Disposal       |        |            |         |
| 0 Oli-site/Sub-surface Disposal      |        |            |         |
| (other project-specific alternatives |        |            |         |
| identified by the applicant or the   |        |            |         |
| Department; attach additional        |        |            |         |
| sheets if necessary)                 |        |            |         |
| 7                                    |        |            |         |
| 8                                    |        |            |         |
|                                      |        |            |         |
| 9                                    |        |            |         |

Pursuant to ADEM Administrative Code Rule 335-6-3-.04, I certify on behalf of the applicant that I have completed an evaluation of the discharge alternatives identified above,

Signature: \_\_\_\_\_\_(Professional Engineer)

Date:

(Supporting documentation to be attached, referenced, or otherwise handled as appropriate.) ADEM Form 311 3/02

#### Calculation of Total Annualized Project Costs for Public-Sector Projects

| A. Capital Costs                                             |           |
|--------------------------------------------------------------|-----------|
| Capital Cost of Project                                      | \$        |
| Other One-Time Costs of Project (Please List, if any)        |           |
|                                                              | \$        |
|                                                              | \$        |
|                                                              | \$<br>    |
| Total Capital Costs (Sum column)                             | \$<br>(1) |
| Portion of Capital Costs to be Paid for with Grant Monies    | \$<br>(2) |
| Capital Costs to be Financed [Calculate: $(1) - (2)$ ]       | \$<br>(3) |
| Type of Financing (e.g., G.O. bond, revenue bond, bank loan) |           |
| Interest Rate for Financing (expressed as decimal)           | (i)       |
| Time Period of Financing (in years)                          | <br>(n)   |
| Annualization Factor = $\frac{i}{(1+i)^n - 1} + i$           |           |
|                                                              | <br>(4)   |
| Annualized Capital Cost [Calculate: (3) x (4)]               | <br>(5)   |

#### **B.** Operating and Maintenance Costs

Annual Costs of Operation and Maintenance (including but not limited to: monitoring, inspection, permitting fees, waste disposal charges, repair, administration and replacement.) (Please list below.)

|                                                              | \$       |     |
|--------------------------------------------------------------|----------|-----|
|                                                              | \$       |     |
|                                                              | \$       |     |
|                                                              | \$       |     |
| Total Annual O & M Costs (Sum column)                        | \$       | (6) |
| C. Total Annual Cost of Pollution Control Project            | <b>0</b> |     |
| Total Annual Cost of Pollution Control Project [ (5) + (6) ] | \$       | (7) |

ADEM Form 312 3/02

#### Calculation of Total Annualized Project Costs for Private-Sector Projects

| Capital Costs to be Financed (Supplied by applicant)                                                                                                                                                | \$       | (1) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| Interest rate for Financing (Expressed as a decimal)                                                                                                                                                |          | (i) |
| Time Period of Financing (Assume 10 years <sup>*</sup> )                                                                                                                                            | 10 years | (n) |
| Annualization Factor = $\frac{i}{(1+i)^{10} - 1} + i$                                                                                                                                               |          | (2) |
| Annualized Capital Cost [Calculate: (1) x (2)]                                                                                                                                                      | \$       | (3) |
| Annual Cost of Operation and Maintenance<br>(including but not limited to monitoring, inspection, permitting fees, waste<br>disposal charges, repair, administration and replacement) <sup>**</sup> | \$       | (4) |
| <b>Total Annual Cost of Pollution Control Project</b> [(3)+(4)]                                                                                                                                     | \$       | (5) |

\* While actual payback schedules may differ across projects and companies, assume equal annual payments over a 10-year period for consistency in comparing projects.

\*\* For recurring costs that occur less frequently than once a year, pro rate the cost over the relevant number of years (e.g., for pumps replaced once every three years, include one-third of the cost in each year).

ADEM Form 313 3/02

| TABLE 1<br>TOXIC POLLUTANT CRITERIA     |            |                          |                 |                                |                                  |                             |
|-----------------------------------------|------------|--------------------------|-----------------|--------------------------------|----------------------------------|-----------------------------|
|                                         |            | Criteria<br>rwise noted) |                 | Human Hea<br>(in µg/l unless o |                                  |                             |
| Pollutant                               | Freshwater | Freshwater<br>Chronic    | Marine<br>Acute | Marine<br>Chronic              | Consumption of<br>Water and Fish | Consumption of<br>Fish Only |
| Acenaphthene                            |            |                          |                 |                                | Eq. 16                           | Eq. 17                      |
| Acrolein                                |            |                          |                 |                                | Eq. 16                           | Eq. 17                      |
| Acrylonitrile <sup>1</sup>              |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Aldrin <sup>1</sup>                     | 3.0        |                          | 1.3             |                                | Eq. 18                           | Eq. 19                      |
| Anthracene                              |            |                          |                 |                                | Eq. 16                           | Eq. 17                      |
| Antimony                                |            |                          |                 |                                | Eq. 16                           | Eq. 17                      |
| Arsenic <sup>1</sup>                    | 340 (tri)  | 150 (tri)                | 69 (tri)        | 36 (tri)                       | Eq. 18                           | Eq. 19                      |
| Asbestos                                |            |                          |                 |                                | 7,000,000 fib                    | ers/l (MCL)                 |
| Benzene <sup>1</sup>                    |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Benzidine <sup>1</sup>                  |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Benzo(a)anthracene <sup>1</sup>         |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Benzo(a)pyrene <sup>1</sup>             |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Benzo(b)fluoranthene <sup>1</sup>       |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Benzo(k)fluoranthene <sup>1</sup>       |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Bis(2-chloroethyl)ether <sup>1</sup>    |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Bis(2-chloroisopropyl)ether             |            |                          |                 |                                | Eq. 16                           | Eq. 17                      |
| Bis(2-ethylhexyl)phthalate <sup>1</sup> |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Bromoform <sup>1</sup>                  |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Butylbenzyl phthalate                   |            |                          |                 |                                | Eq. 16                           | Eq. 17                      |
| Cadmium                                 | Eq. 1      | Eq. 2                    | 40              | 8.8                            | 1                                | 1                           |
| Carbon tetrachloride <sup>1</sup>       |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Chlordane <sup>1</sup>                  | 2.4        | 0.0043                   | 0.09            | 0.004                          | Eq. 18                           | Eq. 19                      |
| Chlorobenzene                           |            |                          |                 |                                | Eq. 16                           | Eq. 17                      |
| Chlorodibromomethane <sup>1</sup>       |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
| Chloroform <sup>1</sup>                 |            |                          |                 |                                | Eq. 18                           | Eq. 19                      |
|                                         |            |                          |                 |                                | 1                                | 1                           |

| TABLE 1<br>TOXIC POLLUTANT CRITERIA |                     |                       |                 |                   |                                  |                             |
|-------------------------------------|---------------------|-----------------------|-----------------|-------------------|----------------------------------|-----------------------------|
|                                     |                     | Aquatic Life          | Criteria        |                   | Human Hea                        |                             |
|                                     |                     | n µg/l unless other   |                 |                   | (in µg/l unless o                |                             |
| Pollutant                           | Freshwater<br>Acute | Freshwater<br>Chronic | Marine<br>Acute | Marine<br>Chronic | Consumption of<br>Water and Fish | Consumption of<br>Fish Only |
| 2-Chloronaphthalene                 |                     |                       |                 |                   | Eq. 16                           | Eq. 17                      |
| 2-Chlorophenol                      |                     |                       |                 |                   | Eq. 16                           | Eq. 17                      |
| Chromium (trivalent)                | Eq. 3               | Eq. 4                 |                 |                   |                                  |                             |
| Chromium (hexavalent)               | 16                  | 11                    | 1100            | 50                |                                  |                             |
| Chrysene <sup>1</sup>               |                     |                       |                 |                   | Eq. 18                           | Eq. 19                      |
| Copper                              | Eq. 5               | Eq. 6                 | 4.8             | 3.1               | 1300 (MCL)                       |                             |
| Cyanide (free)                      | 22                  | 5.2                   | 1.0             | 1.0               | Eq. 16                           | Eq. 17                      |
| 4,4'-DDD <sup>1</sup>               |                     |                       |                 |                   | Eq. 18                           | Eq. 19                      |
| 4,4'-DDE <sup>1</sup>               |                     |                       |                 |                   | Eq. 18                           | Eq. 19                      |
| 4,4'-DDT <sup>1</sup>               | 1.1                 | 0.001                 | 0.13            | 0.001             | Eq. 18                           | Eq. 19                      |
| Dibenzo(a,h)anthracene <sup>1</sup> |                     |                       |                 |                   | Eq. 18                           | Eq. 19                      |
| 1,2-Dichlorobenzene                 |                     |                       |                 |                   | Eq. 16                           | Eq. 17                      |
| 1,3-Dichlorobenzene                 |                     |                       |                 |                   | Eq. 16                           | Eq. 17                      |
| 1,4-Dichlorobenzene                 |                     |                       |                 |                   | Eq. 16                           | Eq. 17                      |
| 3,3'-Dichlorobenzidine <sup>1</sup> |                     |                       |                 |                   | Eq. 18                           | Eq. 19                      |
| Dichlorobromomethane <sup>1</sup>   |                     |                       |                 |                   | Eq. 18                           | Eq. 19                      |
| 1,2-Dichloroethane <sup>1</sup>     |                     |                       |                 |                   | Eq. 18                           | Eq. 19                      |
| 1,1-Dichloroethylene                |                     |                       |                 |                   | Eq. 16                           | Eq. 17                      |
| 2,4-Dichlorophenol                  |                     |                       |                 |                   | Eq. 16                           | Eq. 17                      |
| 1,2 Dichloropropane <sup>1</sup>    |                     |                       |                 |                   | Eq. 18                           | Eq. 19                      |
| 1,3 Dichloropropylene <sup>1</sup>  |                     |                       |                 |                   | Eq. 18                           | Eq. 19                      |
| Dieldrin <sup>1</sup>               | 0.24                | 0.056                 | 0.71            | 0.0019            | Eq. 18                           | Eq. 19                      |
| 2,4-Dimethylphenol                  |                     |                       |                 |                   | Eq. 16                           | Eq. 17                      |
| Diethyl phthalate                   |                     |                       |                 |                   | Eq. 16                           | Eq. 17                      |
| Dimethyl phthalate                  |                     |                       |                 |                   | Eq. 16                           | Eq. 17<br>Eq. 17            |

| TABLE 1<br>TOXIC POLLUTANT CRITERIA        |                     |                                    |                 |                   |                                  |                                                           |  |
|--------------------------------------------|---------------------|------------------------------------|-----------------|-------------------|----------------------------------|-----------------------------------------------------------|--|
|                                            |                     | Aquatic Life<br>n µg/l unless othe | Criteria        |                   |                                  | Human Health Criteria<br>(in µg/l unless otherwise noted) |  |
| Pollutant                                  | Freshwater<br>Acute | Freshwater<br>Chronic              | Marine<br>Acute | Marine<br>Chronic | Consumption of<br>Water and Fish | Consumption of<br>Fish Only                               |  |
| Di-n-butyl phthalate                       |                     |                                    |                 |                   | Eq. 16                           | Eq. 17                                                    |  |
| 4,6-Dinitro-2-methylphenol                 |                     |                                    |                 |                   | Eq. 16                           | Eq. 17                                                    |  |
| 2,4 Dinitrotoluene <sup>1</sup>            |                     |                                    |                 |                   | Eq. 18                           | Eq. 19                                                    |  |
| 2,4-Dinitrophenol                          |                     |                                    |                 |                   | Eq. 16                           | Eq. 17                                                    |  |
| Dioxin (2,3,7,8-TCDD) <sup>1</sup>         |                     |                                    |                 |                   | Eq. 18                           | Eq. 19                                                    |  |
| 1,2-Diphenylhydrazine <sup>1</sup>         |                     |                                    |                 |                   | Eq. 18                           | Eq. 19                                                    |  |
| Endosulfan (alpha)                         | 0.22                | 0.056                              | 0.034           | 0.0087            | Eq. 16                           | Eq. 17                                                    |  |
| Endosulfan (beta)                          | 0.22                | 0.056                              | 0.034           | 0.0087            | Eq. 16                           | Eq. 17                                                    |  |
| Endosulfan sulfate                         |                     |                                    |                 |                   | Eq. 16                           | Eq. 17                                                    |  |
| Endrin                                     | 0.086               | 0.036                              | 0.037           | 0.0023            | Eq. 16                           | Eq. 17                                                    |  |
| Endrin aldehyde                            |                     |                                    |                 |                   | Eq. 16                           | Eq. 17                                                    |  |
| Ethylbenzene                               |                     |                                    |                 |                   | Eq. 16                           | Eq. 17                                                    |  |
| Fluoranthene                               |                     |                                    |                 |                   | Eq. 16                           | Eq. 17                                                    |  |
| Fluorene                                   |                     |                                    |                 |                   | Eq. 16                           | Eq. 17                                                    |  |
| Heptachlor <sup>1</sup>                    | 0.52                | 0.0038                             | 0.053           | 0.0036            | Eq. 18                           | Eq. 19                                                    |  |
| Heptachlor epoxide <sup>1</sup>            | 0.52                | 0.0038                             | 0.053           | 0.0036            | Eq. 18                           | Eq. 19                                                    |  |
| Hexachlorobenzene <sup>1</sup>             |                     |                                    |                 |                   | Eq. 18                           | Eq. 19                                                    |  |
| Hexachlorobutadiene <sup>1</sup>           |                     |                                    |                 |                   | Eq. 18                           | Eq. 19                                                    |  |
| Hexachlorocyclohexane (alpha) <sup>1</sup> |                     |                                    |                 |                   | Eq. 18                           | Eq. 19                                                    |  |
| Hexachlorocyclohexane (beta) <sup>1</sup>  |                     |                                    |                 |                   | Eq. 18                           | Eq. 19                                                    |  |
| Hexachlorocyclohexane (gamma)              | 0.95                |                                    | 0.16            |                   | Eq. 16                           | Eq. 17                                                    |  |
| Hexachlorocyclopentadiene                  |                     |                                    |                 |                   | Eq. 16                           | Eq. 17                                                    |  |
| Hexachloroethane <sup>1</sup>              |                     |                                    |                 |                   | Eq. 18                           | Eq. 19                                                    |  |
| Indeno (1,2,3-cd) pyrene $^{1}$            |                     |                                    |                 |                   | Eq. 18                           | Eq. 19                                                    |  |
| Isophorone <sup>1</sup>                    |                     |                                    |                 |                   | Eq. 18                           | Eq. 19                                                    |  |
| Lead                                       | Eq. 7               | Eq. 8                              | 210             | 8.1               | -                                | -                                                         |  |
|                                            |                     |                                    |                 |                   |                                  |                                                           |  |

|                                        | τοχι                | TABLE<br>C POLLUTAN   |                 | IA                |                               |                             |
|----------------------------------------|---------------------|-----------------------|-----------------|-------------------|-------------------------------|-----------------------------|
|                                        | 10/11               | Aquatic Life          |                 | .14 1             | Human Hea                     | lth Criteria                |
|                                        | (i                  | n µg/l unless other   |                 |                   | (in µg/l unless o             | therwise noted)             |
| Pollutant                              | Freshwater<br>Acute | Freshwater<br>Chronic | Marine<br>Acute | Marine<br>Chronic | Consumption of Water and Fish | Consumption or<br>Fish Only |
| Mercury (total recoverable)            | 2.4                 | 0.012                 | 2.1             | 0.025             | Eq. 16                        | Eq. 17                      |
| Methyl bromide                         |                     |                       |                 |                   | Eq. 16                        | Eq. 17                      |
| Methylene chloride <sup>1</sup>        |                     |                       |                 |                   | Eq. 18                        | Eq. 19                      |
| Nickel                                 | Eq. 9               | Eq. 10                | 74              | 8.2               | Eq. 16                        | Eq. 17                      |
| Nitrobenzene                           |                     |                       |                 |                   | Eq. 16                        | Eq. 17                      |
| N-Nitrosodimethylamine <sup>1</sup>    |                     |                       |                 |                   | Eq. 18                        | Eq. 19                      |
| N-Nitrosodi-n-propylamine <sup>1</sup> |                     |                       |                 |                   | Eq. 18                        | Eq. 19                      |
| N-Nitrosodiphenylamine <sup>1</sup>    |                     |                       |                 |                   | Eq. 18                        | Eq. 19                      |
| PCB-1016 <sup>1,2</sup>                |                     | 0.014                 |                 | 0.03              | Eq. 18                        | Eq. 19                      |
| PCB-1221 <sup>1,2</sup>                |                     | 0.014                 |                 | 0.03              | Eq. 18                        | Eq. 19                      |
| PCB-1232 <sup>1,2</sup>                |                     | 0.014                 |                 | 0.03              | Eq. 18                        | Eq. 19                      |
| PCB-1242 <sup>1,2</sup>                |                     | 0.014                 |                 | 0.03              | Eq. 18                        | Eq. 19                      |
| PCB-1248 <sup>1,2</sup>                |                     | 0.014                 |                 | 0.03              | Eq. 18                        | Eq. 19                      |
| PCB-1254 <sup>1,2</sup>                |                     | 0.014                 |                 | 0.03              | Eq. 18                        | Eq. 19                      |
| PCB-1260 <sup>1,2</sup>                |                     | 0.014                 |                 | 0.03              | Eq. 18                        | Eq. 19                      |
| Pentachlorophenol <sup>1</sup>         | Eq. 11              | Eq. 12                | 13              | 7.9               | Eq. 18                        | Eq. 19                      |
| Phenol                                 |                     |                       |                 |                   | Eq. 16                        | Eq. 17                      |
| Pyrene                                 |                     |                       |                 |                   | Eq. 16                        | Eq. 17                      |
| Selenium <sup>3</sup>                  | 20                  | 5.0                   | 290             | 71                | Eq. 16                        | Eq. 17                      |
| Silver                                 | Eq. 13              |                       | 1.9             |                   | *                             | *                           |
| 1,1,2,2-Tetrachloroethane <sup>1</sup> | *                   |                       |                 |                   | Eq. 18                        | Eq. 19                      |
| Tetrachloroethylene <sup>1</sup>       |                     |                       |                 |                   | Eq. 18                        | Eq. 19                      |
| Thallium                               |                     |                       |                 |                   | Eq. 16                        | Eq. 17                      |
| Toluene                                |                     |                       |                 |                   | Eq. 16                        | Eq. 17                      |
| Toxaphene <sup>1</sup>                 | 0.73                | 0.0002                | 0.21            | 0.0002            | Eq. 18                        | Eq. 19                      |

| TABLE 1                            |        |                     |              |        |                   |                             |
|------------------------------------|--------|---------------------|--------------|--------|-------------------|-----------------------------|
| TOXIC POLLUTANT CRITERIA           |        |                     |              |        |                   |                             |
|                                    |        | Aquatic Life        |              |        | Human Hea         |                             |
|                                    |        | n µg/l unless other | rwise noted) |        | (in µg/l unless o | therwise noted)             |
| Pollutant                          |        |                     |              |        |                   | Consumption of<br>Fish Only |
| 1,2-Trans-dichloroethylene         |        |                     |              |        | Eq. 16            | Eq. 17                      |
| Tributyltin (TBT)                  | 0.46   | 0.072               | 0.42         | 0.0074 |                   |                             |
| 1,2,4-Trichlorobenzene             |        |                     |              |        | Eq. 16            | Eq. 17                      |
| 1,1,2-Trichloroethane <sup>1</sup> |        |                     |              |        | Eq. 18            | Eq. 19                      |
| Trichloroethylene <sup>1</sup>     |        |                     |              |        | Eq. 18            | Eq. 19                      |
| 2,4,6-Trichlorophenol <sup>1</sup> |        |                     |              |        | Eq. 18            | Eq. 19                      |
| Vinyl chloride <sup>1</sup>        |        |                     |              |        | Eq. 18            | Eq. 19                      |
| Zinc                               | Eq. 14 | Eq. 15              | 90           | 81     | Eq. 16            | Eq. 17                      |

<sup>1</sup> Pollutants considered by EPA to be carcinogenic.
 <sup>2</sup> The criteria for Polychlorinated Biphenyls (PCBs) apply to total PCBs, which is defined as the sum of the seven particular Aroclors (1016, 1221, 1232, 1242, 1248, 1254, and 1260) listed in this table.
 <sup>3</sup> The freshwater aquatic life criteria for selenium are expressed in terms of total recoverable metal in the water column.

|                             | CAS<br>Registry | REFERENCE<br>DOSE | CANCER<br>POTENCY<br>FACTOR | BIO-<br>CONCENTRATION<br>FACTOR |
|-----------------------------|-----------------|-------------------|-----------------------------|---------------------------------|
| POLLUTANT                   | Number          | mg/(kg-day)       | (kg-day)/mg                 | l/kg                            |
| Acenaphthene                | 83329           | 0.06              |                             | 242                             |
| Acrolein                    | 107028          | 0.0156            |                             | 215                             |
| Acrylonitrile               | 107131          |                   | 0.54                        | 30                              |
| Aldrin                      | 309002          |                   | 17                          | 4670                            |
| Anthracene                  | 120127          | 0.3               |                             | 30                              |
| Antimony                    | 7440360         | 0.0004            |                             | 1                               |
| Arsenic                     | 7440382         |                   | 1.75                        | 44                              |
| Benzene                     | 71432           |                   | 0.029                       | 5.2                             |
| Benzidine                   | 92875           |                   | 230                         | 87.5                            |
| Benzo(a)anthracene          | 56553           |                   | 7.3                         | 30                              |
| Benzo(a)pyrene              | 50328           |                   | 7.3                         | 30                              |
| Benzo(b)fluoranthene        | 205992          |                   | 7.3                         | 30                              |
| Benzo(k)fluoranthene        | 207089          |                   | 7.3                         | 30                              |
| Bis(2-chloroethyl)ether     | 111444          |                   | 1.1                         | 6.9                             |
| Bis(2-chloroisopropyl)ether | 108601          | 0.04              |                             | 2.47                            |
| Bis(2-ethylhexyl)phthalate  | 117817          |                   | 0.014                       | 130                             |
| Bromoform                   | 75252           |                   | 0.0079                      | 3.75                            |
| Butylbenzyl phthalate       | 85687           | 0.2               |                             | 414                             |
| Carbon tetrachloride        | 56235           |                   | 0.13                        | 18.75                           |
| Chlordane                   | 57749           |                   | 0.35                        | 14100                           |
| Chlorobenzene               | 108907          | 0.02              |                             | 10.3                            |
| Chlorodibromomethane        | 124481          |                   | 0.084                       | 3.75                            |
| Chloroform                  | 67663           |                   | 0.0061                      | 3.75                            |
| 2-Chloronaphthalene         | 91587           | 0.08              |                             | 202                             |

|                            | CAS<br>Registry | REFERENCE<br>DOSE | CANCER<br>POTENCY<br>FACTOR | BIO-<br>CONCENTRATION<br>FACTOR |
|----------------------------|-----------------|-------------------|-----------------------------|---------------------------------|
| POLLUTANT                  | Number          | mg/(kg-day)       | (kg-day)/mg                 | l/kg                            |
| 2-Chlorophenol             | 95578           | 0.005             |                             | 134                             |
| Chrysene                   | 218019          |                   | 7.3                         | 30                              |
| Cyanide                    | 57125           | 0.02              |                             | 1                               |
| 4,4'-DDD                   | 72548           |                   | 0.24                        | 53600                           |
| 4,4'-DDE                   | 72559           |                   | 0.34                        | 53600                           |
| 4,4'-DDT                   | 50293           |                   | 0.34                        | 53600                           |
| Dibenzo(a,h)anthracene     | 53703           |                   | 7.3                         | 30                              |
| 1,2-Dichlorobenzene        | 95501           | 0.09              |                             | 55.6                            |
| 1,3-Dichlorobenzene        | 541731          | 0.0134            |                             | 55.6                            |
| 1,4-Dichlorobenzene        | 106467          | 0.0134            |                             | 55.6                            |
| 3,3'-Dichlorobenzidine     | 91941           |                   | 0.45                        | 312                             |
| Dichlorobromomethane       | 75274           |                   | 0.062                       | 3.75                            |
| 1,2-Dichloroethane         | 107062          |                   | 0.091                       | 1.2                             |
| 1,1-Dichloroethylene       | 75354           | 0.05              |                             | 5.6                             |
| 2,4-Dichlorophenol         | 120832          | 0.003             |                             | 40.7                            |
| 1,2-Dichloropropane        | 78875           |                   | 0.067                       | 4.1                             |
| 1,3-Dichloropropylene      | 542756          |                   | 0.1                         | 1.9                             |
| Dieldrin                   | 60571           |                   | 16                          | 4670                            |
| Diethyl phthalate          | 84662           | 0.8               |                             | 73                              |
| 2,4 Dimethylphenol         | 105679          | 0.02              |                             | 93.8                            |
| Dimethyl phthalate         | 131113          | 10                |                             | 36                              |
| Di-n-butyl phthalate       | 84742           | 0.1               |                             | 89                              |
| 4,6-Dinitro-2-methylphenol | 534521          | 0.00039           |                             | 5.5                             |
| 2,4-Dinitrophenol          | 51285           | 0.002             |                             | 1.5                             |

|                               | CAS<br>Registry | REFERENCE<br>DOSE | CANCER<br>POTENCY<br>FACTOR | BIO-<br>CONCENTRATION<br>FACTOR |
|-------------------------------|-----------------|-------------------|-----------------------------|---------------------------------|
| POLLUTANT                     | Number          | mg/(kg-day)       | (kg-day)/mg                 | l/kg                            |
| 2,4 Dinitrotoluene            | 121142          |                   | 0.31                        | 3.8                             |
| Dioxin (2,3,7,8-TCDD)         | 1746016         |                   | 17500                       | 5000                            |
| 1,2-Diphenylhydrazine         | 122667          |                   | 0.8                         | 24.9                            |
| Endosulfan (alpha)            | 959988          | 0.006             |                             | 270                             |
| Endosulfan (beta)             | 33213659        | 0.006             |                             | 270                             |
| Endosulfan sulfate            | 1031078         | 0.006             |                             | 270                             |
| Endrin                        | 72208           | 0.0003            |                             | 3970                            |
| Endrin aldehyde               | 7421934         | 0.0003            |                             | 3970                            |
| Ethylbenzene                  | 100414          | 0.1               |                             | 37.5                            |
| Fluoranthene                  | 206440          | 0.04              |                             | 1150                            |
| Fluorene                      | 86737           | 0.04              |                             | 30                              |
| Heptachlor                    | 76448           |                   | 4.5                         | 11200                           |
| Heptachlor epoxide            | 1024573         |                   | 9.1                         | 11200                           |
| Hexachlorobenzene             | 118741          |                   | 1.6                         | 8690                            |
| Hexachlorobutadiene           | 87683           |                   | 0.078                       | 2.78                            |
| Hexachlorocyclohexane (alpha) | 319846          |                   | 6.3                         | 130                             |
| Hexachlorocyclohexane (beta)  | 319857          |                   | 1.8                         | 130                             |
| Hexachlorocyclohexane (gamma) | 58899           | 0.0003            |                             | 130                             |
| Hexachlorocyclopentadiene     | 77474           | 0.006             |                             | 4.34                            |
| Hexachloroethane              | 67721           |                   | 0.014                       | 86.9                            |
| Indeno (1,2,3-cd) pyrene      | 193395          |                   | 7.3                         | 30                              |
| Isophorone                    | 78591           |                   | 0.00095                     | 4.38                            |
| Mercury                       | 7439976         | 0.0001            |                             | 5500                            |
| Methyl bromide                | 74839           | 0.0014            |                             | 3.75                            |

|                            | CAS<br>Registry | REFERENCE<br>DOSE | CANCER<br>POTENCY<br>FACTOR | BIO-<br>CONCENTRATION<br>FACTOR |
|----------------------------|-----------------|-------------------|-----------------------------|---------------------------------|
| POLLUTANT                  | Number          | mg/(kg-day)       | (kg-day)/mg                 | l/kg                            |
| Methylene chloride         | 75092           |                   | 0.0075                      | 0.9                             |
| Nickel                     | 7440020         | 0.02              |                             | 47                              |
| Nitrobenzene               | 98953           | 0.0005            |                             | 2.89                            |
| N-Nitrosodimethylamine     | 62759           |                   | 51                          | 0.026                           |
| N-Nitrosodi-n-propylamine  | 621647          |                   | 7                           | 1.13                            |
| N-Nitrosodiphenylamine     | 86306           |                   | 0.0049                      | 136                             |
| PCB-1016 <sup>1</sup>      | 12674112        |                   | 2.0                         | 31200                           |
| PCB-1221 <sup>1</sup>      | 11104282        |                   | 2.0                         | 31200                           |
| PCB-1232 <sup>1</sup>      | 11141165        |                   | 2.0                         | 31200                           |
| PCB-1242 <sup>1</sup>      | 53469219        |                   | 2.0                         | 31200                           |
| PCB-1248 <sup>1</sup>      | 12672296        |                   | 2.0                         | 31200                           |
| PCB-1254 <sup>1</sup>      | 11097691        |                   | 2.0                         | 31200                           |
| PCB-1260 <sup>1</sup>      | 11096825        |                   | 2.0                         | 31200                           |
| Pentachlorophenol          | 87865           |                   | 0.12                        | 11                              |
| Phenol                     | 108952          | 0.6               |                             | 1.4                             |
| Pyrene                     | 129000          | 0.03              |                             | 30                              |
| Selenium                   | 7782492         | 0.005             |                             | 4.8                             |
| 1,1,2,2-Tetrachloroethane  | 79345           |                   | 0.2                         | 5                               |
| Tetrachloroethylene        | 127184          |                   | 0.039776                    | 30.6                            |
| Thallium                   | 7440280         | 0.000068          |                             | 116                             |
| Toluene                    | 108883          | 0.2               |                             | 10.7                            |
| Toxaphene                  | 8001352         |                   | 1.1                         | 13100                           |
| 1,2-Trans-dichloroethylene | 156605          | 0.02              |                             | 1.58                            |
| 1,2,4-Trichlorobenzene     | 120821          | 0.01              |                             | 114                             |

|                       | CAS<br>Registry | REFERENCE<br>DOSE | CANCER<br>POTENCY<br>FACTOR | BIO-<br>CONCENTRATION<br>FACTOR |
|-----------------------|-----------------|-------------------|-----------------------------|---------------------------------|
| POLLUTANT             | Number          | mg/(kg-day)       | (kg-day)/mg                 | l/kg                            |
| 1,1,2-Trichloroethane | 79005           |                   | 0.057                       | 4.5                             |
| Trichloroethylene     | 79016           |                   | 0.0126                      | 10.6                            |
| 2,4,6-Trichlorophenol | 88062           |                   | 0.011                       | 150                             |
| Vinyl chloride        | 75014           |                   | 1.4                         | 1.17                            |
| Zinc                  | 7440666         | 0.3               |                             | 47                              |

<sup>1</sup> The criteria for Polychlorinated Biphenyls (PCBs) apply to total PCBs, which is defined as the sum of the seven particular Aroclors (1016, 1221,1232, 1242, 1248, 1254, and 1260) listed in this table.

#### ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT WATER DIVISION - WATER QUALITY PROGRAM

#### CHAPTER 335-6-11 WATER USE CLASSIFICATIONS FOR INTERSTATE AND INTRASTATE WATERS

#### TABLE OF CONTENTS

# 335-6-11-.01The Use Classification System335-6-11-.02Use Classifications

#### 335-6-11-.01 The Use Classification System.

(1) Use classifications utilized by the State of Alabama are as follows:

| Outstanding Alabama Water                          | OAW |
|----------------------------------------------------|-----|
| Public Water Supply                                | PWS |
| Swimming and Other Whole Body Water-Contact Sports | S   |
| Shellfish Harvesting                               | SH  |
| Fish and Wildlife                                  | F&W |
| Limited Warmwater Fishery                          | LWF |
| Agricultural and Industrial Water Supply           | A&I |

(2) Use classifications apply water quality criteria adopted for particular uses based on existing utilization, uses reasonably expected in the future, and those uses not now possible because of correctable pollution but which could be made if the effects of pollution were controlled or eliminated. Of necessity, the assignment of use classifications must take into consideration the physical capability of waters to meet certain uses.

(3) Those use classifications presently included in the standards are reviewed informally by the Department's staff as the need arises, and the entire standards package, to include the use classifications, receives a formal review at least once each three years. Efforts currently underway through local 201 planning projects will provide additional technical data on certain streams in the State, information on treatment alternatives, and applicability of various management techniques, which, when available, will hopefully lead to new decisions regarding use classifications. Of particular interest are those segments which are currently classified for any usage which has an associated degree of quality criteria considered to be less than that applicable to a classification of "Fish and Wildlife." As rapidly as it can be demonstrated that new classifications are feasible on these segments from an economic and technological viewpoint, based on the information being generated pursuant to staff studies and the planning efforts previously outlined, such improvement will be sought.

(4) Although it is not explicitly stated in the classifications, it should be understood that the use classification of "Shellfish Harvesting" is only applicable in the coastal area and,

therefore, is included only in the Mobile River Basin and the Perdido-Escambia River Basin. It should also be noted that with the exception of those segments in the "Public Water Supply" classification, every segment, in addition to being considered acceptable for its designated use, is also considered acceptable for any other use with a less stringent associated criteria.

(5) Not all waters are included by name in the use classifications since it would be a tremendous administrative burden to list all stream segments in the State. In addition, in virtually every instance where a segment is not included by name, the Department has no information or stream data upon which to base a decision relative to the assignment of a particular classification. An effort has been made, however, to include all major stream segments and all segments which, to the Department's knowledge, are currently recipients of point source discharges. Those segments which are not included by name will be considered to be acceptable for a "Fish and Wildlife" classification unless it can be demonstrated that such a generalization is inappropriate in specific instances.

#### Author: James E. McIndoe.

Statutory Authority: <u>Code of Alabama</u> 1975, §§22-22-9, 22-22A-5, 22-22A-6, 22-22A-8. History: May 5, 1967. Amended: June 19, 1967; April 1, 1970; October 16, 1972; September 17, 1973; May 30, 1977; December 19, 1977; February 4, 1981; April 5, 1982; December 11, 1985; March 26, 1986; September 7, 2000.

#### (1) **THE ALABAMA RIVER BASIN**

#### Stream From То Classification MOBILE RIVER Claiborne Lock and ALABAMA RIVER F&W Dam ALABAMA RIVER Claiborne Lock and Frisco Railroad S/F&W Dam Crossing ALABAMA RIVER Frisco Railroad River Mile 131 F&W Crossing ALABAMA RIVER River Mile 131 Millers Ferry **PWS** Lock and Dam ALABAMA RIVER Millers Ferry Blackwell Bend S/F&W Lock and Dam (Six Mile Creek)

### **INTERSTATE WATERS**

| Stream        | From                               | То                       | Classification |
|---------------|------------------------------------|--------------------------|----------------|
| ALABAMA RIVER | Blackwell Bend<br>(Six Mile Creek) | Jones Bluff Lock and Dam | F&W            |
| ALABAMA RIVER | Jones Bluff<br>Lock and Dam        | Pintlalla Creek          | S/F&W          |
| ALABAMA RIVER | Pintlalla Creek                    | Its source               | F&W            |

# **INTRASTATE WATERS**

| Stream                            | From            | То         | Classification |
|-----------------------------------|-----------------|------------|----------------|
| Little River                      | ALABAMA RIVER   | Its source | S/F&W          |
| Randons Creek                     | ALABAMA RIVER   | Its source | F&W            |
| Bear Creek                        | Randons Creek   | Its source | F&W            |
| Limestone Creek                   | ALABAMA RIVER   | Its source | F&W            |
| Double Bridges Creek              | Limestone Creek | Its source | F&W            |
| Hudson Branch                     | Limestone Creek | Its source | F&W            |
| Big Flat Creek                    | ALABAMA RIVER   | Its source | S/F&W          |
| Pursley Creek                     | ALABAMA RIVER   | Its source | F&W            |
| Unnamed tributary south of Camden | Pursley Creek   | Its source | F&W            |
| Beaver Creek                      | ALABAMA RIVER   | Its source | F&W            |
| Cub Creek                         | Beaver Creek    | Its source | F&W            |
| Turkey Creek                      | Beaver Creek    | Its source | F&W            |
| Rockwest Creek                    | ALABAMA RIVER   | Its source | F&W            |
| Unnamed tributary west of Camden  | Rockwest Creek  | Its source | F&W            |
| Pine Barren Creek                 | ALABAMA RIVER   | Its source | S/F&W          |

| Stream             | From                              | То                             | Classification |
|--------------------|-----------------------------------|--------------------------------|----------------|
| Chilatchee Creek   | ALABAMA RIVER                     | Its source                     | S/F&W          |
| Bogue Chitto Creek | ALABAMA RIVER                     | Its source                     | F&W            |
| Sand Creek         | Bogue Chitto Creek                | Its source                     | F&W            |
| Big Cedar Creek    | ALABAMA RIVER                     | Its source                     | S/F&W          |
| Valley Creek       | ALABAMA RIVER                     | Selma-Summerfield<br>Rd.       | F&W            |
| Valley Creek       | Selma-Summerfield<br>Rd.          | Its source                     | S/F&W          |
| Mulberry Creek     | ALABAMA RIVER                     | Plantersville                  | S/F&W          |
| Mulberry Creek     | Plantersville                     | Its source                     | F&W            |
| Gale Creek         | Mulberry Creek                    | Its source                     | F&W            |
| Charlotte Creek    | Gale Creek                        | Its source                     | F&W            |
| Big Swamp Creek    | ALABAMA RIVER                     | Its source                     | S/F&W          |
| Swift Creek        | ALABAMA RIVER                     | Its source                     | S/F&W          |
| Pintlalla Creek    | ALABAMA RIVER                     | Its source                     | S/F&W          |
| Autauga Creek      | ALABAMA RIVER                     | Western boundary of Prattville | F&W            |
| Autauga Creek      | Western boundary of<br>Prattville | Its source                     | S/F&W          |
| Catoma Creek       | ALABAMA RIVER                     | Its source                     | F&W            |
| Mortar Creek       | ALABAMA RIVER                     | Its source                     | F&W            |
| Valley Creek Lake  | Within Valley Creek St            | tate Park                      | S/F&W          |
| Little River Lake  | Within Valley Creek St            | tate Park                      | S/F&W          |

### (2) THE CAHABA RIVER BASIN

# **INTRASTATE WATERS**

| Stream                               | From                                     | То                                                    | Classification |
|--------------------------------------|------------------------------------------|-------------------------------------------------------|----------------|
| CAHABA RIVER                         | ALABAMA RIVER                            | Junction of lower                                     | OAW/S          |
|                                      |                                          | Little Cahaba River                                   |                |
| CAHABA RIVER                         | Junction of lower Little<br>Cahaba River | Shelby County Road 52                                 | OAW/F&W        |
| CAHABA RIVER                         | Shelby County Road 52                    | Dam near<br>U.S. Highway 280                          | F&W            |
| CAHABA RIVER                         | Dam near<br>U.S. Highway 280             | Grant's Mill Road                                     | OAW/PWS        |
| CAHABA RIVER                         | Grant's Mill Road                        | U.S. Highway 11                                       | F&W            |
| CAHABA RIVER                         | U.S. Highway 11                          | Its source                                            | OAW/F&W        |
| Childers Creek                       | CAHABA RIVER                             | Its source                                            | F&W            |
| Oakmulgee Creek                      | CAHABA RIVER                             | Its source                                            | S              |
| Little Oakmulgee<br>Creek            | Oakmulgee Creek                          | Its source                                            | S              |
| Rice Creek                           | CAHABA RIVER                             | Its source                                            | F&W            |
| Waters Creek                         | CAHABA RIVER                             | Its source                                            | S              |
| Old Town Creek                       | CAHABA RIVER                             | Its source                                            | S              |
| Blue Girth Creek                     | CAHABA RIVER                             | Its source                                            | S              |
| Affonee Creek                        | CAHABA RIVER                             | Its source                                            | S              |
| Haysop Creek                         | CAHABA RIVER                             | Its source                                            | F&W            |
| Schultz Creek                        | CAHABA RIVER                             | Its source                                            | S              |
| Little Cahaba River<br>(Bibb County) | CAHABA RIVER                             | Its source<br>(junction of Mahan and<br>Shoal Creeks) | OAW/F&W        |

| Stream                                                | From                  | То                    | Classification |
|-------------------------------------------------------|-----------------------|-----------------------|----------------|
| Sixmile Creek                                         | Little Cahaba River   | Its source            | S              |
| Mahan Creek                                           | Little Cahaba River   | Its source            | F&W            |
| Shoal Creek                                           | Little Cahaba River   | Its source            | F&W            |
| Caffee Creek                                          | CAHABA RIVER          | Its source            | F&W            |
| Shades Creek                                          | CAHABA RIVER          | Its source            | F&W            |
| Buck Creek                                            | CAHABA RIVER          | Cahaba Valley Creek   | F&W            |
| Buck Creek                                            | Cahaba Valley Creek   | Shelby County Road 44 | $LWF^4$        |
| Buck Creek                                            | Shelby County Road 44 | Its source            | F&W            |
| Cahaba Valley Creek                                   | Buck Creek            | Its source            | F&W            |
| Peavine Creek                                         | Buck Creek            | Its source            | F&W            |
| Oak Mountain State Pa                                 | ark Lakes             |                       | PWS            |
| Patton Creek                                          | CAHABA RIVER          | Its source            | F&W            |
| Little Shades Creek                                   | CAHABA RIVER          | Its source            | F&W            |
| Little Cahaba River<br>(Jefferson-Shelby<br>Counties) | CAHABA RIVER          | Head of Lake Purdy    | PWS            |
| Little Cahaba River<br>(Jefferson County)             | Head of Lake Purdy    | Its source            | F&W            |

<sup>&</sup>lt;sup>4</sup>Applicable dissolved oxygen level is 4.0 mg/l during May through November. Fish and Wildlife fecal coliform bacteria criteria at paragraph 10-.09(5)(e)7. are applicable year-round. For the purpose of establishing effluent limitations pursuant to Chapter 335-6-6 of the Department's regulations, the minimum 7-day low flow that occurs once in 10 years ( $7Q_{10}$ ) shall be the basis for applying the chronic aquatic life criteria.

### (3) THE CHATTAHOOCHEE RIVER BASIN

# **INTERSTATE WATERS**

| Stream                                      | From                                                                              | То                                                                                | Classification |
|---------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------|
| CHATTAHOOCHEE<br>RIVER                      | Alabama-Florida<br>state line                                                     | Water supply intake of<br>Great Southern<br>Division, Great<br>Northern Paper Co. | F&W            |
| CHATTAHOOCHEE<br>RIVER                      | Water supply intake of<br>Great Southern<br>Division, Great<br>Northern Paper Co. | Cowikee Creek                                                                     | S/F&W          |
| CHATTAHOOCHEE<br>RIVER                      | Cowikee Creek                                                                     | 14th Street Bridge<br>between Columbus and<br>Phenix City                         | F&W            |
| CHATTAHOOCHEE<br>RIVER                      | 14th Street Bridge<br>between Columbus and<br>Phenix City                         | Osanippa Creek                                                                    | PWS/S/F&W      |
| CHATTAHOOCHEE<br>RIVER                      | Osanippa Creek                                                                    | West Point<br>Manufacturing<br>Company water supply<br>intake at Lanett           | F&W            |
| CHATTAHOOCHEE<br>RIVER                      | West Point<br>Manufacturing<br>Company water supply<br>intake at Lanett           | West Point Dam                                                                    | PWS            |
| CHATTAHOOCHEE<br>RIVER (West Point<br>Lake) | West Point Dam                                                                    | West Point Lake limits in Alabama                                                 | S/F&W          |
| Oseligee Creek                              | Alabama-Georgia state<br>line                                                     | Its source                                                                        | F&W            |
| Wehadkee Creek                              | Alabama-Georgia state<br>line                                                     | Its source                                                                        | F&W            |
| Finley Creek                                | Alabama-Georgia State<br>line                                                     | Its source                                                                        | F&W            |

| Stream        | From                          | То         | Classification |
|---------------|-------------------------------|------------|----------------|
| Hardley Creek | Alabama-Georgia State<br>line | Its source | F&W            |
| Veasey Creek  | Alabama-Georgia State<br>line | Its source | F&W            |

## **INTRASTATE WATERS**

| Stream                          | From                           | То         | Classification |
|---------------------------------|--------------------------------|------------|----------------|
| Omusee Creek                    | CHATTAHOOCHEE<br>RIVER         | Its source | F&W            |
| Mill Creek                      | Omusee Creek                   | Its source | F&W            |
| Abbie Creek                     | CHATTAHOOCHEE<br>RIVER         | Its source | F&W            |
| Skippers Creek                  | Abbie Creek                    | Its source | F&W            |
| Owens Branch                    | Abbie Creek                    | Its source | F&W            |
| Cheneyhatchee Creek             | CHATTAHOOCHEE<br>RIVER         | Its source | S/F&W          |
| Barbour Creek                   | CHATTAHOOCHEE<br>RIVER         | Its source | F&W            |
| Chewalla Creek                  | CHATTAHOOCHEE<br>RIVER         | Its source | S/F&W          |
| Cowikee Creek                   | CHATTAHOOCHEE<br>RIVER         | Its source | S/F&W          |
| North Fork of<br>Cowikee Creek  | Cowikee Creek                  | Its source | F&W            |
| Middle Fork of<br>Cowikee Creek | North Fork of Cowikee<br>Creek | Its source | S/F&W          |
| Hurtsboro Creek                 | North Fork of Cowikee<br>Creek | Its source | A&I            |

| Stream                         | From                                              | То                                                | Classification |
|--------------------------------|---------------------------------------------------|---------------------------------------------------|----------------|
| South Fork of<br>Cowikee Creek | Cowikee Creek                                     | Its source                                        | S/F&W          |
| Hatchechubbee Creek            | CHATTAHOOCHEE<br>RIVER                            | Russell County<br>Highway 4, west of<br>Pittsview | S/F&W          |
| Hatchechubbee Creek            | Russell County<br>Highway 4, west of<br>Pittsview | Its source                                        | F&W            |
| Ihagee Creek                   | CHATTAHOOCHEE<br>RIVER                            | Its source                                        | S/F&W          |
| Uchee Creek                    | CHATTAHOOCHEE<br>RIVER                            | County Road 39                                    | S/F&W          |
| Uchee Creek                    | County Road 39                                    | Alabama Highway 169                               | PWS/S/F&W      |
| Uchee Creek                    | Alabama Highway 169                               | Its source                                        | S/F&W          |
| Halawakee Creek                | CHATTAHOOCHEE<br>RIVER                            | Three miles upstream of County Road 79            | PWS/F&W        |
| Halawakee Creek                | Three miles upstream<br>Of County Road 79         | Its source                                        | F&W            |
| Osanippa Creek                 | CHATTAHOOCHEE<br>RIVER                            | Its source                                        | F&W            |
| Kellum Hill Creek              | Osligee Creek                                     | Its source                                        | F&W            |
| Allen Creek                    | Kellum Hill Creek                                 | Its source                                        | F&W            |
| Moore's Creek                  | CHATTAHOOCHEE<br>RIVER                            | Its source                                        | F&W            |
| Guss Creek                     | Wehadkee Creek                                    | Its source                                        | F&W            |
| Gladney Mill Branch            | Guss Creek                                        | Its source                                        | F&W            |

### (4) THE CHIPOLA RIVER BASIN

# **INTERSTATE WATERS**

| Stream        | From                          | То         | Classification |
|---------------|-------------------------------|------------|----------------|
| Big Creek     | Alabama-Florida state<br>line | Its source | F&W            |
| Buck Creek    | Alabama-Florida state<br>line | Its source | F&W            |
| Cowarts Creek | Alabama-Florida state<br>line | Its source | F&W            |

### **INTRASTATE WATERS**

| Stream          | From            | То         | Classification |
|-----------------|-----------------|------------|----------------|
| Limestone Creek | Big Creek       | Its source | F&W            |
| Cypress Creek   | Limestone Creek | Its source | F&W            |
| Rocky Creek     | Cowarts Creek   | Its source | F&W            |

(5) THE CHOCTAWHATCHEE RIVER BASIN

### **INTERSTATE WATERS**

| Stream                  | From                          | То         | Classification |
|-------------------------|-------------------------------|------------|----------------|
| Pea River               | CHOCTAWHATCHE<br>E RIVER      | Its source | F&W            |
| CHOCTAWHATCHEE<br>RIVER | Alabama-Florida state<br>line | Its source | F&W            |
| Wright Creek            | Alabama-Florida state<br>line | Its source | F&W            |
| Holmes Creek            | Alabama-Florida state<br>line | Its source | F&W            |
| Ten Mile Creek          | Alabama-Florida state<br>line | Its source | F&W            |

# **INTRASTATE WATERS**

| Stream               | From                             | То                               | Classification |
|----------------------|----------------------------------|----------------------------------|----------------|
| Sandy Creek          | Pea River                        | Samson                           | F&W            |
| Flat Creek           | Pea River                        | Junction with Eightmile<br>Creek | F&W            |
| Flat Creek           | Junction with Eightmile<br>Creek | Its source                       | S/F&W          |
| Eightmile Creek      | Flat Creek                       | Its source                       | F&W            |
| Corner Creek         | Eightmile Creek                  | Its source                       | F&W            |
| Cripple Creek        | Pea River                        | Its source                       | F&W            |
| Samson Branch        | Pea River                        | Its source                       | F&W            |
| Whitewater Creek     | Pea River                        | Its source                       | F&W            |
| Big Creek            | Whitewater Creek                 | Its source                       | F&W            |
| Walnut Creek         | Whitewater Creek                 | Its source                       | F&W            |
| Mims Creek           | Whitewater Creek                 | Its source                       | F&W            |
| Pea Creek            | Pea River                        | Its source                       | F&W            |
| Double Bridges Creek | CHOCTAWHATCHE<br>E RIVER         | Its source                       | F&W            |
| Blanket Creek        | Double Bridges Creek             | Its source                       | F&W            |
| Claybank Creek       | CHOCTAWHATCHE<br>E RIVER         | Lake Tholocco                    | F&W            |
| Lake Tholocco        | Dam                              | Its source                       | S/F&W          |
| Claybank Creek       | Lake Tholocco                    | Its source                       | F&W            |
| Harrand Creek        | Claybank Creek                   | Its source                       | F&W            |

| Stream                               | From                                 | То              | Classification |
|--------------------------------------|--------------------------------------|-----------------|----------------|
| Tributary of<br>Harrand Creek        | Harrand Creek                        | Its source      | F&W            |
| Hurricane Creek                      | CHOCTAWHATCHE<br>E RIVER             | Its source      | F&W            |
| Mill Creek                           | Hurricane Creek                      | Hartford        | F&W            |
| Little Choctawhatchee<br>River       | CHOCTAWHATCHE<br>E RIVER             | Its source      | F&W            |
| Newton Creek                         | Little Choctawhatchee<br>River       | Its source      | F&W            |
| Beaver Creek                         | Newton Creek                         | Its source      | F&W            |
| Hurricane Creek (Dale<br>County)     | CHOCTAWHATCHE<br>E RIVER             | Its source      | F&W            |
| West Fork of<br>Choctawhatchee River |                                      | Its source      | F&W            |
| Judy Creek                           | West Fork of<br>Choctawhatchee River | Its source      | F&W            |
| Little Judy Creek                    | Judy Creek                           | Its source      | F&W            |
| Lindsey Creek                        | West Fork of<br>Choctawhatchee River | Its source      | F&W            |
| East Fork of<br>Choctawhatchee River | CHOCTAWHATCHE<br>E RIVER             | Blackwood Creek | F&W            |
| East Fork of<br>Choctawhatchee River | Blackwood Creek                      | Its source      | S/F&W          |
| Blackwood Creek                      | East Fork of<br>Choctawhatchee River | Its source      | F&W            |

### (6) THE COOSA RIVER BASIN

# **INTERSTATE WATERS**

| Stream                                             | From                                                          | То                                                             | Classification     |
|----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|--------------------|
| COOSA RIVER                                        | Its junction with the TALLAPOOSA RIVER                        | Jordan Dam                                                     | F&W                |
| COOSA RIVER<br>(Lake Jordan)                       | Jordan Dam                                                    | Mitchell Dam                                                   | S/F&W              |
| COOSA RIVER<br>(Lake Jordan)                       | Bouldin Dam                                                   | Alabama Highway 111                                            | PWS/S/F&W          |
| COOSA RIVER<br>(Lake Mitchell)                     | Mitchell Dam                                                  | Lay Dam                                                        | PWS/S/F&W          |
| COOSA RIVER<br>(Lay Lake)                          | Lay Dam                                                       | Southern RR Bridge (1-<br>1/3 miles above<br>Yellowleaf Creek) | PWS/S/F&W          |
| COOSA RIVER<br>(Lay Lake)                          | Southern RR Bridge<br>(1-1/3 miles above<br>Yellowleaf Creek) | River Mile 89<br>(1-1/2 miles above<br>Talladega Creek)        | S/F&W <sup>2</sup> |
| COOSA RIVER<br>(Lay Lake)                          | River Mile 89<br>(1-1/2 miles above<br>Talladega Creek)       | Logan Martin Dam                                               | PWS/S/F&W          |
| COOSA RIVER<br>(Logan Martin Lake)                 | Logan Martin Dam                                              | Broken Arrow Creek                                             | S/F&W              |
| COOSA RIVER<br>(Logan Martin Lake)                 | Broken Arrow Creek                                            | Trout Creek                                                    | PWS/S/F&W          |
| COOSA RIVER<br>(Logan Martin Lake)<br>(Lake Henry) | Trout Creek                                                   | McCardney's Ferry<br>(3 miles upstream of<br>Big Canoe Creek)  | S/F&W              |

\_\_\_\_\_

<sup>&</sup>lt;sup>2</sup>Applicable dissolved oxygen level below existing impoundments is 4.0 mg/l.

| Stream                                        | From                                                          | То                                                                           | Classification             |
|-----------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------|
| COOSA RIVER<br>(Lake Henry)                   | McCardney's Ferry<br>(3 miles upstream of<br>Big Canoe Creek) | City of Gadsden's water supply intake                                        | F&W                        |
| COOSA RIVER<br>(Lake Henry)                   | City of Gadsden's water supply intake                         | Weiss Dam<br>powerhouse                                                      | PWS/F&W                    |
| COOSA RIVER                                   | Weiss Dam<br>powerhouse                                       | Weiss Dam                                                                    | F&W                        |
| COOSA RIVER<br>(Weiss Lake)                   | Weiss Dam and Weiss<br>Dam powerhouse                         | Spring Creek                                                                 | PWS/S/F&W                  |
| COOSA RIVER<br>(Weiss Lake)                   | Spring Creek                                                  | Alabama-Georgia state<br>line                                                | S/F&W                      |
| Bouldin Tailrace<br>Canal (Callaway<br>Creek) | COOSA RIVER                                                   | Bouldin Dam                                                                  | F&W                        |
| Terrapin Creek                                | COOSA RIVER                                                   | U.S. Highway 278                                                             | F&W                        |
| Terrapin Creek                                | U.S. Highway 278                                              | Calhoun County Road<br>70, east of Vigo                                      | PWS/F&W                    |
| Terrapin Creek                                | Calhoun County Road<br>70, east of Vigo                       | Alabama-Georgia state<br>line                                                | F&W                        |
| Little River and tributaries                  | COOSA RIVER<br>(Weiss Lake)                                   | Junction of East Fork<br>of Little River and<br>West Fork of Little<br>River | PWS/S/<br>F&W <sup>3</sup> |
| East Fork of Little<br>River and tributaries  | Little River                                                  | Alabama-Georgia state<br>line                                                | PWS/S/<br>F&W <sup>3</sup> |
| West Fork of Little<br>River and tributaries  | Little River                                                  | Alabama-Georgia state<br>line                                                | PWS/S/<br>F&W <sup>3</sup> |
| Chattooga River                               | COOSA RIVER<br>(Weiss Lake)                                   | Gaylesville                                                                  | S/F&W                      |

\_\_\_\_\_

<sup>&</sup>lt;sup>3</sup>The special designation of Outstanding National Resource Water applies to this segment.

| Stream          | From                        | То                            | Classification |
|-----------------|-----------------------------|-------------------------------|----------------|
| Chattooga River | Gaylesville                 | Alabama-Georgia state line    | F&W            |
| Spring Creek    | COOSA RIVER<br>(Weiss Lake) | Alabama-Georgia state<br>line | F&W            |

| Stream                            | From                             | То                                                                       | Classification    |
|-----------------------------------|----------------------------------|--------------------------------------------------------------------------|-------------------|
| Weoka Creek                       | COOSA RIVER<br>(Lake Jordan)     | Its source                                                               | S/F&W             |
| Chestnut Creek                    | COOSA RIVER<br>(Lake Jordan)     | Its source                                                               | F&W               |
| Hatchet Creek                     | COOSA RIVER<br>(Lake Mitchell)   | Norfolk Southern<br>Railway                                              | OAW/S/F&W         |
| Hatchet Creek                     | Norfolk Southern<br>Railway      | Junction of East Fork<br>Hatchet Creek and<br>West Fork Hatchet<br>Creek | OAW/PWS/<br>S/F&W |
| East Fork Hatchet<br>Creek        | Hatchet Creek                    | Its source                                                               | OAW/F&W           |
| West Fork Hatchet<br>Creek        | Hatchet Creek                    | Its source                                                               | OAW/F&W           |
| Socapatoy Creek                   | Hatchet Creek                    | Its source                                                               | F&W               |
| Weogufka Creek                    | Hatchet Creek<br>(Lake Mitchell) | Its source                                                               | S/F&W             |
| Walnut Creek                      | COOSA RIVER<br>(Lake Mitchell)   | Its source                                                               | F&W               |
| Waxahatchee Creek                 | COOSA RIVER<br>(Lay Lake)        | Its source                                                               | F&W               |
| Tributary of<br>Waxahatchee Creek | Waxahatchee Creek                | Its source                                                               | F&W               |

| Stream                    | From                                                      | То                                                        | Classification |
|---------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------|
| Buxahatchee Creek         | Waxahatchee Creek<br>(Lay Lake)                           | Its source                                                | F&W            |
| Yellowleaf Creek          | COOSA RIVER<br>(Lay Lake)                                 | Its source                                                | S/F&W          |
| Tallasseehatchee<br>Creek | COOSA RIVER<br>(Lay Lake)                                 | City of Sylacauga's<br>water supply reservoir<br>dam      | F&W            |
| Tallasseehatchee<br>Creek | City of Sylacauga's<br>water supply reservoir<br>dam      | Its source                                                | PWS/F&W        |
| Shirtee Creek             | Tallasseehatchee Creek                                    | Its source                                                | F&W            |
| Talladega Creek           | COOSA RIVER<br>(Lay Lake)                                 | County Road 303                                           | F&W            |
| Talladega Creek           | County Road 303                                           | Alabama Highway 77                                        | PWS/F&W        |
| Talladega Creek           | Alabama Highway 77                                        | Its source                                                | F&W            |
| Mump Creek                | Talladega Creek                                           | City of Talladega's<br>water supply reservoir<br>dam      | F&W            |
| Mump Creek                | City of Talladega's<br>water supply reservoir<br>dam      | Its source                                                | PWS/F&W        |
| Kelly Creek               | COOSA RIVER<br>(Lay Lake)                                 | Its source                                                | S/F&W          |
| Wolf Creek                | Kelly Creek                                               | Its source                                                | F&W            |
| Choccolocco Creek         | COOSA RIVER<br>(Logan Martin Lake)                        | Tributary from Boiling<br>Spring (Boiling Spring<br>Road) | F&W            |
| Choccolocco Creek         | Tributary from Boiling<br>Spring (Boiling Spring<br>Road) | Egoniaga Creek                                            | PWS/F&W        |
| Choccolocco Creek         | Egoniaga Creek                                            | Its source                                                | F&W            |

| Stream                             | From                                         | То                             | Classification |
|------------------------------------|----------------------------------------------|--------------------------------|----------------|
| Eastaboga Creek                    | Choccolocco Creek                            | Its source                     | F&W            |
| Cheaha Creek                       | Choccolocco Creek                            | Lake Chinnabee                 | S/F&W          |
| Lake Chinnabee                     | Within Talladega Natio                       | onal Forest                    | S/F&W          |
| Kelly Creek                        | Cheaha Creek                                 | Its source                     | F&W            |
| Brecon Branch                      | Kelly Creek                                  | Its source                     | F&W            |
| Coldwater Creek                    | Choccolocco Creek                            | Its source                     | F&W            |
| Coldwater Spring                   |                                              |                                | PWS/F&W        |
| Snow Creek                         | Choccolocco Creek                            | Its source                     | F&W            |
| Dye Creek                          | COOSA RIVER<br>(Logan Martin Lake)           | Its source                     | F&W            |
| Cane Creek                         | COOSA RIVER<br>(Logan Martin Lake)           | Its source                     | F&W            |
| Cave Creek                         | Cane Creek                                   | Its source                     | F&W            |
| Ohatchee Creek                     | COOSA RIVER<br>(Logan Martin Lake)           | Its source                     | S/F&W          |
| Tallahatchee Creek                 | Ohatchee Creek                               | Its source                     | F&W            |
| Tributary of<br>Tallahatchee Creek | Tallahatchee Creek                           | Its source                     | F&W            |
| Big Canoe Creek                    | COOSA RIVER<br>(Lake Henry)                  | Its source                     | F&W            |
| Little Canoe Creek                 | Big Canoe Creek                              | Its source                     | F&W            |
| Spring Creek                       | Little Canoe Creek                           | Its source                     | F&W            |
| Big Wills Creek                    | COOSA RIVER<br>(Lake Henry- Lake<br>Gadsden) | 100 yds. below Allen<br>Branch | F&W            |
| Big Wills Creek                    | 100 yds. below Allen<br>Branch               | Its source                     | PWS/F&W        |

| Stream                       | From                                        | То                                | Classification |
|------------------------------|---------------------------------------------|-----------------------------------|----------------|
| Lake Gadsden<br>(Lake Henry) | U. S. Highway 411                           | Impoundment limits                | F&W            |
| Black Creek                  | Lake Henry<br>(Lake Gadsden)                | Its source                        | F&W            |
| Allen Branch                 | Big Wills Creek                             | Ft. Payne public water supply dam | F&W            |
| Allen Branch                 | Ft. Payne public water supply dam           | Its source                        | PWS/F&W        |
| Coleman Lake                 | Within Talladega National Forest            |                                   | S/F&W          |
| Sweetwater Lake              | Within Talladega National Forest            |                                   | PWS/S/F&W      |
| High Rock Lake               | Within Talladega National Forest            |                                   | S/F&W          |
| Hillabee Lake                | Within Talladega National Forest            |                                   | PWS/S/F&W      |
| Salt Creek Lake              | Within Talladega National Forest            |                                   | S/F&W          |
| Shoal Creek                  | Choccolocco Creek                           | Whitesides Mill Lake              | S/F&W          |
| Whitesides Mill Lake         | Western border of Talladega National Forest |                                   | PWS/S/F&W      |
| Shoal Creek                  | Whitesides Mill Lake                        | Sweetwater Lake                   | S/F&W          |
| Ladiga Creek                 | Terrapin Creek                              | Terrapin Creek                    | PWS            |

#### (7) THE ESCATAWPA RIVER BASIN

| Stream             | From                              | То                  | Classification |
|--------------------|-----------------------------------|---------------------|----------------|
| Big Creek          | Alabama-Mississippi<br>state line | Big Creek Reservoir | F&W            |
| Big Creek          | Big Creek Reservoir               | Its source          | PWS/F&W        |
| ESCATAWPA<br>RIVER | Alabama-Mississippi<br>state line | Its source          | S/F&W          |

| Stream      | From            | То         | Classification |
|-------------|-----------------|------------|----------------|
| Puppy Creek | ESCATAWPA RIVER | Its source | F&W            |

#### (8) THE LOWER TOMBIGBEE RIVER BASIN

### **INTERSTATE WATERS**

| Stream           | From                                                             | То                                                               | Classification       |
|------------------|------------------------------------------------------------------|------------------------------------------------------------------|----------------------|
| TOMBIGBEE RIVER  | MOBILE RIVER                                                     | One-half mile<br>downstream from<br>Southern Railway<br>Crossing | F&W                  |
| TOMBIGBEE RIVER  | One-half mile<br>downstream from<br>Southern Railway<br>Crossing | Five miles upstream from U. S. Highway 43                        | PWS/S/F&W            |
| TOMBIGBEE RIVER  | Five miles upstream<br>from U. S. Highway 43                     | Jackson Lock and Dam                                             | F&W                  |
| TOMBIGBEE RIVER  | Jackson Lock and Dam                                             | Beach Bluff<br>(River Mile 141)                                  | S/F&W                |
| TOMBIGBEE RIVER  | Beach Bluff<br>(River Mile 141)                                  | One-half mile<br>downstream from<br>Alabama Highway 114          | F&W <sup>1</sup>     |
| TOMBIGBEE RIVER  | One-half mile<br>downstream from<br>Alabama Highway 114          | Three miles upstream<br>from Alabama<br>Highway 114              | PWS/F&W <sup>1</sup> |
| TOMBIGBEE RIVER  | Three miles upstream<br>from Alabama<br>Highway 114              | Demopolis Lock and<br>Dam                                        | F&W <sup>1</sup>     |
| TOMBIGBEE RIVER  | Demopolis Lock and Dam                                           | WARRIOR RIVER                                                    | S/F&W                |
| Okatuppa Creek   | TOMBIGBEE RIVER                                                  | Alabama-Mississippi<br>state line                                | F&W                  |
| Bogueloosa Creek | Okatuppa Creek                                                   | Its source                                                       | F&W                  |

\_\_\_\_

<sup>&</sup>lt;sup>1</sup> Applicable dissolved oxygen level below existing impoundments is 4.0 mg/l.

| Stream             | From                                         | То                                                    | Classification |
|--------------------|----------------------------------------------|-------------------------------------------------------|----------------|
| Tuckabum Creek     | TOMBIGBEE RIVER                              | Alabama-Mississippi<br>state line                     | F&W            |
| Yantley Creek      | Tuckabum Creek                               | Alabama-Mississippi<br>state line                     | F&W            |
| Sucarnoochee River | TOMBIGBEE RIVER                              | U. S. Highway 11                                      | F&W            |
| Sucarnoochee River | U. S. Highway 11                             | Five miles upstream<br>from Livingston city<br>limits | PWS/S/F&W      |
| Sucarnoochee River | Five miles upstream<br>from U. S. Highway 11 | Alabama-Mississippi<br>state line                     | F&W            |
| Alamuchee Creek    | Sucarnoochee River                           | Alabama-Mississippi<br>state line                     | F&W            |
| Toomsuba Creek     | Alamuchee Creek                              | AT&N Railroad                                         | F&W            |
| Toomsuba Creek     | AT&N Railroad                                | Alabama-Mississippi<br>state line                     | PWS/F&W        |

| Stream                                       | From                                         | То         | Classification |
|----------------------------------------------|----------------------------------------------|------------|----------------|
| Bilbo Creek                                  | TOMBIGBEE RIVER                              | Its source | S/F&W          |
| Bates Creek                                  | Bilbo Creek                                  | Its source | S/F&W          |
| Lewis Creek                                  | TOMBIGBEE RIVER                              | Its source | S/F&W          |
| Bassetts Creek<br>(Washington County)        | TOMBIGBEE RIVER                              | Its source | S/F&W          |
| Little Bassetts Creek<br>(Washington County) | Bassetts Creek<br>(Washington County)        | Its source | F&W            |
| Miles Creek                                  | Little Bassetts Creek<br>(Washington County) | Its source | F&W            |
| Bassett Creek<br>(Clarke County)             | TOMBIGBEE RIVER                              | Its source | F&W            |

| Stream                                                  | From                          | То         | Classification |
|---------------------------------------------------------|-------------------------------|------------|----------------|
| James Creek                                             | Bassett Creek (Clarke<br>Co.) | Its source | F&W            |
| Jackson Creek                                           | TOMBIGBEE RIVER               | Its source | F&W            |
| Satilpa Creek                                           | TOMBIGBEE RIVER               | Its source | S/F&W          |
| Santa Bogue Creek                                       | TOMBIGBEE RIVER               | Its source | S/F&W          |
| Turkey Creek                                            | TOMBIGBEE RIVER               | Its source | S/F&W          |
| Bashi Creek                                             | TOMBIGBEE RIVER               | Its source | S/F&W          |
| Tishlarka Creek                                         | TOMBIGBEE RIVER               | Its source | F&W            |
| Wahalak Creek                                           | Tishlarka Creek               | Its source | F&W            |
| Horse Creek                                             | TOMBIGBEE RIVER               | Its source | S/F&W          |
| Beaver Creek                                            | TOMBIGBEE RIVER               | Its source | S/F&W          |
| Kinterbish Creek                                        | TOMBIGBEE RIVER               | Its source | S/F&W          |
| Chickasaw Bogue                                         | TOMBIGBEE RIVER               | Its source | F&W            |
| Sycamore Creek                                          | Chickasaw Bogue               | Its source | F&W            |
| Unnamed tributary<br>southwest of York<br>(Lake Louise) | Toomsuba Creek                | Its source | PWS            |

#### (9) THE MOBILE RIVER-MOBILE BAY BASIN

#### **INTERSTATE AND COASTAL WATERS**

| Stream       | From                                                                                           | То           | Classification |
|--------------|------------------------------------------------------------------------------------------------|--------------|----------------|
|              | Il other rivers, creeks, lakes of the Mobile River I<br>utaries except as otherwise designated |              | F&W            |
| MOBILE RIVER | Barry Steam Plant                                                                              | Tensaw River | PWS/F&W        |

| Stream       | From                                                                                                                     | То                                                                                          | Classification |
|--------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------|
| MOBILE RIVER | Its mouth                                                                                                                | Spanish River                                                                               | $LWF^4$        |
| Tensaw River | Junction of Tensaw and Apalachee Rivers                                                                                  | I Junction of Briar Lake                                                                    | OAW/S/F&W      |
| Tensaw River | Junction of Briar Lake                                                                                                   | Junction of Tensaw<br>Lake                                                                  | OAW/F&W        |
| Briar Lake   | Junction of Tensaw<br>River                                                                                              | Junction of Tensaw<br>Lake                                                                  | OAW/F&W        |
| Tensaw Lake  | Junction of Tensaw<br>River                                                                                              | Bryant Landing                                                                              | OAW/F&W        |
| MOBILE BAY   | West of a line drawn<br>due south from the<br>western shore of<br>Chacaloochee Bay (Lat<br>304047.3/ Long.<br>0875944.2) | A point due east of the<br>mouth of Dog River<br>(Lat. 303353.2/ Long.<br>. 0880515.3)      | F&W            |
| MOBILE BAY   | and east of a line drawn<br>western shore of Chaca<br>304047.3/ Long. 08759                                              | 353.2/ Long. 0880515.3)<br>a due south from the<br>loochee Bay (Lat.<br>44.2) and all other | S/F&W          |
| MOBILE BAY   | 304047.3/ Long. 0875944.2) and all other portions of MOBILE BAY                                                          |                                                                                             | SH/F&W         |

<sup>&</sup>lt;sup>4</sup> For the purpose of establishing effluent limitations pursuant to Chapter 335-6-6 of the Department's regulations, the minimum 7-day low flow that occurs once in 10 years ( $7Q_{10}$ ) shall be the basis for applying the chronic aquatic life criteria.

| Stream         | From                                           | То              | Classification |
|----------------|------------------------------------------------|-----------------|----------------|
| Bon Secour Bay | In its entirety (east and                      | south of a line | SH/S/F&W       |
|                | connecting Mullet Point, Lat. 302435.0/ Long.  |                 |                |
|                | 0875423.2, and Engineers Point, Lat. 301350.1/ |                 |                |
|                | Long. 0880126.2, at Fo                         | ort Morgan)     |                |

Mississippi Sound and contiguous waters excepting: that portion of SH/S/F&W Portersville Bay 1,000 feet on each side of a straight line connecting the shore at Bayou Coden to a lighted beacon (FLR 4 seconds "6") (Lat. 302231.2/ Long. 0881425.8) and lighted beacon (FL 4 seconds "1") (Lat. 302223.7/ Long. 0881434.8); that portion of Portersville Bay 1,000 feet on each side of a straight line connecting the shore at Bayou La Batre and lighted beacons (FR)(Lat. 302311.0/ Long. 0881609.6), and (FLR 4 seconds "6") (Lat.302105.2/1 Long. 0881702.2); and that portion of Bayou Aloe within 1,000 feet of the outfall (Lat. 301552.0/ Long. 0880702.1) of the Dauphin Island sewage treatment plant

| Waters excepted in foregoing description of Portersville Bay and | F&W |
|------------------------------------------------------------------|-----|
| contiguous waters                                                |     |

Oyster Bay and that portion of Bon Secour River west of a line drawn Mue north from the east bank of the inlet connecting Oyster Bay and Bon Secour River

Coastal waters of the Gulf of Mexico contiguous to the State of Alabama SH/S/F&W

| Intracoastal Waterway | Bon Secour Bay   | Alabama Highway 59                                        | F&W                |
|-----------------------|------------------|-----------------------------------------------------------|--------------------|
| Bon Secour River      | Bon Secour Bay   | One mile upstream<br>from first bridge above<br>its mouth | S/F&W              |
| Boggy Branch          | Bon Secour River | Its source                                                | S/F&W              |
| Weeks Bay             | Bon Secour Bay   | Fish River                                                | S/F&W <sup>3</sup> |
| Magnolia River        | Weeks Bay        | Its source                                                | S/F&W              |
| Fish River            | Weeks Bay        | Clay City                                                 | S/F&W              |
| Turkey Branch         | Fish River       | Its source                                                | S/F&W              |

<sup>&</sup>lt;sup>3</sup>The special designation of Outstanding National Resource Water applies to this segment.

| Stream                   | From             | То               | Classification |
|--------------------------|------------------|------------------|----------------|
| Waterhole Branch         | Fish River       | Its source       | S/F&W          |
| Cowpen Creek             | Fish River       | Its source       | S/F&W          |
| Point Clear Creek        | MOBILE BAY       | Its source       | F&W            |
| Fly Creek                | MOBILE BAY       | Its source       | S/F&W          |
| Rock Creek               | MOBILE BAY       | Its source       | F&W            |
| D'Olive Creek            | D'Olive Bay      | Its source       | F&W            |
| West Fowl River          | Fowl River Bay   | Its source       | S/F&W          |
| Bayou Coden              | Portersville Bay | Its source       | F&W            |
| Bayou La Batre           | Portersville Bay | Its source       | F&W            |
| Little River             | Portersville Bay | Its source       | F&W            |
| East Fowl River          | Fowl River       | Its source       | S/F&W          |
| Fowl River               | MOBILE BAY       | Its source       | S/F&W          |
| Deer River and its forks | MOBILE BAY       | Their sources    | F&W            |
| Dog River                | MOBILE BAY       | Halls Mill Creek | S/F&W          |
| Halls Mill Creek         | Dog River        | Its source       | F&W            |
| Alligator Bayou          | Dog River        | Its source       | F&W            |
| Rabbit Creek             | Dog River        | Its source       | F&W            |
| Rattlesnake Bayou        | Dog River        | Its source       | F&W            |
| Robinson's Bayou         | Dog River        | Its source       | F&W            |
| Threemile Creek          | MOBILE RIVER     | Mobile Street    | A&I            |
| Industrial Canal         | Threemile Creek  | Its source       | A&I            |

| Stream                            | From            | То                                     | Classification |
|-----------------------------------|-----------------|----------------------------------------|----------------|
| Chickasaw Creek                   | MOBILE RIVER    | Limit of tidal effects<br>(Highway 43) | LWF            |
| Hog Bayou                         | Chickasaw Creek | Its source                             | F&W            |
| Little Lagoon<br>(Baldwin County) | In its entirety |                                        | SH/S/F&W       |
| Bayou Sara                        | MOBILE RIVER    | U.S. Highway 43                        | S/F&W          |
| Bayou Sara                        | U.S. Highway 43 | Its source                             | F&W            |
| Gunnison Creek                    | Bayou Sara      | Its source                             | S/F&W          |
| Steele Creek                      | Gunnison Creek  | Its source                             | S/F&W          |

**NOTE:** Waters of the Mobile River-Mobile Bay Basin classified for SWIMMING AND OTHER WHOLE BODY WATER-CONTACT SPORTS, SHELLFISH HARVESTING and/or FISH AND WILDLIFE in which natural conditions provide an appropriate habitat for shrimp and crabs are to be suitable for the propagation and harvesting of shrimp and crabs.

| Stream           | From                                                      | То                                     | Classification |
|------------------|-----------------------------------------------------------|----------------------------------------|----------------|
| Bon Secour River | One mile upstream<br>from first bridge above<br>its mouth | Its source                             | S/F&W          |
| Fish River       | Clay City                                                 | Its source                             | S/F&W          |
| Polecat Creek    | Fish River                                                | Its source                             | S/F&W          |
| Corn Branch      | Fish River                                                | Its source                             | F&W            |
| Threemile Creek  | Mobile Street                                             | Its source                             | A&I            |
| Chickasaw Creek  | Limit of tidal effects                                    | Mobile College                         | F&W            |
| Chickasaw Creek  | Mobile College                                            | Its source                             | S/F&W          |
| Eight Mile Creek | Chickasaw Creek                                           | City of Prichard's water supply intake | F&W            |

| Stream           | From                                        | То                                         | Classification   |
|------------------|---------------------------------------------|--------------------------------------------|------------------|
| Eight Mile Creek | City of Prichard's water supply intake      | U. S. Highway 45                           | PWS/F&W          |
| Eight Mile Creek | U.S. Highway 45                             | Its source                                 | F&W              |
| Norton Creek     | Bayou Sara                                  | Its source                                 | F&W              |
| Martin Branch    | Tensaw River                                | Its source                                 | F&W              |
| Cold Creek       | MOBILE RIVER                                | Dam 1 1/2 miles west<br>of U.S. Highway 43 | F&W <sup>2</sup> |
| Cold Creek       | Dam 1 1/2 miles west<br>of U. S. Highway 43 | Its source                                 | PWS/F&W          |

# (10) THE PERDIDO/ESCAMBIA RIVER BASIN (TO INCLUDE THE BLACKWATER, CONECUH, PERDIDO, AND YELLOW RIVER SUB-BASINS)

#### INTERSTATE WATERS OF THE BLACKWATER RIVER BASIN

| Stream              | From                          | То         | Classification |
|---------------------|-------------------------------|------------|----------------|
| BLACKWATER<br>RIVER | Alabama-Florida state<br>line | Its source | F&W            |
| Big Juniper Creek   | Alabama-Florida state<br>line | Its source | F&W            |
| Sweetwater Creek    | Alabama-Florida state<br>line | Its source | F&W            |
| Rock Creek          | Alabama-Florida state<br>line | Its source | F&W            |
| Boggy Hollow Creek  | Alabama-Florida<br>state line | Its source | F&W            |

### INTERSTATE WATERS OF THE CONECUH RIVER BASIN

| Stream | From | То | Classification |
|--------|------|----|----------------|
|        |      |    |                |

 $<sup>^{2}</sup>$ Due to naturally occurring conditions, quality in this segment may not always be commensurate with the classification assigned.

| Stream                | From                          | То                 | Classification |
|-----------------------|-------------------------------|--------------------|----------------|
| CONECUH RIVER         | Alabama-Florida state<br>line | Point A Dam        | F&W            |
| CONECUH RIVER         | Point A Dam                   | Head of Gantt Lake | S/F&W          |
| CONECUH RIVER         | Head of Gantt Lake            | Its source         | F&W            |
| Little Escambia Creek | Alabama-Florida<br>state line | Its source         | F&W            |
| Big Escambia Creek    | Alabama-Florida<br>state line | Its source         | F&W            |
| Pine Barren Creek     | Alabama-Florida<br>state line | Its source         | F&W            |
| Dixon Creek           | Alabama-Florida<br>state line | Its source         | F&W            |
| Canoe Creek           | Alabama-Florida<br>state line | Its source         | F&W            |
| Reedy Creek           | Alabama-Florida<br>state line | Its source         | F&W            |
| Beaver Dam Creek      | Alabama-Florida<br>state line | Its source         | F&W            |

## INTRASTATE WATERS OF THE CONECUH RIVER BASIN

| Stream            | From          | То         | Classification |
|-------------------|---------------|------------|----------------|
| Murder Creek      | CONECUH RIVER | Its source | F&W            |
| Sandy Creek       | Murder Creek  | Its source | F&W            |
| Burnt Corn Creek  | Murder Creek  | Its source | S/F&W          |
| Sepulga River     | CONECUH RIVER | Its source | F&W            |
| Pigeon Creek      | Sepulga River | Its source | F&W            |
| Unnamed Tributary | Pigeon Creek  | Its source | F&W            |

| Stream                                 | From               | То         | Classification |
|----------------------------------------|--------------------|------------|----------------|
| Persimmon Creek                        | Sepulga River      | Its source | F&W            |
| Rocky Creek                            | Persimmon Creek    | Its source | F&W            |
| Prestwood Creek                        | CONECUH RIVER      | Its source | F&W            |
| Unnamed Tributary<br>west of Andalusia | CONECUH RIVER      | Its source | F&W            |
| Patsaliga Creek                        | CONECUH RIVER      | Its source | F&W            |
| Little Patsaliga Creek                 | Patsaliga Creek    | Its source | S/F&W          |
| Double Branch                          | CONECUH RIVER      | Its source | F&W            |
| Sizemore Creek                         | Big Escambia Creek | Its source | S/F&W          |
| Wet Weather Creek                      | Sizemore Creek     | Its source | F&W            |

#### INTERSTATE AND COASTAL WATERS OF THE PERDIDO RIV ER BASIN

| Stream                                                  | From                  | То             | Classification   |
|---------------------------------------------------------|-----------------------|----------------|------------------|
| PERDIDO BAY and<br>all connecting coves<br>and bayous   | Gulf of Mexico        | Its source     | S/F&W/SH         |
| Intracoastal Waterway                                   | Alabama Highway 59    | Wolf Bay       | F&W              |
| Wolf Bay and all<br>connecting coves and<br>bayous      | Intracoastal Waterway | Moccasin Bayou | OAW/S/F&W/<br>SH |
| Wolf Bay and all<br>connecting coves and<br>bayous      | Moccasin Bayou        | Its source     | S/F&W/SH         |
| Bay La Launch and all<br>connecting coves and<br>bayous | Wolf Bay              | Arnica Bay     | S/F&W/SH         |

| Stream                                                                  | From                          | То                     | Classification |
|-------------------------------------------------------------------------|-------------------------------|------------------------|----------------|
| Arnica Bay and all<br>connecting coves and<br>bayous                    | Bay La Launch                 | PERDIDO BAY            | S/F&W/SH       |
| Miflin Creek                                                            | Wolf Bay                      | Limit of tidal effects | S/F&W          |
| Hammock Creek                                                           | Wolf Bay                      | Limit of tidal effects | S/F&W          |
| Palmetto Creek                                                          | PERDIDO BAY                   | Its source             | S/F&W          |
| Spring Branch                                                           | PERDIDO BAY                   | Its source             | S/F&W          |
| Soldier Creek                                                           | PERDIDO BAY                   | Its source             | S/F&W          |
| PERDIDO RIVER                                                           | PERDIDO BAY                   | Its source             | F&W            |
| Perdido Creek                                                           | PERDIDO RIVER                 | Its source             | F&W            |
| Brushy Creek                                                            | Alabama-Florida state<br>line | Its source             | F&W            |
| Shelby Lakes                                                            | Within Gulf State Park        |                        | S/F&W          |
| Coastal waters of the Gulf of Mexico Contiguous to the State of Alabama |                               |                        | S/F&W/SH       |

**NOTE:** Waters of the Perdido River Basin classified for SWIMMING AND OTHER WHOLE BODY WATER-CONTACT SPORTS, SHELLFISH HARVESTING and/or FISH AND WILDLIFE in which natural conditions provide an appropriate habitat for shrimp and crabs are to be suitable for the propagation and harvesting of shrimp and crabs.

#### INTRASTATE WATERS OF THE PERDIDO RIVER BASIN

| Stream              | From                   | То         | Classification |
|---------------------|------------------------|------------|----------------|
| Wolf Creek          | Wolf Bay               | Its source | F&W            |
| Sandy Creek         | Wolf Bay               | Its source | S/F&W          |
| Miflin Creek        | Limit of tidal effects | Its source | F&W            |
| BLACKWATER<br>RIVER | PERDIDO RIVER          | Its source | F&W            |

| Stream          | From                | То              | Classification |
|-----------------|---------------------|-----------------|----------------|
| Negro Creek     | BLACKWATER<br>RIVER | Its source      | F&W            |
| Rock Creek      | BLACKWATER<br>RIVER | Its source      | F&W            |
| Styx River      | PERDIDO RIVER       | Hollinger Creek | F&W            |
| Styx River      | Hollinger Creek     | Its source      | S/F&W          |
| Hollinger Creek | Styx River          | Its source      | F&W            |
| Dyas Creek      | PERDIDO RIVER       | Its source      | S/F&W          |

| Stream          | From                               | То                   | Classification |
|-----------------|------------------------------------|----------------------|----------------|
| YELLOW RIVER    | Alabama-Florida state<br>line      | Its source           | F&W            |
| Pond Creek      | Alabama-Florida state<br>line      | Its source           | F&W            |
| Big Creek       | Alabama-Florida state<br>line      | Its source           | F&W            |
| Horsehead Creek | Alabama-Florida state<br>line      | Its source           | F&W            |
| Fleming Creek   | Alabama-Florida state<br>line      | Its source           | F&W            |
| Lake Jackson    | Within Florala and nort state line | h of Alabama-Florida | S/F&W          |

### INTERSTATE WATERS OF THE YELLOW RIVER BASIN

#### INTRASTATE WATERS OF THE YELLOW RIVER BASIN

| Stream               | From                  | То         | Classification |
|----------------------|-----------------------|------------|----------------|
| Five Runs Creek      | YELLOW RIVER          | Its source | F&W            |
| Indian Creek         | YELLOW RIVER          | Its source | F&W            |
| Lightwood Knot Creek | YELLOW RIVER          | Its source | F&W            |
| Cameron Creek        | Lightwood Knot Creek  | Its source | F&W            |
| Bay Branch           | Five Runs Creek       | Its source | F&W            |
| Blue Lake            | Within Conecuh Nation | S/F&W      |                |
| Open Pond            | Within Conecuh Nation | al Forest  | S/F&W          |
| Dowdy Pond           | Within Conecuh Nation | al Forest  | S/F&W          |

#### (11) THE TALLAPOOSA RIVER BASIN

| Stream                                        | From                                                              | То                                                                | Classification |
|-----------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------|
| TALLAPOOSA<br>RIVER                           | ALABAMA RIVER                                                     | U. S. Highway 231                                                 | F&W            |
| TALLAPOOSA<br>RIVER                           | U.S. Highway 231                                                  | Thurlow Dam                                                       | PWS/F&W        |
| TALLAPOOSA<br>RIVER (Thurlow<br>Lake)         | Thurlow Dam                                                       | Yates Dam                                                         | PWS/S/F&W      |
| TALLAPOOSA<br>RIVER (Yates Lake)              | Yates Dam                                                         | Martin Dam                                                        | PWS/S/F&W      |
| TALLAPOOSA<br>RIVER (Lake Martin)             | Martin Dam                                                        | Highway 280                                                       | S/F&W          |
| TALLAPOOSA<br>RIVER (Lake Martin)             | Highway 280                                                       | Hillabee Creek                                                    | PWS/S/F&W      |
| TALLAPOOSA<br>RIVER                           | Hillabee Creek                                                    | R.L. Harris Dam                                                   | F&W            |
| TALLAPOOSA<br>RIVER (R.L. Harris<br>Lake)     | R.L. Harris Dam                                                   | Four miles upstream of<br>Randolph County Road<br>88 (Lee Bridge) | S/F&W          |
| TALLAPOOSA<br>RIVER                           | Four miles upstream of<br>Randolph County Road<br>88 (Lee Bridge) | One-half mile upstream<br>of Cleburne County<br>Road 36           | F&W            |
| TALLAPOOSA<br>RIVER                           | One-half mile upstream<br>of Cleburne County<br>Road 36           | Cleburne County Road<br>19                                        | PWS/F&W        |
| TALLAPOOSA<br>RIVER                           | Cleburne County Road<br>19                                        | Alabama-Georgia<br>state line                                     | F&W            |
| Little Tallapoosa River<br>(R.L. Harris Lake) | TALLAPOOSA<br>RIVER (R.L. Harris<br>Lake)                         | U.S. Highway 431                                                  | S/F&W          |

| Stream                                        | From                                    | То                                      | Classification |
|-----------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|
| Little Tallapoosa River<br>(R.L. Harris Lake) | U.S. Highway 431                        | Five miles upstream of U.S. Highway 431 | PWS/S/F&W      |
| Little Tallapoosa River                       | Five miles upstream of U.S. Highway 431 | Alabama-Georgia state<br>line           | F&W            |

| Stream                          | From                                                   | То                                                  | Classification |
|---------------------------------|--------------------------------------------------------|-----------------------------------------------------|----------------|
| Oakfuskee Creek<br>(Line Creek) | TALLAPOOSA<br>RIVER                                    | Its source                                          | F&W            |
| Old Town Creek                  | Oakfuskee Creek (Line<br>Creek)                        | Its source                                          | F&W            |
| Cubahatchee Creek               | TALLAPOOSA<br>RIVER                                    | Its source                                          | S/F&W          |
| Calebee Creek                   | TALLAPOOSA<br>RIVER                                    | Its source                                          | F&W            |
| Uphapee Creek                   | TALLAPOOSA<br>RIVER                                    | Its source                                          | F&W            |
| Bulger Creek                    | Uphapee Creek                                          | Its source                                          | PWS/F&W        |
| Parkerson Mill Creek            | Chewacla Creek                                         | Its source                                          | F&W            |
| Chewacla Creek                  | Uphapee Creek                                          | Chewacla State Park<br>Lake (Moore's Mill<br>Creek) | F&W            |
| Chewacla Creek                  | Chewacla State<br>Park Lake (Moore's<br>Mill Creek)    | Its source                                          | PWS/F&W        |
| Moore's Mill Creek              | Chewacla Creek (Dam<br>at Chewacla State Park<br>Lake) | Its source                                          | S/F&W          |
| Sougahatchee Creek              | TALLAPOOSA<br>RIVER (Yates Lake)                       | Sougahatchee Lake<br>Dam                            | F&W            |

| Stream                                 | From                                 | То                                                    | Classification |
|----------------------------------------|--------------------------------------|-------------------------------------------------------|----------------|
| Sougahatchee Creek                     | Sougahatchee Lake<br>Dam             | Its source                                            | PWS/F&W        |
| Pepperell Branch                       | Sougahatchee Creek                   | Its source                                            | F&W            |
| Head Creek                             | Sougahatchee Creek                   | Its source                                            | F&W            |
| Little Kowaliga Creek<br>(Lake Martin) | Big Kowaliga Creek<br>(Lake Martin)  | Reservoir Limits                                      | PWS/S/F&W      |
| Sandy Creek                            | TALLAPOOSA<br>RIVER (Lake Martin)    | Its source                                            | F&W            |
| Chattasofka Creek                      | Sandy Creek                          | Its source                                            | F&W            |
| North Fork of Sandy<br>Creek           | Sandy Creek                          | Its source                                            | F&W            |
| Little Sandy Creek                     | Sandy Creek                          | Central of Georgia RR                                 | F&W            |
| Little Sandy Creek                     | Central of Georgia RR                | Its source                                            | PWS/F&W        |
| Manoy Creek<br>(Lake Martin)           | TALLAPOOSA<br>RIVER (Lake Martin)    | Reservoir Limits                                      | PWS/S/F&W      |
| Elkahatchee Creek                      | TALLAPOOSA<br>RIVER (Lake Martin)    | Alabama Highway 63                                    | F&W            |
| Elkahatchee Creek                      | Alabama Highway 63                   | Alabama Highway 22                                    | PWS/F&W        |
| Elkahatchee Creek                      | Alabama Highway 22                   | Its source                                            | F&W            |
| Harold Creek                           | Elkahatchee Creek                    | Its source                                            | F&W            |
| Sugar Creek                            | Elkahatchee Creek                    | Its source                                            | F&W            |
| Coley Creek                            | TALLAPOOSA<br>RIVER (Lake Martin)    | Its source                                            | F&W            |
| Hillabee Creek                         | TALLAPOOSA<br>RIVER                  | Jct. of Oaktasasi and<br>Town Creeks                  | F&W            |
| Hillabee Creek                         | Jct. of Oaktasasi and<br>Town Creeks | County road bridge 3<br>miles east of<br>Hackneyville | PWS/F&W        |

| Stream                                                      | From                                                  | То                   | Classification |
|-------------------------------------------------------------|-------------------------------------------------------|----------------------|----------------|
| Hillabee Creek                                              | County road bridge 3<br>miles east of<br>Hackneyville | Its source           | F&W            |
| Oaktasasi Creek                                             | Hillabee Creek                                        | Its source           | F&W            |
| Christian Creek                                             | Oaktasasi Creek                                       | Its source           | F&W            |
| Dobbs Creek                                                 | Oaktasasi Creek                                       | Its source           | F&W            |
| Town Creek                                                  | Hillabee Creek                                        | Its source           | F&W            |
| Hackney Creek                                               | Town Creek                                            | Its source           | PWS/F&W        |
| Chatahospee Creek                                           | TALLAPOOSA<br>RIVER                                   | Its source           | F&W            |
| Mill Creek                                                  | Chatahospee Creek                                     | Its source           | F&W            |
| Finley Creek                                                | Mill Creek                                            | Its source           | PWS/F&W        |
| High Pine Creek                                             | TALLAPOOSA<br>RIVER                                   | Highway 431 Crossing | F&W            |
| High Pine Creek                                             | Highway 431 crossing                                  | Its source           | PWS            |
| Jones Creek                                                 | High Pine Creek                                       | Its source           | PWS            |
| Unnamed tributary to<br>Jones Creek northwest<br>of Roanoke | Jones Creek                                           | Its source           | PWS            |
| Graves Creek                                                | High Pine Creek                                       | Its source           | F&W            |
| Town Creek                                                  | High Pine Creek                                       | Its source           | F&W            |
| Hutton Creek                                                | TALLAPOOSA<br>RIVER                                   | Its source           | F&W            |
| Beaverdam Creek                                             | TALLAPOOSA<br>RIVER                                   | Its source           | F&W            |
| Crooked Creek                                               | TALLAPOOSA<br>RIVER                                   | Alabama Highway 9    | F&W            |

| Stream            | From                    | То               | Classification |
|-------------------|-------------------------|------------------|----------------|
| Crooked Creek     | Alabama Highway 9       | Its source       | PWS/F&W        |
| Horsetrough Creek | Crooked Creek           | Its source       | F&W            |
| Wedowee Creek     | Little Tallapoosa River | Its source       | F&W            |
| Cahulga Creek     | TALLAPOOSA<br>RIVER     | U. S. Highway 78 | F&W            |
| Cahulga Creek     | U .S. Highway 78        | Its source       | PWS/F&W        |

#### (12) THE TENNESSEE RIVER BASIN

| Stream                           | From                                           | То                                             | Classification |
|----------------------------------|------------------------------------------------|------------------------------------------------|----------------|
| TENNESSEE RIVER<br>Pickwick Lake | Alabama-Tennessee state line                   | Lower end of Seven<br>Mile Island              | PWS/S/F&W      |
| TENNESSEE RIVER<br>Pickwick Lake | Lower end of Seven<br>Mile Island              | Sheffield water intake                         | F&W            |
| TENNESSEE RIVER<br>Pickwick Lake | Sheffield water intake                         | Wilson Dam                                     | PWS/F&W        |
| TENNESSEE RIVER<br>Wilson Lake   | Wilson Dam                                     | Wheeler Dam                                    | PWS/S/F&W      |
| TENNESSEE RIVER<br>Wheeler Lake  | Wheeler Dam                                    | Five miles upstream of<br>Elk River (RM 289.3) | PWS/S/F&W      |
| TENNESSEE RIVER<br>Wheeler Lake  | Five miles upstream of<br>Elk River (RM 289.3) |                                                | S/F&W          |
| TENNESSEE RIVER<br>Wheeler Lake  | U. S. Highway 31                               | Flint Creek                                    | PWS/S/F&W      |
| TENNESSEE RIVER<br>Wheeler Lake  | Flint Creek                                    | Cotaco Creek                                   | S/F&W          |
| TENNESSEE RIVER<br>Wheeler Lake  | Cotaco Creek                                   | Indian Creek                                   | PWS/S/F&W      |

| Stream                                | From                              | То                                                         | Classification |
|---------------------------------------|-----------------------------------|------------------------------------------------------------|----------------|
| TENNESSEE RIVER<br>Wheeler Lake       | Indian Creek                      | Flint River                                                | PWS/F&W        |
| TENNESSEE RIVER<br>Wheeler Lake       | Flint River                       | Guntersville Dam                                           | S/F&W          |
| TENNESSEE RIVER<br>Guntersville Lake  | Guntersville Dam                  | Upper end of Buck's<br>Island<br>(see Note 2 this basin)   | PWS/S/F&W      |
| TENNESSEE RIVER<br>Guntersville Lake  | Upper end of Buck's<br>Island     | Roseberry Creek                                            | S/F&W          |
| TENNESSEE RIVER<br>Guntersville Lake  | Roseberry Creek                   | Alabama-Tennessee<br>state line<br>(see Note 3 this basin) | PWS/S/F&W      |
| Bear Creek                            | Alabama-Mississippi<br>state line | Bear Creek Lake Dam                                        | F&W            |
| Bear Creek (Bear<br>Creek Lake)       | Bear Creek Lake Dam               | Alabama Highway 187                                        | PWS/S/F&W      |
| Bear Creek                            | Alabama Highway 187               | Upper Bear Creek Lake<br>Dam                               | S/F&W          |
| Bear Creek (Upper<br>Bear Creek Lake) | Upper Bear Creek<br>Lake Dam      | Alabama Highway 243                                        | PWS/S/F&W      |
| Bear Creek                            | Alabama Highway 243               | Its source                                                 | F&W            |
| Cedar Creek                           | Bear Creek                        | Alabama-Mississippi<br>state line                          | F&W            |
| Cedar Creek                           | Alabama-Mississippi<br>state line | Cedar Creek<br>Lake Dam                                    | F&W            |
| Cedar Creek (Cedar<br>Creek Lake)     | Cedar Creek<br>Lake Dam           | Alabama Highway 24                                         | PWS/S/F&W      |
| Cedar Creek                           | Alabama Highway 24                | Its source                                                 | F&W            |
| Bear Creek                            | U. S. Highway 72                  | Alabama-Mississippi<br>state line                          | F&W            |

| Stream               | From                                              | То                                          | Classification |
|----------------------|---------------------------------------------------|---------------------------------------------|----------------|
| Bear Creek           | TENNESSEE RIVER<br>(Pickwick Lake)                | U. S. Highway 72                            | S/F&W          |
| Second Creek         | TENNESSEE RIVER<br>(Pickwick Lake)                | Alabama-Tennessee<br>state line             | F&W            |
| Cypress Creek        | TENNESSEE RIVER<br>(Pickwick Lake)                | City of Florence Water<br>Treatment Plant   | F&W            |
| Cypress Creek        | City of Florence Water<br>Treatment Plant         | Little Cypress Creek                        | PWS/F&W        |
| Cypress Creek        | Little Cypress Creek                              | Alabama-Tennessee state line                | F&W            |
| Little Cypress Creek | Cypress Creek                                     | Alabama-Tennessee<br>state line             | F&W            |
| Shoal Creek          | TENNESSEE RIVER<br>(Wilson Lake)                  | Indian Camp Creek                           | S/F&W          |
| Shoal Creek          | Indian Camp Creek                                 | Alabama-Tennessee<br>state line             | F&W            |
| Bluewater Creek      | TENNESSEE RIVER<br>(Wilson Lake)                  | U. S. Highway 72                            | S/F&W          |
| Bluewater Creek      | U. S. Highway 72                                  | Alabama-Tennessee<br>state line             | F&W            |
| Second Creek         | TENNESSEE RIVER<br>(Wheeler Lake)                 | First bridge upstream from U. S. Highway 72 | S/F&W          |
| Second Creek         | First bridge upstream<br>from U. S. Highway<br>72 | Alabama-Tennessee<br>state line             | F&W            |
| Elk River            | TENNESSEE RIVER<br>(Wheeler Lake)                 | Alabama Highway 99                          | S/F&W          |
| Elk River            | Alabama Highway 99                                | Alabama-Tennessee<br>state line             | PWS/F&W        |
| Piney Creek          | TENNESSEE RIVER<br>(Wheeler Lake)                 | Alabama-Tennessee<br>state line             | F&W            |

| Stream                                                     | From                                   | То                                                                       | Classification |
|------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|----------------|
| Limestone Creek                                            | TENNESSEE RIVER<br>(Wheeler Lake)      | Alabama-Tennessee<br>state line                                          | F&W            |
| Flint River                                                | TENNESSEE RIVER<br>(Wheeler Lake)      | Big Cove Creek                                                           | F&W            |
| Flint River                                                | Big Cove Creek                         | Hurricane Creek                                                          | PWS/F&W        |
| Flint River                                                | Hurricane Creek                        | Alabama-Tennessee<br>state line                                          | F&W            |
| Paint Rock River<br>(including Estill and<br>Larkin Forks) | TENNESSEE RIVER<br>(Wheeler Lake)      | Alabama-Tennessee<br>state line                                          | F&W            |
| Crow Creek                                                 | TENNESSEE RIVER<br>(Guntersville Lake) | Alabama-Tennessee<br>state line                                          | F&W            |
| Lookout Creek                                              | Alabama-Georgia state<br>line          | Junction of East Fork<br>Lookout Creek and<br>West Fork Lookout<br>Creek | S/F&W          |

**NOTE 1.** That portion of Wheeler Lake in the immediate vicinity of the discharge from the City of Decatur's sewage treatment plant is not considered suitable for SWIMMING AND OTHER WHOLE BODY WATER-CONTACT SPORTS.

**NOTE 2.** Those portions of Guntersville Lake in the immediate vicinity of discharges from the City of Guntersville's sewage treatment plants are not considered suitable for SWIMMING and OTHER WHOLE BODY WATER-CONTACT SPORTS nor for sources of PUBLIC WATER SUPPLY.

**NOTE 3.** That portion of Guntersville Lake in the immediate vicinity of the discharge of sewage from the City of Bridgeport is not considered suitable for use as a source of PUBLIC WATER SUPPLY nor for SWIMMING AND OTHER WHOLE BODY WATER-CONTACT SPORTS.

| Stream                                 | From        | То                            | Classification |
|----------------------------------------|-------------|-------------------------------|----------------|
| Little Bear Creek<br>(Franklin County) | Cedar Creek | Little Bear Creek Lake<br>Dam | S/F&W          |

| Stream                                                               | From                                  | То                  | Classification |
|----------------------------------------------------------------------|---------------------------------------|---------------------|----------------|
| Little Bear Creek<br>(Little Bear Creek<br>Lake, Franklin<br>County) | Little Bear Creek Lake<br>Dam         | Alabama Highway 187 | PWS/S/F&W      |
| Little Bear Creek<br>(Franklin County)                               | Alabama Highway 187                   | Its source          | S/F&W          |
| Dunkin Creek                                                         | Cedar Creek                           | Its source          | PWS            |
| Little Bear Creek                                                    | Bear Creek                            | Its source          | PWS/S/F&W      |
| Mud Creek                                                            | Cedar Creek                           | Its source          | F&W            |
| Flat Creek                                                           | Bear Creek                            | Its source          | F&W            |
| Cane Creek                                                           | TENNESSEE RIVER                       | Its source          | S/F&W          |
| Little Bear Creek<br>(Colbert County)                                | TENNESSEE RIVER                       | Its source          | S/F&W          |
| Stinking Bear Creek                                                  | Little Bear Creek<br>(Colbert County) | Its source          | F&W            |
| Spring Creek (Colbert<br>County)                                     | TENNESSEE RIVER                       | Its source          | F&W            |
| Cox Creek                                                            | Cypress Creek                         | Its source          | F&W            |
| Pond Creek                                                           | TENNESSEE RIVER                       | Its source          | A&I            |
| Town Creek                                                           | TENNESSEE RIVER                       | Its source          | F&W            |
| Big Nance Creek                                                      | TENNESSEE RIVER                       | Its source          | F&W            |
| Muddy Fork                                                           | Big Nance Creek                       | Crow Branch         | A&I            |
| Crow Branch                                                          | Muddy Fork                            | Its source          | A&I            |
| Clear Fork                                                           | Big Nance Creek                       | Its source          | F&W            |
| Sinking Creek                                                        | Clear Fork                            | Its source          | PWS/F&W        |
| First Creek                                                          | TENNESSEE RIVER                       | Its source          | S/F&W          |

| Stream                            | From                | То                             | Classification |
|-----------------------------------|---------------------|--------------------------------|----------------|
| Spring Creek<br>(Lawrence County) | TENNESSEE RIVER     | Its source                     | F&W            |
| Swan Creek                        | TENNESSEE RIVER     | Highway 24 crossing            | F&W            |
| Swan Creek                        | Highway 24 crossing | Town Creek                     | A&I            |
| Swan Creek                        | Town Creek          | Its source                     | F&W            |
| Town Creek (Athens)               | Swan Creek          | Its source                     | F&W            |
| Flint Creek                       | TENNESSEE RIVER     | L & N Railroad                 | F&W            |
| Flint Creek                       | L & N Railroad      | Alabama Highway 36             | PWS/F&W        |
| Flint Creek                       | Alabama Highway 36  | Shoal Creek                    | $LWF^4$        |
| Flint Creek                       | Shoal Creek         | Its source                     | F&W            |
| Shoal Creek                       | Flint Creek         | Its source                     | F&W            |
| Cotaco Creek                      | TENNESSEE RIVER     | Its source                     | S/F&W          |
| Mill Pond Creek                   | Cotaco Creek        | Junction with Gilliam<br>Creek | F&W            |
| Gilliam Creek                     | Mill Pond Creek     | Its source                     | F&W            |
| Bradford Creek                    | Barren Fork Creek   | Its source                     | F&W            |
| Indian Creek                      | TENNESSEE RIVER     | Its source                     | F&W            |
| Huntsville Spring<br>Branch       | Indian Creek        | Its source                     | F&W            |
| Aldridge Creek                    | TENNESSEE RIVER     | Its source                     | F&W            |
| Hurricane Creek                   | Flint River         | Its source                     | F&W            |
| Sand Branch                       | Hurricane Creek     | Its source                     | F&W            |

<sup>&</sup>lt;sup>4</sup> For the purpose of establishing effluent limitations pursuant to Chapter 335-6-6 of the Department's regulations, the minimum 7-day low flow that occurs once in 10 years ( $7Q_{10}$ ) shall be the basis for applying the chronic aquatic life criteria.

| Stream                        | From            | То            | Classification |
|-------------------------------|-----------------|---------------|----------------|
| Short Creek                   | TENNESSEE RIVER | Scarham Creek | PWS/F&W        |
| Short Creek                   | Scarham Creek   | Its source    | F&W            |
| Drum Creek                    | Short Creek     | Its source    | F&W            |
| East Fork of Drum<br>Creek    | Drum Creek      | Its source    | F&W            |
| Turkey Creek                  | Short Creek     | Its source    | F&W            |
| Town Creek<br>(DeKalb County) | TENNESSEE RIVER | Its source    | F&W            |
| South Sauty Creek             | TENNESSEE RIVER | Its source    | S/F&W          |
| North Sauty Creek             | TENNESSEE RIVER | Its source    | PWS            |
| Roseberry Creek               | TENNESSEE RIVER | Its source    | F&W            |
| Coon-Flat Rock Creek          | TENNESSEE RIVER | Its source    | S/F&W          |
| Widow's Creek                 | TENNESSEE RIVER | Its source    | S/F&W          |
| Long Island Creek             | TENNESSEE RIVER | Long Creek    | PWS/S/F&W      |
| Long Island Creek             | Long Creek      | Its source    | S/F&W          |
| Turkey Creek                  | Clear Fork      | Its source    | PWS/F&W        |
| Bengis Creek                  | Town Creek      | Its source    | F&W            |

#### (13) **THE UPPER TOMBIGBEE RIVER BASIN**

| Stream          | From                           | То                          | Classification |
|-----------------|--------------------------------|-----------------------------|----------------|
| TOMBIGBEE RIVER | Junction with<br>WARRIOR RIVER | Cobb Creek                  | S/F&W          |
| TOMBIGBEE RIVER | Cobb Creek                     | Gainesville<br>Lock and Dam | F&W            |

| Stream                                                   | From                                                                                       | То                                                                                         | Classification |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|
| TOMBIGBEE RIVER<br>(Gainesville and<br>Aliceville Lakes) | Gainesville<br>Lock and Dam                                                                | Alabama-Mississippi<br>state line                                                          | S/F&W          |
| Noxubee River                                            | TOMBIGBEE RIVER                                                                            | Alabama-Mississippi<br>state line                                                          | F&W            |
| Bodka Creek                                              | Noxubee River                                                                              | Alabama-Mississippi<br>state line                                                          | F&W            |
| Yellow Creek                                             | At Alabama-<br>Mississippi state line                                                      |                                                                                            | PWS            |
| Yellow Creek                                             | Alabama-Mississippi<br>state line                                                          | Its source                                                                                 | F&W            |
| Buttahatchee River                                       | Alabama-Mississippi<br>state line                                                          | U.S. Hwy. 278 one<br>mile east of junction of<br>U.S. Highways 43 and<br>78 in Hamilton    | F&W            |
| Buttahatchee River                                       | U.S. Hwy. 278 one<br>mile east of junction of<br>U.S Highways 43 and<br>78 in Hamilton     | U.S. Hwy. 278 seven<br>miles east of junction<br>of U.S. Highways 43<br>and 78 in Hamilton | PWS/F&W        |
| Buttahatchee River                                       | U.S. Hwy. 278 seven<br>miles east of junction<br>of U.S. Highways 43<br>and 78 in Hamilton | Lake Buttahatchee<br>Dam                                                                   | F&W            |
| Buttahatchee River                                       | Lake Buttahatchee<br>Dam                                                                   | Head of backwaters of<br>Lake Buttahatchee                                                 | S              |
| Buttahatchee River                                       | Head of backwaters of<br>Lake Buttahatchee                                                 | Its source                                                                                 | F&W            |
| Bull Mountain Creek                                      | Alabama-Mississippi<br>state line                                                          | Its source                                                                                 | F&W            |
| Sipsey Creek                                             | Alabama-Mississippi<br>state line                                                          | Its source                                                                                 | F&W            |
| Luxapallila Creek                                        | At Alabama-Mississippi                                                                     | state line                                                                                 | PWS            |

| Stream            | From                                                                                 | То                                                                                   | Classification |
|-------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|
| Luxapallila Creek | Alabama-Mississippi<br>state line                                                    | County Road 37                                                                       | F&W            |
| Luxapallila Creek | County Road 37                                                                       | County road crossing<br>approximately 6 miles<br>upstream from<br>Alabama Highway 18 | PWS/F&W        |
| Luxapallila Creek | County road crossing<br>approximately 6 miles<br>upstream from<br>Alabama Highway 18 | U.S. Highway 78                                                                      | F&W            |
| Luxapallila Creek | U.S. Highway 78                                                                      | Its source                                                                           | PWS/F&W        |

| Stream            | From                | То                  | Classification |
|-------------------|---------------------|---------------------|----------------|
| Sipsey River      | TOMBIGBEE RIVER     | U. S. Highway 43    | F&W            |
| Sipsey River      | U. S. Highway 43    | Alabama Highway 102 | PWS/F&W        |
| Sipsey River      | Alabama Highway 102 | Its source          | F&W            |
| New River         | Sipsey River        | Its source          | F&W            |
| Little New River  | Sipsey River        | Its source          | F&W            |
| Lubbub Creek      | TOMBIGBEE RIVER     | Its source          | F&W            |
| Bear Creek        | Lubbub Creek        | Its source          | F&W            |
| Little Bear Creek | Bear Creek          | Its source          | F&W            |
| Coal Fire Creek   | TOMBIGBEE RIVER     | Its source          | S/F&W          |
| Bogue Creek       | Buttahatchee River  | Its source          | F&W            |
| Beaver Creek      | Buttahatchee River  | U.S. Highway 78     | F&W            |
| Beaver Creek      | U.S. Highway 78     | Its source          | PWS/F&W        |
| Purgatory Creek   | Beaver Creek        | U.S. Highway 278    | F&W            |

| Stream                           | From                             | То         | Classification |
|----------------------------------|----------------------------------|------------|----------------|
| Purgatory Creek                  | U. S. Highway 278                | Its source | PWS/F&W        |
| Camp Creek                       | Buttahatchee River               | Its source | F&W            |
| East Branch<br>Luxapallila Creek | Luxapallila Creek<br>At Winfield | Its source | PWS/F&W        |
| Moore Creek                      | Buttahatchee River               | Its source | F&W            |

#### (14) **THE WARRIOR RIVER BASIN**

| Stream        | From                                             | То                                               | Classification     |
|---------------|--------------------------------------------------|--------------------------------------------------|--------------------|
| WARRIOR RIVER | TOMBIGBEE RIVER                                  | Five miles upstream from Big Prairie Creek       | S/F&W              |
| WARRIOR RIVER | Five miles upstream from Big Prairie Creek       | Eight miles upstream<br>from Big Prairie Creek   | PWS/S/F&W          |
| WARRIOR RIVER | Eight miles upstream<br>from Big Prairie Creek   | Warrior Lock and Dam                             | S/F&W              |
| WARRIOR RIVER | Warrior Lock and Dam                             | Oliver Lock and Dam                              | F&W                |
| WARRIOR RIVER | Oliver Lock and Dam                              | Hurricane Creek                                  | $F\&W^1$           |
| WARRIOR RIVER | Hurricane Creek                                  | Bankhead Lock and Dam                            | S/F&W <sup>1</sup> |
| WARRIOR RIVER | Bankhead Lock and Dam                            | Junction of Locust and<br>Mulberry Forks         | PWS/S/F&W          |
| Locust Fork   | Junction of Locust and<br>Mulberry Forks         | Jefferson County<br>Highway 61 (Maxine)          | PWS/S/F&W          |
| Locust Fork   | Jefferson County<br>Highway 61 (Maxine)          | U. S. Highway 31                                 | F&W                |
| Locust Fork   | U. S. Highway 31                                 | County road between<br>Hayden and County<br>Line | PWS/F&W            |
| Locust Fork   | County road between<br>Hayden and County<br>Line | Its source                                       | F&W                |
| Mulberry Fork | Junction of Locust and<br>Mulberry Forks         | Burnt Cane Creek (9<br>miles below Cordova)      | PWS/S/F&W          |
| Mulberry Fork | Burnt Cane Creek (9<br>miles below Cordova)      | Frog Ague Creek<br>(Cordova)                     | PWS/F&W            |

<sup>&</sup>lt;sup>1</sup>Applicable dissolved oxygen level below existing impoundments is 4.0 mg/l.

| Stream                             | From                                                                     | То                                            | Classification   |
|------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|------------------|
| Mulberry Fork                      | Frog Ague Creek<br>(Cordova)                                             | Junction of Mulberry<br>and Sipsey Forks      | PWS/F&W          |
| Mulberry Fork                      | Junction of Mulberry<br>and Sipsey Forks                                 | Its source                                    | F&W              |
| Sipsey Fork                        | Junction of Mulberry<br>and Sipsey Forks                                 | Lewis Smith Dam                               | PWS/F&W          |
| Lake Lewis Smith on<br>Sipsey Fork | Lewis Smith Dam                                                          | Three miles upstream from Lewis Smith Dam     | PWS/S/F&W        |
| Lake Lewis Smith on<br>Sipsey Fork | Three miles upstream from Lewis Smith Dam                                | Reservoir limits                              | S/F&W            |
| Sipsey Fork                        | Lake Lewis Smith                                                         | Sandy Creek                                   | F&W              |
| Sipsey Fork and tributaries        | Sandy Creek                                                              | Its source                                    | F&W <sup>3</sup> |
| Big Prairie Creek                  | Head of backwater<br>above Demopolis Lock<br>and Dam on<br>WARRIOR RIVER | Its source                                    | F&W              |
| Cottonwood Creek                   | Big Prairie Creek                                                        | Its source                                    | F&W              |
| White Creek                        | WARRIOR RIVER                                                            | Its source                                    | F&W              |
| Big Brush Creek                    | WARRIOR RIVER                                                            | Its source                                    | F&W              |
| Colwell Creek                      | Big Brush Creek                                                          | Its source                                    | F&W              |
| Minter Creek                       | WARRIOR RIVER                                                            | Its source                                    | F&W              |
| Five Mile Creek                    | WARRIOR RIVER                                                            | Payne Lake in<br>Talladega National<br>Forest | F&W              |
| Payne Lake in Tallade              | ga National Forest                                                       |                                               | S                |
| Elliotts Creek                     | WARRIOR RIVER                                                            | Its source                                    | F&W              |

<sup>&</sup>lt;sup>3</sup> The special designation of Outstanding National Resource Water applies to this segment.

| Stream           | From                                                  | То                                                    | Classification |
|------------------|-------------------------------------------------------|-------------------------------------------------------|----------------|
| Cypress Creek    | WARRIOR RIVER                                         | Its source                                            | F&W            |
| North River      | WARRIOR RIVER                                         | City of Tuscaloosa's<br>water supply reservoir<br>dam | F&W            |
| North River      | City of Tuscaloosa's<br>water supply reservoir<br>dam | Binnion Creek                                         | PWS/S          |
| North River      | Binnion Creek                                         | Its source                                            | F&W            |
| Binnion Creek    | North River                                           | Its source                                            | F&W            |
| Cedar Creek      | North River                                           | Its source                                            | F&W            |
| Clear Creek      | North River                                           | Bugs Lake Dam                                         | F&W            |
| Clear Creek      | Bugs Lake Dam                                         | Its source                                            | PWS            |
| Hurricane Creek  | WARRIOR RIVER                                         | Its source                                            | F&W            |
| Yellow Creek     | WARRIOR RIVER                                         | City of Tuscaloosa's<br>water supply reservoir<br>dam | F&W            |
| Yellow Creek     | City of Tuscaloosa's<br>water supply reservoir<br>dam | Its source                                            | PWS            |
| Davis Creek      | WARRIOR RIVER                                         | Its source                                            | F&W            |
| Blue Creek       | WARRIOR RIVER                                         | Its source                                            | F&W            |
| Big Yellow Creek | WARRIOR RIVER                                         | Its source                                            | S/F&W          |
| Valley Creek     | WARRIOR RIVER                                         | Blue Creek                                            | F&W            |
| Valley Creek     | Blue Creek                                            | Its source                                            | LWF            |
| Opossum Creek    | Valley Creek                                          | Its source                                            | A&I            |
| Village Creek    | Locust Fork                                           | Bayview Lake Dam                                      | F&W            |

| Stream               | From                                   | То                                                      | Classification |
|----------------------|----------------------------------------|---------------------------------------------------------|----------------|
| Village Creek        | Bayview Lake Dam                       | Its source                                              | LWF            |
| Fivemile Creek       | Locust Fork                            | Its source                                              | F&W            |
| Turkey Creek         | Locust Fork                            | Its source                                              | F&W            |
| Cunningham Branch    | Turkey Creek                           | Its source                                              | F&W            |
| Self Creek           | Locust Fork                            | Town of Bradford's water supply intake                  | F&W            |
| Self Creek           | Town of Bradford's water supply intake | Its source                                              | PWS            |
| Gurley Creek         | Self Creek                             | Its source                                              | F&W            |
| Little Warrior River | Locust Fork                            | Junction of Blackburn<br>Fork and Calvert Prong         | F&W            |
| Calvert Prong        | Little Warrior River                   | City of Oneonta's water supply intake                   | F&W            |
| Calvert Prong        | City of Oneonta's water supply intake  | Its source                                              | PWS            |
| Blackburn Fork       | Little Warrior River                   | Inland Lake Dam                                         | F&W            |
| Blackburn Fork       | Inland Lake Dam                        | Its source                                              | PWS/S          |
| Chitwood Creek       | Calvert Prong                          | Its source<br>(junction with Mill and<br>Cheney Branch) | F&W            |
| Mill Creek           | Chitwood Creek                         | Its source                                              | F&W            |
| Graves Creek         | Locust Fork                            | Its source                                              | F&W            |
| Whippoorwill Creek   | Locust Fork                            | Its source                                              | F&W            |
| Clear Creek          | Locust Fork                            | Its source                                              | F&W            |
| Slab Creek           | Locust Fork                            | Its source                                              | F&W            |
| Lost Creek           | Mulberry Fork                          | Two miles upstream from Wolf Creek                      | F&W            |

| Stream              | From                                                                                           | То                                                                                             | Classification |
|---------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------|
| Lost Creek          | Two miles upstream<br>from Wolf Creek                                                          | Cane Creek                                                                                     | PWS/F&W        |
| Lost Creek          | Cane Creek                                                                                     | Its source                                                                                     | F&W            |
| Cane Creek (Oakman) | Lost Creek                                                                                     | Dixie Springs Road                                                                             | F&W            |
| Cane Creek (Oakman) | Dixie Springs Road                                                                             | Alabama Highway 69                                                                             | LWF            |
| Cane Creek (Oakman) | Alabama Highway 69                                                                             | Its source                                                                                     | F&W            |
| Indian Creek        | Lost Creek                                                                                     | Its source                                                                                     | F&W            |
| Wolf Creek          | Lost Creek                                                                                     | Its source                                                                                     | F&W            |
| Burnt Cane Creek    | Mulberry Fork                                                                                  | Its source                                                                                     | F&W            |
| Cane Creek (Jasper) | Mulberry Fork                                                                                  | Town Creek                                                                                     | LWF            |
| Cane Creek (Jasper) | Town Creek                                                                                     | Its source                                                                                     | F&W            |
| Town Creek          | Cane Creek                                                                                     | 100 yards upstream of<br>Southern Railway<br>crossing (1.1 miles<br>upstream of Cane<br>Creek) | LWF            |
| Town Creek          | 100 yards upstream of<br>Southern Railway<br>crossing (1.1 miles<br>upstream of Cane<br>Creek) | Its source                                                                                     | F&W            |
| Blackwater Creek    | Mulberry Fork                                                                                  | Its source                                                                                     | F&W            |
| Mud Creek           | Mulberry Fork                                                                                  | Its source                                                                                     | F&W            |
| Broglen River       | Mulberry Fork                                                                                  | Junction of Eightmile<br>and Brindley Creeks                                                   | F&W            |
| Brindley Creek      | Broglen River                                                                                  | Its source                                                                                     | PWS            |
| Eightmile Creek     | Broglen River                                                                                  | Cullman water supply reservoir dam                                                             | F&W            |

| Stream             | From                                                    | То                                                      | Classification |
|--------------------|---------------------------------------------------------|---------------------------------------------------------|----------------|
| Eightmile Creek    | Cullman water supply reservoir dam                      | Its source                                              | PWS            |
| Pope Creek         | Cullman water supply dam                                | Its source                                              | PWS            |
| Blue Springs Creek | Mulberry Fork                                           | Its source                                              | F&W            |
| Warrior Creek      | Mulberry Fork                                           | Its source                                              | F&W            |
| Tibb Creek         | Warrior Creek                                           | Its source                                              | F&W            |
| Riley Maze Creek   | Tibb Creek                                              | Its source                                              | F&W            |
| Ryan Creek         | Lake Lewis Smith                                        | Its source                                              | F&W            |
| Crooked Creek      | Lake Lewis Smith                                        | Its source                                              | F&W            |
| Brushy Creek       | Lake Lewis Smith<br>(Sipsey Fork)                       | U.S. Highway 278                                        | PWS/F&W        |
| Brushy Creek       | U.S. Highway 278                                        | Its source                                              | F&W            |
| Clear Creek        | Lake Lewis Smith                                        | City of Haleyville<br>water supply reservoir<br>dam     | F&W            |
| Clear Creek        | City of Haleyville<br>water supply reservoir<br>dam     | Its source                                              | PWS            |
| Rock Creek         | Lake Lewis Smith                                        | Its source                                              | F&W            |
| Sandy Creek        | Sipsey Fork                                             | Its source                                              | F&W            |
| Curtis Mill Creek  | Sandy Creek                                             | Town of Double<br>Springs water supply<br>reservoir dam | F&W            |
| Curtis Mill Creek  | Town of Double<br>Springs water supply<br>reservoir dam | Its source                                              | PWS            |

Author: James E. McIndoe.

Statutory Authority: <u>Code of Alabama</u> 1975, §§22-22-9, 22-22A-5, 22-22A-6, 22-22A-8. **History:** Adopted: May 5, 1967. **Amended:** June 19, 1967; April 1, 1970; October 16, 1972; September 17, 1973; May 30, 1977; August 29, 1977; December 19, 1977; February 4, 1981; April 5, 1982; December 11, 1985; March 26, 1986; August 26, 1988; March 2, 1990; April 3, 1991; August 1, 1991; April 2, 1992; May 28, 1992; February 1, 1993; September 23, 1993; August 29, 1994; May 30, 1997; July 14, 1999; September 7, 2000; January 12, 2001; June 28, 2002; April 3, 2003; January 28, 2004; May 27, 2004; September 21, 2005; May 29, 2007.