SECTION D-2

MANAGEMENT OF WASTE IN TANKS

Revision No. 5.0

SECTION D-2

MANAGEMENT OF WASTE IN TANKS

TABLE OF CONTENTS

D-2-1 Introduction	1
D-2-2 General Design Features	2
D-2-2a Tanks and Foundations	2
D-2-2b Tank System Operational Controls	5
D-2-2c Ancillary Equipment	6
D-2-2d Secondary Containment Systems	8
D-2-2d(1) Capacity of Secondary Containment System	8
D-2-2d(2) Prevention of Run-On or Infiltration	9
D-2-2d(3) Containment Foundations, Floors and Walls	9
D-2-2d(4) Containment System Interior Surface Coatings	10
D-2-2d(5) Secondary Containment for Ancillary Equipment	11
D-2-2e Leak Detection Systems	11
D-2-2f Design Considerations for Ignitable, Reactive or Incompatible Wastes	
D-2-2g Assessment of Tank System Designs	14
D-2-2h Minor Deviations from the Permit Design	15
D-2-3 General Management Practices	15
D-2-3a Types of Waste Managed in Tank Systems	16
D-2-3b Storage and Treatment Decisions	
D-2-3c General Operating Practices and Procedures	16
D-2-3d Special Practices for the Management of Ignitable and Reactive Wastes	18
D-2-3e Special Practices for the Management of Incompatible Wastes	19
D-2-3f Response to Leaks or Spills	20
D-2-3g Closure of Tank Systems	22
D-2-3h Inspection of Tank Management Units	22
D-2-3i Removal and Management of Liquids from Containments	23
D-2-3j Installation of Tank Management Systems	24
D-2-3k Recordkeeping for Wastes Managed in Tank Systems	26
D-2-4 General Description of Treatment in Tank Systems	27
D-2-4a Types and Quantities of Waste Treated in Tank Systems	27
D-2-4b Description of Treatment Processes Performed in Tank Systems	27
D-2-4b(1) Phase Separation, Component Separation and Decanting in Tank Systems	29

D-2-4b(1)(a) Description of Process	29
D-2-4b(1)(b) Types of Waste Amenable to Phase and Component Separation	30
D-2-4b(2) Blending, Mixing and Bulking in Tank Systems	30
D-2-4b(2)(a) Description of Process	30
D-2-4b(2)(b) Types of Waste Amenable to Blending, Mixing and Bulking	31
D 2 5 Unit Creation	24
D-2-5 Unit-Specific Information	
D-2-5a Container & Tank Management Unit 520	
D-2-5a(1) Types and Quantities of Wastes Managed in the Tank in Unit 520 D-2-5a(2) Design of Unit 520	
D-2-5a(2) Design of Onit 520 D-2-5a(3) Management of Unit 520	
D-2-5a(3) Management of Onit 520	
D-2-5a Container & Tank Management Unit 600	
·	
D-2-5b(1) Types and Quantities of Wastes Managed in Unit 600 D-2-5b(2) Design of Unit 600	
D-2-5b(2) Design of Onit 600 D-2-5b(3) Management of Unit 600	
D-2-5b(3) Management of Onit 600 D-2-5b(4) Treatment of Wastes in Unit 600	
D-2-5c Organic Container & Tank Management Unit 703	
D-2-5d Laboratory Tank Storage Unit 708	
D-2-5d(1) Types and Quantities Of Wastes Managed in Unit 708	
D-2-5d(1) Types and Quantities Of Wastes Managed in Onit 708	
D-2-5d(2) Design of Onit 708	
D-2-5e Wheel Wash and Tank Storage Unit 900	
D-2-5e(1) Types and Quantities of Wastes Managed in Unit 900	
D-2-5e(1) Types and Quantities of Wastes Managed in Onit 900	
D-2-5e(2) Design of Onit 900	
D-2-5e(3) Treatment of Wastes in Unit 900	
D-2-56(4) Treatment of Wastes in onit 500	
D-2-5f(1) Types and Quantities of Wastes Managed in Tanks in Unit 1200A	
D-2-5f(2) Design of Tank Systems in Unit 1200A	
D-2-5f(3) Management of Wastes in Tanks in Unit 1200A	
D-2-5f(4) Batch Stabilization of Wastes in Tanks in Unit 1200A	
D-2-5f(5) Treatment of Debris in Tanks in Unit 1200A	
D-2-5f(5)(a) Physical Treatment of Debris in Tanks In Unit 1200A	
D-2-5f(5)(b) Chemical Treatment of Debris in Tanks in Unit 1200A	
D-2-5f(5)(c) Combinations of Debris Treatment in Tanks in Unit 1200A	
D-2-5f(5)(d) Debris Treatment Capacities in Tanks in Unit 1200A	
D-2-5g Tank Management Unit 1400	
D-2-5g(1) Types and Quantities of Wastes Managed in Unit 1400	
D-2-5g(2) Design of Unit 1400	
D-2-5g(3) Management of Unit 1400	
D-2-5g(4) Treatment of Wastes in Unit 1400	

D-2-5h Lead	chate Tank Storage Units 1700A, B, & C	.55
D-2-5h(1)	Types and Quantities of Wastes Managed in Units 1700A, B & C	.57
D-2-5h(2)	Design of Units 1700A, B & C	.57
D-2-5h(3)	Management of Units 1700A, B & C	.58

LIST OF APPENDICES

/
ions

SECTION D-2

MANAGEMENT OF WASTE IN TANKS

D-2-1 Introduction

This section describes the management of wastes in tank systems as required by 40 CFR 270.16 and ADEM Administrative Code Rule 335-14-8-.02(7). There are seven (7) units at the Facility in which hazardous wastes are managed in tank systems:

- Container & Tank Management Unit 520
- Container & Tank Management Unit 600
- Laboratory Tank Storage Unit 708
- Wheel Wash and Tank Storage Unit 900
- Containment Building/Container & Tank Management Unit 1200A
- Tank Management Unit 1400
- Leachate Tank Storage Units 1700A, B & C

15

20

10

The primary objective of these units is to safely manage segregated types of wastes in order to either accumulate a sufficient quantity to enable efficient batch treatment; equalize variable waste receipts and facilitate continuous, steady-state treatment; accumulate waste receipts during short periods when other storage or treatment units are out of service for repair or maintenance; or to accumulate wastes for subsequent off-site transfer.

The quantities and types of wastes received and managed at the Facility vary, and the Facility maintains tank management systems that can be used in a flexible manner to accommodate these variations. For example, a tank may be used interchangeably for the storage of two or more different types of waste, with intervening cleaning of the tank. Consequently, few of the tank systems described in this Application will necessarily be used only for the management of a single type of waste. Tables C-1-1 and C-1-2 in Section C of this Application list the EPA waste codes that are managed in tank systems at the Facility. All waste codes are listed in this table due to the fact that the EPA has determined that treatment residuals, wastewaters, dilute concentrations of hazardous waste constituents and mixtures of hazardous constituents in

30 concentrations of hazardous waste constituents and mixtures of hazardous constituents in non-hazardous waste maintain, by virtue of the derived-from rule and mixture rule, their listed code(s) regardless of the concentration of hazardous constituents in the waste.

A summary of the management activities conducted in each tank management system at the Facility is provided in Section D as an introduction to the more specific designs, practices and

SectionD-2Text.docx

procedures described in this section. Drawing No. 0100-010-001, Operations Flow Sheet, in Appendix D-1 to Section D, provides additional specifics which illustrate, by general waste type, the major waste management procedures and processes utilized at the Facility. Drawing No. 0100-020-001, Facility Layout, in Appendix D-1 to Section D, illustrates the locations of the tank management units within the active portion of the Facility. Design drawings for each unit at the

5 Facility in which hazardous wastes are managed in tank systems are also provided in Appendix D-1 to Section D.

10

Descriptions of the general design features and management practices which are common to each of the units in which hazardous wastes are managed in tank systems at the Facility are provided in Subsections D-2-2 and D-2-3, respectively. Subsection D-2-4 provides information regarding the general types of waste treatment which are performed in all tank systems at the Facility. Unit-specific information regarding the design, the storage and treatment equipment in each unit, the types and quantities of waste managed in each unit, and any specific management practices utilized in each unit is provided in Subsection D-2-5. 15

D-2-2 General Design Features

Each of the units at the Facility in which hazardous wastes are stored and/or treated in tanks is designed to enable the management of these wastes in accordance with 40 CFR 264 Subpart J and ADEM Administrative Code Rule 335-14-5-.10. While the design of each tank management unit is unique, certain features are common to all of the tank management units at the Facility. 20 These common design features are described in the following subsections. Many of the tank design features described in the following subsections, including tank dimensions, capacity, materials of construction, and design codes are summarized in Appendix D-2-1 of this Application. Calculations of secondary containment capacity for each tank system at the Facility are provided in Appendix D-2-2 of this Application. A summary of tank design shell thicknesses 25 is provided in Appendix D-2-3 of this Application. Tank system design assessments and Code certifications as reauired by 40 CFR 264.192(a) and ADEM Administrative Rule 335-14-5-.10(3)(a) are provided in Appendix D-2-4 of this Application. Tank system installation assessments and certifications as required by 40 CFR 264.192(g) and

ADEM Administrative Code Rule 335-14-5-.10(3)(g) are maintained within the Facility Operating 30 Record. Other tank system design features such as operational controls and secondary containment system information are depicted in the Engineering Drawings for each unit, which are located in Appendix D-1 to Section D of this Application.

D-2-2a Tanks and Foundations

The shell walls, seams, connections, supports, anchorages and other structural components of 35 each of the tanks at the Facility are designed in accordance with the appropriate recognized national standard(s) such as those as published by the American Petroleum Institute (API), the

American National Standards Institute (ANSI), the American Society of Testing Materials (ASTM), Underwriters Laboratories (UL), the Steel Tank Institute (STI), the American Society of Mechanical Engineers (ASME), the American Society of Civil Engineers (ASCE), the American Institute of Steel Construction (AISC), the American Concrete Institute (ACI) and/or the Standard Building Code (SBC). Many factors are considered in the design of tank structural components, including, but not limited to, the following:

- maximum specific gravity of the waste managed;
- minimum and maximum operating pressures;
- minimum and maximum operating temperatures;
- wind loads (outdoor aboveground tanks only);
- roof dead and live loads;
- Zone 1 seismic considerations (aboveground tanks only);
- configuration of the tank; and
- types of materials used for tank construction.

Each of the tanks is constructed of materials and/or provided with internal coatings which have been demonstrated to be compatible with the wastes managed in the tanks. Many factors are considered in the selection of tank materials of construction and internal coatings, including, but not limited to, the following:

- minimum corrosion allowance within the tank design;
- anticipated acidity of the wastes managed;
- anticipated alkalinity of the wastes managed;
- anticipated water content of the wastes managed;
 - anticipated concentration of organic solvents in the wastes managed;
 - anticipated type of organic solvents in the wastes managed (i.e., chlorinated hydrocarbons, etc.);
 - temperature of wastes managed; and
- functionality of tank (i.e., types of treatment performed, agitation, etc.).

Each of the tanks is constructed of materials, provided with external coatings, and/or equipped with an external corrosion protection system which has been demonstrated to provide adequate corrosion protection from the ambient surroundings and materials in contact with the external

SectionD-2Text.docx

25

30

5

10

15

surface of the tank. Many factors are considered in the selection of tank materials of construction, external coatings, or the type and degree of other external corrosion protection that is required to ensure that the integrity of the tank system is maintained during its useful life including, but not limited to, the following:

5

10

15

- location of the tank (i.e., indoors/outdoors or aboveground/underground);
- minimum degradation or abrasion allowance within the tank design;
- moisture content of the material in contact with the tank external shell;
- pH of the material in contact with the tank external shell;
- sulfide content of the material in contact with the tank external shell;
 - resistivity of the material in contact with the tank external shell;
 - structure of the electrical potential of the material in contact with the tank external shell;
 - influence of nearby underground structures; and
- existence of stray electric currents.

All tanks at the Facility are designed to be supported by reinforced concrete foundations overlying a native or recompacted chalk base. The reinforced concrete foundations are designed in accordance with appropriate recognized national standard(s) such as those published by the ACI, the AISC and/or the SBC. Many factors are considered in the design of tank foundations, including, but not limited to, the following:

- the full load of the tank(s) and contents considering the design maximum specific gravity;
- 25
- the weight of tank ancillary equipment (e.g., agitators);
 - wind, seismic and other loads imparted on the tank system;
 - the effects of frost heave;
- the compressive strength of concrete foundations; and
- the load bearing capacity of underlying soils.

30

The backfill material for tank systems or components that are placed underground is specified to be a noncorrosive, porous and homogeneous material that is appropriate for its intended use. The design for the placement of the backfill material addresses the requirement for the tank and ancillary equipment to be fully and uniformly supported.

Conformance with the requirements of the material selection criteria and the design standards for tank structural components and foundations as described in this subsection ensures that tanks are designed to have sufficient structural integrity and compatibility with the wastes managed so as to not collapse, rupture, or fail in a catastrophic manner.

5

20

D-2-2b Tank System Operational Controls

The design for each of the tanks in which hazardous wastes are managed at the Facility includes engineering controls to prevent the accidental over-pressure or over-fill of a tank.

- Tank designs include open vents, pressure/vacuum relief valves and/or emergency vents to prevent the accidental over-pressure of each tank. The venting capacity required for each of the tanks at the Facility is determined in accordance with applicable portions of American Petroleum Institute Standard 2000 (API-2000), "Venting Atmospheric and Low-Pressure Storage Tanks". Several factors are considered in the design and sizing of tank vent openings and venting devices, including, but not limited to, the following:
 - maximum tank fill and withdrawal rates;
 - minimum and maximum tank design pressures;
 - capacity and dimensions of each tank; and
 - anticipated flash point of wastes managed.

A design assessment and certification that attests to the structural integrity of each tank design and the suitability for managing hazardous waste in each of the tanks at the Facility in accordance with the requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a) is included in Appendix D-2-4 of Section D-2 of this Application. These tank design assessments also include the supporting documentation and calculations to verify the adequacy of the designed size of each tank vent opening based on the required venting capacity calculated for each of the tanks.

Tank designs also include level sensing devices and automatic fill cut-offs to prevent the accidental over-filling of each tank. Many of the tanks at the Facility include a continuous level monitoring device to facilitate waste management within the tank. In addition, all tanks are equipped with a high (or high-high) level sensing device which is interlocked to all fill devices associated with the tank through a high-level switch. These high-level switches provide a mechanism to automatically stop the flow of material into a tank, and normally activate an audible and/or visible alarm to ensure that the potential over-fill is recognized and addressed through the appropriate management procedures. The set point for each tank at the Facility

that is equipped with a high or high-high level waste fill cut-off is normally at or below the tank vapor space allowance as indicated in the Tank Data Sheets in the design assessments and certifications included in Appendix D-2-4 of Section D-2 of this Application. Piping systems are designed to include check valves at appropriate locations such as tank fill and discharge lines and centrifugal pump discharge lines to prevent accidental tank over-fill or spills due to backflow

or siphoning.

5

A number of tanks or tank systems at the Facility are equipped with temperature sensing devices which are designed to cut off the flow of wastes and other materials into a tank upon the detection of high temperatures. The existence of this condition is normally only a concern in tank systems in which corrosive or reactive wastes are managed, especially in tanks constructed of fiberglass reinforced plastic (FRP), which normally have a maximum design temperature of approximately 180° F. The Piping and Instrumentation Diagrams (P&ID's) for tanks at the Facility, which are included in Appendix D-1 to Section D of this Application, indicate which tanks at the Facility are equipped with a temperature sensor to cut off the flow of waste into the tank at a high temperature. Unless otherwise specified in the unit-specific information provided in Subsection D-2-5, the high temperature set point for the cut off of waste feed is 150° F, or approximately 85% of the tank design temperature for these FRP tanks.

A number of tanks or tank systems at the Facility are equipped with continuous pH sensing devices which are designed to monitor treatment in a tank. The Piping and Instrumentation Diagrams (P&ID's) for tanks at the Facility, which are included in Appendix D-1 to Section D of this Application, indicate which tanks at the Facility are equipped with continuous pH sensing devices. Unless otherwise specified in the unit-specific information provided in Subsection
 D-2-5, the pH ranges or targets are established on a case-by-case basis in accordance with the results of a treatability evaluation performed in accordance with the requirements provided in Section C of this Application.

The pressure control, level sensing devices, pH sensing devices, temperature sensing devices and major pipeline control elements described in this subsection are depicted on the tank system P&ID's which are included in the Engineering Drawings in Appendix D-1 to Section D of this Application.

35

Any exceptions to the design or requirements for tank pressure, pH sensing devices, temperature, or over-fill control devices (i.e., for some open top tanks) are described in the unit-specific tank system descriptions in Subsection D-2-5.

D-2-2c Ancillary Equipment

Tank system ancillary equipment includes all components of the tank system that contact wastes or serve to control the storage and treatment of wastes within the tank system.

SectionD-2Text.docx

However, ancillary equipment does not include the tank itself, items fabricated as an integral part of the tank, tank structural supports and foundations, or the secondary containment system. Tank system ancillary equipment generally includes items such as the following:

- tank level sensing and control devices; 5 •
 - tank pressure control devices; •
 - tank agitators and mixers; •
 - tank leak detection devices. •
 - pumps;
- 10

15

20

25

- strainers; •
- piping systems;
- flow meters:
- operated valves, hand valves and check valves; and
- miscellaneous pipeline elements such as pressure gauges, backflow preventors and flame arresters.

The primary types of tank system ancillary equipment are piping and piping systems. Piping and piping systems that are ancillary to tank systems in which hazardous wastes are managed are designed in accordance with appropriate recognized national standard(s) such as ASME B31.3, "Chemical Plant and Petroleum Refinery Piping". Many factors are considered in the design of piping systems, including, but not limited to, the following:

- compatibility of piping materials with the wastes managed;
- design flow rates and pumping pressure requirements; •
- temperature of waste transported in the piping; •
 - prevention of backflow or siphoning;
 - prevention of physical damage from transport vehicles;
 - prevention of excessive stress due to settlement, vibration, expansion, contraction or shock;
- prevention of spills at piping system connections; and
 - secondary containment requirements for piping located outside of the limits of the • secondary containment for the tank system.
- 30

Other tank system ancillary equipment is designed in accordance with good engineering principles and practices and to serve its intended purpose. Ancillary equipment that is integral to the tank is designed and rated to meet the same requirements for pressure, corrosion resistance and waste compatibility as the tank. Ancillary equipment that is integral to the piping system is designed and rated to meet the same requirements for pressure, corrosion resistance

and waste compatibility as the piping.

5

10

The tank system ancillary equipment described in this subsection, including pumps, major pipeline elements, agitators, leak detection devices, and pressure and level controls, are depicted on the tank system P&ID's which are included in the Engineering Drawings in Appendix D-1 to Section D of this Application.

D-2-2d Secondary Containment Systems

Each secondary containment system for units at the Facility in which hazardous wastes are managed in tank systems is designed to comply with the requirements of 40 CFR 264.193 and
ADEM Administrative Code Rule 335-14-5-.10(4). Secondary containment system design features such as overall containment dimensions, heights of containment walls and locations of waterstops are depicted in the Engineering Drawings for each unit, which are located in Appendix D-1 to Section D of this Application. The secondary containment system features described in this subsection are designed to provide a system which will prevent the migration of wastes or accumulated liquids out of the system to the surrounding soils, surface water or groundwater and will enable the detection and collection of releases and accumulated liquids.

D-2-2d(1) Capacity of Secondary Containment System

All aboveground tank management unit secondary containment systems are designed to contain 100% of the capacity of the largest tank within the limits of the system, plus the volume generated from a 7½" precipitation event (i.e., 25-year, 24-hour rainfall event) entering the portions of the secondary containment system which are exposed to precipitation. In order to minimize the amount of precipitation that enters aboveground secondary containments at the Facility, some of the tank management units have secondary containment systems that are equipped with full or partial roofs. Some of the roofs are equipped with overhangs to minimize the blow-in of precipitation. All roofs are sloped and/or guttered to route collected precipitation to the outside of the limits of the secondary containment system. In addition, some tanks are equipped with a roof gutter system to collect the precipitation that contacts the tank roof and to route the collected precipitation to outside the limits of the aboveground secondary containment systems account

for the rainfall entering the system and for capacity deductions for tank foundations, pump pedestals, etc. Rainwater that falls within or is blown into the secondary containment system of a unit in which hazardous waste is managed in tanks will be collected and managed as described in Subsection D-2-3i of this section. Surface water run-on into aboveground

```
SectionD-2Text.docx
```

secondary containment systems is prevented by the measures described in the Subsection D-2-2d(2) and, therefore, not considered in the required secondary containment capacity.

Calculations of the capacity of the secondary containment system for each aboveground tank management unit or system at the Facility are provided in Appendix D-2-2 to Section D-2 of this Application. The assumptions used to calculate the secondary containment capacity for each unit are also included in this appendix.

Secondary containment for all underground and in-ground tanks at the Facility is provided through the utilization of double-walled tanks. In accordance with the requirements of 40 CFR 264.193(e)(3) and ADEM Administrative Code Rule 335-14-5-.10(4)(e)3., all underground and in-ground tanks at the Facility are designed as an integral structure such that the inner tank is completely enveloped within the outer shell. Adequate secondary containment capacity is inherent in the design of these double-walled tanks due to the fact that any release from the inner tank is completely contained by the outer shell.

D-2-2d(2) Prevention of Run-On or Infiltration

Each aboveground or in-ground tank management unit at the Facility is surrounded by a perimeter containment wall or curb of sufficient height to prevent the run-on of surface waters. Each unit is situated above the elevation of the surrounding land surface, and the surrounding land surfaces are sloped away from the unit to promote drainage of run-off. In addition, each of the tank management units at the Facility is located above the elevation of the 100-year floodplain as documented in Subsection B-3b of Section B of this Application.

D-2-2d(3) Containment Foundations, Floors and Walls

25

30

20

The majority of the tanks or tank systems at the Facility are designed to have reinforced concrete foundations, floors and walls which surround the tank(s) or tank system completely and cover all surrounding earth that could come in contact with a release of waste from a tank. The components of the secondary containment system and the tank foundations are designed in accordance with appropriate recognized national standard(s) such as ASTM, AISC and ACI. Many factors are considered in the design of the secondary containment foundations, floors and walls to ensure that these components have sufficient structural strength and thickness to prevent failure. These factors include, but are not limited to, the following:

- resistance to pressure gradients from static head and external hydrological forces;
- resistance to stresses due to climatic conditions such as the effects of frost heave;
- 35
- resistance to daily operational stresses;
- resistance to stresses from nearby vehicular traffic; and

resistance to excessive settlement, compression, or uplift. •

In some cases, the secondary containment system floor also serves as the foundation for the tank(s) within the system. In these cases, the design of the foundation floor is in accordance with the general requirements described in Subsection D-2-2a of this Application.

To ensure that the foundations, floors and walls of the tank management units are free of leakable cracks or gaps (i.e., cracks or openings that compromise the containment system as opposed to: 1) minor surface striations; 2) surface fractures covered and sealed by coatings; 3) cracks sealed with an appropriate sealant system; or 4) other such partial penetrations that 10 do not compromise the containment system), well-proven construction techniques and quality construction materials are used, and the containments for tank systems are inspected in accordance with Subsection D-2-3h of this section. The floor, curbs, walls and sumps comprising each tank secondary containment system are formed of structurally reinforced 15 concrete designed to support the loads imparted by the tanks and/or ancillary equipment and to resist the stresses described above. All floors, sumps, curbs, and walls are designed as monolithic units or as separate units with all concrete joints sealed with a chemical-resistant All construction, expansion, contraction, crack control and other joints within waterstop. secondary containment areas are keyed as necessary and equipped with a chemical-resistant waterstop and sealed. Details of the construction of the concrete containments and foundations 20 for each of the tank management units are provided in the Engineering Drawings in Appendix D-1 to Section D of this Application.

Any exceptions to the general design features of secondary containment system foundations, floors and walls are described in the unit-specific tank system descriptions in Subsection D-2-5 25 of this Application.

D-2-2d(4) Containment System Interior Surface Coatings

To ensure that all surfaces within the secondary containment systems for tank management units are impermeable to physical contact with the wastes managed, all floor surfaces, the interior surfaces of containment curbs and walls, and the bottoms and sides of all sumps are 30 coated with a chemical-resistant concrete coating system. In addition to exhibiting chemical resistance to the waste managed, the concrete coating systems that are applied to wear surfaces are also abrasion resistant to withstand excessive physical degradation and damage from forklifts, vehicular traffic and maintenance equipment, and to minimize the amount of coating repairs and replacements that must be performed.

35

5

Four (4) types of concrete coating systems may be utilized within secondary containment systems for tanks. Within a given unit, any single system or a combination of two or more concrete coating systems may be utilized to ensure that adequate physical and chemical

SectionD-2Text.docx

resistance is achieved. Each type of coating system is selected to provide the appropriate level of protection against chemical and abrasive degradation to all concrete secondary containment surfaces within the Facility. The four (4) types of concrete coating systems are differentiated by the configuration of the surface to which they are applied. The four (4) types of concrete coating

systems are designated as Types A, B, C and D. Appendix D-1-3 to Section D-1 of this Application provides a description of the surface configuration upon which each type of concrete coating system is used, the general functional properties required of each concrete coating system, and concrete coating system descriptions and specifications which establish the minimum standards for each type of coating system.

10 D-2-2d(5) Secondary Containment for Ancillary Equipment

Ancillary equipment located outside of the secondary containment system for the tanks is limited to piping and piping systems. In accordance with the of 40 CFR 264.193(f) and ADEM Administrative Code Rule 335-14-5-.10(4)(f), piping located outside of the secondary containment system for the tanks is designed either to be void of flanges, valves, joints or other connections, or is equipped with an outer containment pipe that completely surrounds and contains the inner carrier pipe. Aboveground piping that is ancillary to tank systems and is not equipped with an outer containment system is inspected daily in accordance with Subsection D-2-3h of this section. Piping system components such as valves, meters, flanges and other joints located outside of the secondary containment system for the tanks are placed within a

- vault or other device that serves the same purpose as an outer containment pipe. The outer containment pipes are sloped to drain back into the secondary containment system for the tanks or into a containment vault. Waste and catchment water carrier pipes within these systems are equipped with check valves at appropriate intervals and locations to limit the volume of material that could drain or flow back into a secondary containment device to below the volume of the
- 25 secondary containment device. This design prevents the accidental over-fill of a secondary containment device in the event of a leak or failure in a segment of the carrier pipe. The secondary containment devices or systems that are subject to this type of accidental over-filling and that cannot be inspected on a daily basis are equipped with automatic leak detection devices to indicate the presence of liquids within the containment.
- 30

Since vent piping does not contain liquids, it is not required to meet the criteria for tank system ancillary equipment that must be located within a secondary containment system.

D-2-2e Leak Detection Systems

35

In accordance with the 40 CFR 264.193(c)(3) and ADEM Administrative Code Rule 335-14-5-.10(4)(c)3., the secondary containment system for each tank management system at the Facility is designed with provisions to enable the detection of leaks resulting from failure of the primary containment provided by the tank or ancillary equipment, or other accumulated liquid within 24 hours. The majority of the tank systems including ancillary equipment are

located aboveground, and the management of wastes in underground or in-ground tanks and ancillary equipment systems is limited to only a few units or systems such as in Unit 708, Unit 900, Unit 1200A, and the Underground Site Pipe Chase which is considered to be ancillary to Unit 1400.

5

10

15

All aboveground tanks and ancillary equipment systems are designed such that leaks and accumulated liquids are detected by visual inspection. With the exception of the portion of some tanks that rest directly on slotted bases or the base of the secondary containment system, all portions of aboveground tanks and ancillary equipment systems are designed to allow direct visual inspection. Slotted bases on which tanks rest directly are designed to slope towards the perimeter of the tank. This sloped base design promotes the drainage of liquids from beneath the bottom of the tank and allows leaks from the tank to be detected by indirect visual inspection. In addition, all aboveground secondary containment system bases are sloped to promote the drainage of liquids resulting from leaks, spills or precipitation to collection trenches, sumps or low points within the containment. These sumps facilitate the detection and timely removal of accumulated liquids from within secondary containment systems.

All underground or in-ground tanks and ancillary equipment systems are designed such that leaks are detected by automatic engineering controls. These leak detection systems are designed as built-in systems that operate continuously. These leak detection systems are also 20 designed to provide a visual and/or audible alarm to ensure that the potential leak is recognized in a timely manner so that it can be addressed through the appropriate management procedures. The leak detection systems for underground or in-ground tanks and ancillary equipment systems may consist of one or more of the following types:

25

- a loss of vacuum sensor on the interstitial space of a double-walled tank;
- a liquid detection cable or probe within the interstitial space of a double-walled tank;
- a liquid detection probe or cable within an in-ground ancillary equipment • secondary containment device or outer containment pipe; or
- an equivalent device or method capable of providing continuous leak detection • monitoring and timely annunciation, alarm or automatic shutdown.

35

30

Plans, sections and details which depict the leak detection features of the secondary containment systems for each of the tank management units at the Facility are provided in the Engineering Drawings in Appendix D-1 to Section D of this Application.

Any exceptions to the general design features of leak detection systems are described in the unit-specific tank system descriptions in Subsection D-2-5 of this Application.

D-2-2f Design Considerations for Ignitable, Reactive or Incompatible Wastes

5

Each of the units at the Facility in which ignitable or reactive hazardous wastes are stored and/or treated in tanks is designed to enable the management of these wastes in accordance with the applicable requirements of 40 CFR 264.17, 264.198 and ADEM Administrative Code Rules 335-14-5-.02(8) and 335-14-5.10(9).

All tanks at the Facility in which ignitable or reactive hazardous wastes are stored and/or treated are located to comply with the requirements for the maintenance of protective distances 10 between the tank(s) and any public ways, streets, alleys, or adjoining property that can be built upon as defined by the NFPA-30, Flammable and Combustible Liquids Code. The locations of all tank management units at the Facility are indicated in Drawing No. 0100-020-001, Facility Layout, which is located in the Engineering Drawings in Appendix D-1 to Section D of this Application.

15

Other features utilized in the design of tanks in which ignitable or reactive hazardous wastes are stored and/or treated consider and address the necessity to take precautions to prevent the accidental ignition or reaction of ignitable or reactive wastes. The design of these tank systems include, but are not limited to, the following special features:

- located to maintain adequate protective distances from fixed sources of ignition • such as open flames, hot surfaces or excessive radiant heat in accordance with the applicable portions of NFPA-30;
- 25

30

35

20

protection from ignition due to static discharges in accordance with NFPA-30, • including tank grounding and the use of anti-static inlets (i.e., dip tubes);

- protection from ignition due to electrical sparks or discharges through the use of • appropriately rated electrical equipment in accordance with NFPA-70;
- minimization of the risk of ignition of vapors in tanks and vent lines through the use • of inert gas blanketing on proposed tank systems in which ignitable hazardous wastes are managed;
- minimization of the potential for the advancement of a flame front through the use • of strategically located flame arresters on tank systems in which ignitable hazardous wastes are managed in accordance with the applicable requirements of NFPA and API;
- minimization of the spread of and damage caused by fires involving tanks in which ignitable hazardous wastes are managed through the use of tank shell and/or leg

fire sprinkler system(s) and through the ability to provide protection of exposures, in accordance with the applicable requirements of NFPA and FM Data Sheet 7-88; and

 protection from the accumulation of ignitable vapors within the area by venting of the tanks and tanker loading stations through a closed vent system to an air pollution control device or system.

Each of the units at the Facility in which incompatible hazardous wastes are stored and/or treated in tanks is designed to enable the management of these wastes in accordance with 40 CFR 264.17, 264.199 and ADEM Administrative Code Rules 335-14-5-.02(8) and 335-14-5.10(10). Tank management units in which chemically incompatible hazardous wastes are managed are designed with segregated secondary containments which physically separate management areas by sloping floors or containment walls.

¹⁵ Any additions or exceptions to the general design features for managing ignitable, reactive or incompatible hazardous wastes are described in the unit-specific tank system descriptions in Subsection D-2-5 of this Application.

D-2-2g Assessment of Tank System Designs

In accordance with the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), the Facility obtains an assessment of the design of each new 20 tank system (i.e., tank system for which construction commenced after July 14, 1986) at the Facility in which hazardous wastes are managed. These assessments are reviewed by an independent, qualified registered Alabama Professional Engineer and certified in accordance with 40 CFR 270.16(a) and ADEM Administrative Code Rule 335-14-8-.02(2)(d). The certifications attest that the assessment of the design of the tank system demonstrates that the 25 tank system foundation, structural supports, seams, connections, and pressure controls are adequate, and that the tanks have sufficient structural strength, compatibility with the wastes to be managed, and/or protection from corrosion so that they will not collapse, rupture or fail when properly installed, operated within the design limits, and properly inspected and maintained. In accordance with the requirements of 40 CFR 264.192(g) and 40 CFR 270.16(a), and ADEM 30 Administrative Code Rules 335-14-5-.10(3)(g) and 335-14-8-.02(7)(a), these design assessments and certifications for each current and proposed tank system at the Facility are included within the attachments to Appendix D-2-4 of Section D-2 of this Application.

In accordance with the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), the Facility also obtains an assessment and certification for the design of new tank systems in which hazardous waste are managed in accordance with 40 CFR 262.34(a)(1)(ii) and ADEM Administrative Code Rule 335-14-3-.03(5)(a)1.(ii). In accordance

5

with the requirements of 40 CFR 264.192(g) and 40 CFR 270.16(a), and ADEM Administrative Code Rules 335-14-5-.10(3)(g) and 335-14-8-.02(7)(a), a design assessment and certification for the 90-day generator accumulation tank system in Laboratory Tank Storage Unit 708 (Tank T-726), which is currently in service at the Facility, is maintained within the Facility Operating Record.

D-2-2h Minor Deviations from the Permit Design

During final design and construction of proposed tank management units or alterations or expansions to existing tank management units, minor deviations may be required from the permit designs included within this Application. Such deviations may be required to facilitate the final design and construction of the unit through adherence to standard design and construction practices and requirements so that the unit can serve its intended purpose. The necessity for minor deviations from the permit designs of tank management units may stem from requirements within one or more of several categories such as the following:

- to enable compliance with applicable codes, standards or regulations such as Building Codes, OSHA, or NFPA;
 - to aid in the constructability of the unit;
 - to allow for the substitution of equivalent or superior equipment; and/or
 - to allow for the substitution of equivalent or superior materials of construction.

20

25

5

10

15

These deviations will not alter the intent of the permit design or functionality of the unit and will not compromise the ability to manage the unit as required by the regulations. In addition, these deviations will not decrease the capacity of the secondary containment system for the unit as described in this Application and will not increase the amount of waste to be managed within the unit as described in this Application. Any deviations from the designs contained within this Application that constitute a material or substantial alteration or addition to a permitted unit in accordance with 40 CFR 270.41(a)(1) and ADEM Administrative Code Rule 335-14-8-.04(2)(a)1 will be submitted to the Department as a request for modification in accordance with the applicable portions of ADEM Administrative Code Rule 335-14-8-.04.

D-2-3 General Management Practices

Each of the units at the Facility in which hazardous wastes are stored and/or treated in tanks is managed in accordance with the applicable requirements of 40 CFR 264 Subpart J and ADEM Administrative Code Rule 335-14-5-.10. While the management practices utilized within each tank storage and treatment unit are unique, certain management practices are common to all of the tank management units at the Facility. These common management practices are

described in the following subsections. Additional unit-specific management practices are provided for each unit in the subsections in Subsection D-2-5.

D-2-3a Types of Waste Managed in Tank Systems

Wastes managed in tank systems at the Facility include virtually every type of hazardous waste listed or identified by 40 CFR Part 261 and ADEM Administrative Code Chapter 335-14-2, 5 TSCA-regulated PCB wastes, and certain non-hazardous wastes. With the exception of TSCA-regulated PCB waste, Tables C-1-1 and C-1-2 in Section C of this Application list the EPA waste codes for the hazardous wastes managed in tank systems at the Facility. All EPA waste codes are listed in these tables due to the fact that EPA has determined that treatment residuals, wastewaters, dilute concentrations of hazardous waste constituents and mixtures of 10 hazardous constituents in non-hazardous waste maintain, by virtue of the waste-derived from rule and mixture rule, their listed code(s) regardless of the concentration of hazardous constituents in the waste. Treatment residues from wastes bearing the waste codes listed in Tables C-1-1 and C-1-2 will also be managed in accordance with the Permit and particularly the

Waste Analysis Plan provided in Section C of this Application. The physical characteristics of 15 the types of waste managed in tanks at the Facility include free liquids, pumpable and non-pumpable semi-solids and sludge, solids, finely divided materials, shredded containers, and all varieties or combinations of these physical states.

D-2-3b Storage and Treatment Decisions

- After waste sampling, analyses and acceptance procedures are complete; a determination is 20 made as to the most appropriate methods of managing the waste within tank systems at the Facility. The procedures utilized in making this determination are outlined in the Waste Analysis Plan provided in Section C of this Application. The physical and chemical characteristics of wastes are the primary factors which dictate whether a waste is managed in tank systems at the
- Decisions regarding the treatment of wastes in tank systems also consider the Facility. 25 compatibility of any treatment reagents and all by-products or residuals from the treatment process, as well as the compatibility of the waste with the materials of construction of the tank system. All decisions regarding the storage and/or treatment of wastes in tank systems at the Facility are made in accordance with the requirements of the Waste Analysis Plan provided in
- Section C of this Application. 30

D-2-3c General Operating Practices and Procedures

Tank systems at the Facility in which hazardous wastes are managed are operated in accordance with management practices and procedures necessary to comply with the applicable requirements of 40 CFR 264.194 and ADEM Administrative Code Rule 335-14-5- .10(5). These procedures and practices are taken as precautionary measures to

prevent the accidental over-fill or over-pressure of the tanks or failure of the tank or secondary containment systems.

The management procedures and practices described in Subsections D-2-3b, d and e of the section prevent the placement of wastes or treatment reagents in a tank system which could cause the tank, ancillary equipment or secondary containment system to leak, rupture, experience an excessive rate of corrosion, or otherwise fail in a catastrophic manner.

10

15

20

30

35

The Facility also utilizes practices and procedures to prevent the over-fill of tanks, prevent the overflow of secondary containment systems, prevent accidental spills outside of the secondary containment system, and minimize spills within the secondary containment system. The procedures and practices include, but may not be limited to, the following:

- the use of spill prevention measures such as check valves, dry disconnect couplings, drip pans, carboys or other similar devices during the transfer of wastes;
 - the monitoring of the engineering controls used to prevent tank over-filling such as the level sensing devices, high level alarms and automatic feed cutoff switches described in Subsection D-2-2b;
- the maintenance of the tank level sensing devices and interlocks in proper working order;
 - the establishment of high level cut off set points such that the shut off of fill device(s) upon activation of the high (or high-high) level device occurs well before the tank is actually over-filled;
- the monitoring of the engineering controls and/or the use of visual inspections to ensure that sufficient freeboard is maintained within open top tanks to prevent accidental over-filling;
 - the maintenance of a daily running record of the volume of wastes and reagents placed into and removed from each tank;
 - the supervision by a Facility operator of all transfers of waste and reagents to and from all tanks and tanker trucks in which hazardous wastes are managed;
 - the maintenance of the structural integrity of the secondary containment system to be free of cracks or gaps (i.e., cracks or openings that compromise the containment system as opposed to: 1) minor surface striations; 2) surface fractures covered and sealed by coatings; 3) cracks sealed with an appropriate sealant system; or 4) other such partial penetrations that do not compromise the

containment system), such that, in the unlikely event of a tank over-fill, the spilled material does not escape the secondary containment system;

- the monitoring and maintenance of the secondary containment leak detection systems to detect spills of hazardous waste or accumulated liquids and ensure proper working order; and
- the timely removal of accumulated liquids (e.g., precipitation) from secondary containment systems such that, in the unlikely event of a tank over-fill, adequate secondary containment capacity is available, and the spilled material does not escape the secondary containment system.
- 10

5

Any additions or exceptions to these general management practices for the prevention of tank over-fills or releases from secondary containment systems are described in the unit-specific tank system descriptions in Subsection D-2-5 of this Application.

D-2-3d Special Practices for the Management of Ignitable and Reactive Wastes

The Facility utilizes special management practices and procedures to comply with the applicable requirements of 40 CFR 264.17, 40 CFR 264.198 and ADEM Administrative Code Rules 335-14-5-.02(8) and 335-14-5-.10(9) relative to the management of ignitable and reactive wastes in tank systems. These procedures and practices are taken as precautionary measures to prevent the accidental ignition or reaction of ignitable or reactive wastes. The tank(s) or tank systems in which ignitable or reactive hazardous wastes are managed are indicated in Appendix D-2-1 of this Application.

In order to separate and protect ignitable and reactive wastes managed in tank systems from sources of ignition or reaction, no activities that may create a source of ignition will be permitted within or adjacent to tank management units in which ignitable or reactive wastes are stored or treated. These precluded activities include, but are not limited to, the following:

- smoking;
- cutting or welding;
- 30

35

- activities that may generate or cause open flames;
 - activities that may generate frictional heat;
 - activities that may generate static, electrical or mechanical sparks;
 - activities that may generate excessive radiant heat;
 - activities that may cause spontaneous ignition of the waste; and
- other activities that may pose a potential source of ignition.

Warning signs such as "No Smoking", "No Welding", etc. are conspicuously posted at entrances into all tank management units in which ignitable or reactive wastes are managed. When practical, maintenance activities which may require or generate sources of ignition are conducted a safe distance from all units in which ignitable or reactive hazardous wastes are managed in tank systems. When it is not possible or practical to perform such activities outside the affected unit, the activity may be conducted within the unit only with the expressed, written permission of the Facility's Environmental, Health and Safety Manager (or designee). All such activities performed within a unit in which ignitable or reactive wastes are managed in tanks are conducted in accordance with all applicable OSHA and NFPA standards.

The precautions outlined in this subsection, in conjunction with the procedures and practices described in Subsection D-2-3b, are designed to prevent reactions of ignitable or reactive hazardous wastes which may:

15

10

5

- generate heat or pressure in excess of the design rating of the tank system in which the wastes are managed;
- generate fires, explosions or uncontrolled violent reactions;
- generate uncontrolled toxic mists, fumes, dusts, or gases in excessive quantities or in quantities which pose an unreasonable risk of fire or explosion;
- generate uncontrolled flammable fumes or gases in excessive quantities or in quantities which pose an unreasonable risk of fire or explosion; or
- generate conditions which could damage the structural integrity of the tank system in which the wastes are managed.

25

20

Any additions or exceptions to these general management practices for managing ignitable or reactive waste are described in the unit-specific tank system descriptions in Subsection D-2-5 of this Application.

D-2-3e Special Practices for the Management of Incompatible Wastes

The Facility utilizes special management practices and procedures to comply with the applicable requirements of 40 CFR 264.17 and 40 CFR 264.199, and ADEM Administrative Code Rules 335-14-5-.02(8) and 335-14-5-.10(10) relative to the management of incompatible wastes in tank systems at the Facility. These procedures and practices are taken as precautionary measures to prevent the accidental ignition or reaction of incompatible wastes.

35

Prior to mixing wastes in tank systems, the compatibility of the wastes is assessed in accordance with the procedures outlined in the Waste Analysis Plan provided in Section C of

this Application. This assessment will consider not only the compatibility of the waste with the current or previous contents of the tank(s), but also the compatibility of the waste with the materials of construction of the tank(s). Based on the results from sampling and analysis and after acceptance procedures are completed, chemically incompatible wastes are placed only in

- tank systems that have segregated secondary containment areas. In addition, wastes are placed only in tanks which previously held a compatible waste or in tanks which have been emptied and cleaned subsequent to the management of an incompatible waste. Tank systems will be cleaned, and incompatible residues will be removed by processing a mutually compatible transition waste or other appropriate material through the tank. All waste clean-out residues
- from the tanks and ancillary equipment will be collected and managed in accordance with the requirements for the waste codes associated with the waste removed. Tank management units in which chemically incompatible hazardous wastes are managed are designed with segregated secondary containments which physically separate management areas by sloping floors or containment walls. These segregated areas enable the storage and treatment of incompatible hazardous wastes within the same unit.

The precautions outlined in this subsection, in conjunction with the procedures and practices described in Subsection D-2-3b, are designed to prevent reactions resulting from the management of incompatible hazardous wastes which may:

20

25

- generate heat or pressure in excess of the design rating of the tank system in which the wastes are managed;
- generate fires, explosions or uncontrolled violent reactions;
- generate uncontrolled toxic mists, fumes, dusts, or gases in excessive quantities or in quantities which pose an unreasonable risk of fire or explosion;
- generate uncontrolled flammable fumes or gases in excessive quantities or in quantities which pose an unreasonable risk of fire or explosion; or
- generate conditions which could damage the structural integrity of the tank system in which the wastes are managed.

30

Any additions or exceptions to these general management practices for managing incompatible wastes are described in the unit-specific tank system descriptions in Subsection D-2-5 of this Application.

D-2-3f Response to Leaks or Spills

The management practices and procedures of this subsection are utilized to comply with the requirements of 40 CFR 264.196 and ADEM Administrative Code Rule 335-14-5-.10(7) for responding to leaks or spills of hazardous waste from tank systems at the Facility.

Upon the detection of a tank system or secondary containment system from which there has been a leak or spill, or which is determined to be unfit for its intended use, the Facility will implement the following management actions immediately (i.e., in as timely a manner as can reasonably and practicably be achieved regarding to the protection of human health and the environment):

- the affected tank system and/or secondary containment system will be removed from service;
- 10

15

20

25

30

35

- the flow of hazardous waste into the tank system and/or secondary containment system will be stopped;
- waste will be removed from the tank system and/or secondary containment system as necessary to prevent further release of hazardous waste to the environment and to allow inspection of the system;
- the tank system and/or secondary containment system will be inspected to determine the cause of the leak, spill, failure or release;
 - if a release from a secondary containment system has occurred, a visual inspection of the environs affected by the release will be conducted, and actions will be taken as necessary to prevent further migration of the released material to soils or surface waters and to remove any visible contamination from the affected soils or surface waters, and to conduct any necessary sampling and analysis of the affected soils or surface waters to demonstrate effective cleanup;
 - if the cause of the spill, leak, or release did not damage the integrity of the tank system or secondary containment system, the system will be returned to operation as soon as the release is removed and any necessary repairs are completed;
 - the Facility will obtain a certification from an independent, qualified, registered Alabama Professional Engineer, in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), that tank systems or secondary containment systems that have undergone major repairs are capable of managing hazardous waste without release for the duration of the systems' intended life; and
 - if the spill, leak or release was caused by damage or caused damage to the integrity of the tank system or secondary containment system, such that the system is not repairable in accordance with the requirements of 40 CFR 264.196(e) and ADEM Administrative Code Rule 335-14-5-.10(7)(e), the tank system will be closed in accordance with the applicable requirements described in Section I of this Application.

The certification of major repairs of tank systems as required by 40 CFR 264.196(f) and ADEM Administrative Code Rule 335-14-5-.10(7)(f) are maintained on file at the Facility.

Upon the detection of a tank system or secondary containment system from which there has been a leak or spill, or which is determined to be unfit for use, the Facility will issue the following notifications and/or reports:

- any release from a tank system or secondary containment system to the environment which is in excess of a quantity of one (1) pound or which has not been immediately contained and removed will be reported to the Department within 24 hours of its detection as required by 40 CFR 264.196(d)(1) and (2) and ADEM Administrative Code Rules 335-14-5-.10(7)(d)(1) and (2);
- within 30 days of detection of a release to the environment from a tank system or secondary containment system, a report will be submitted to the Department which contains the following information as required by 40 CFR 264.196(d)(3) and ADEM Administrative Code Rule 335-14-5-.10(7)(d)(3):
 - likely route(s) of migration of the release;
 - characteristics of the surrounding soils;
 - results of any monitoring or sampling conducted in connection with the release (within 30 days or as soon as the results become available);
 - proximity of release to down-gradient drinking water sources, surface waters, and populated areas; and
 - description of response actions taken or planned; and
- within seven (7) days of returning a tank or tank system to service after major repairs have been performed, the certification required by 40 CFR 264.196(f) and ADEM Administrative Code Rule 335-14-5-.10(7)(f) will be submitted to the Department.

D-2-3g Closure of Tank Systems

30

10

15

20

25

The Facility will close the units or systems in which hazardous wastes are managed in tanks in accordance with the requirements of 40 CFR 264.197 and ADEM Administrative Code Rule 335-14-5-.10(8). The general and specific procedures that will be used in the closure of each tank system at the Facility are included in Section I of this Application.

D-2-3h Inspection of Tank Management Units

The management practices and procedures of this subsection are utilized to comply with the requirements of 40 CFR 264.195 and ADEM Administrative Code Rule 335-14-5-.10(6) for inspection of units at the Facility in which hazardous wastes are managed in tank systems. All inspections of tank systems in which hazardous wastes are managed in tank systems will be performed in accordance with the Inspection Plan provided in Section F of this Application. If a tank system is found to be leaking or unfit for service, the actions required by ADEM Administrative Code Rule 335-14-5-.10(7) will be initiated.

The performance and results of these and other tank system inspections will be documented and maintained within the Facility's Operating Record in accordance with 40 CFR 264.195(d) and ADEM Administrative Code Rule 335-14-5-.10(6)(d).

10

5

Any additions or exceptions to these general management practices for inspection of tank systems are described in the unit-specific tank system descriptions in Subsection D-2-5 of this Application, and in Section F of this Application.

D-2-3i Removal and Management of Liquids from Containments

- ¹⁵ The design of the secondary containment for all aboveground and on-ground tank systems is such that any accumulation of liquids can be detected by visual inspection of the collection sumps or low points within the containment. This type of design facilitates the inspection of the integrity of the sump as well as the detection of accumulated or standing liquids. As described in Subsection D-2-2e of this Application, the detection of liquids in the secondary containments
- for underground and in-ground tanks is achieved via automatic engineered controls. The detection of liquids within the secondary containments for underground and in-ground tanks may result in the removal of the tank from service in accordance with the requirements of 40 CFR 264.196 and ADEM Administrative Code Rule 335-14-5-.10(7) for further inspection and repair of the tank or leak detection system.

25

30

Secondary containment system sumps will be inspected for accumulated liquids at least once each operating day, and, in accordance with the requirements of 40 CFR 264.193(c)(4) and ADEM Administrative Code Rule 335-14-5-.10(4)(c)4., any standing liquids detected in the sumps will be removed in a timely manner (i.e., within 24 hours after detection or as soon as practicable). The source of all accumulated liquids will be identified as either hazardous waste from a spill or leak, rainwater contaminated with hazardous waste, or uncontaminated rainwater.

35

If the accumulated liquids are determined to be hazardous waste from a spill or leak, or rainwater contaminated with hazardous waste, the liquids will either be pumped into an appropriate tank within the unit, a tanker, or a smaller container, or will be transferred to Unit 1400 via the site pipe chase. If quantities of accumulated liquids are relatively insignificant and cannot be removed with a pump, the accumulated liquids may be absorbed and containerized in accordance with the Waste Analysis Plan (Section C). These containerized liquids or solids removed from the secondary containment for a unit in which hazardous waste is managed in

tanks will be properly managed (i.e., managed as a Facility generated waste, characterized based on knowledge of the waste that it contacted or characterized by other procedures as described in the Waste Analysis Plan).

- Liquids accumulated within the secondary containment for a unit in which hazardous waste is 5 managed in tanks may be determined to be rainwater uncontaminated with hazardous waste only if all of the following conditions are met:
 - the liquids are known to be the result of precipitation; •
 - there has not been a spill or leak of hazardous waste within the containment since • accumulated liquids were last removed from the containment;
 - no sheen is present on the surface of the liquid; and •
 - there is no visual or other indication of contamination.
- If the accumulated liquids are determined to be uncontaminated rainwater, they will be pumped 15 to the outside of the secondary containment system in accordance with the provisions of the Facility's NPDES permit.

D-2-3j Installation of Tank Management Systems

The Facility ensures that proper procedures are used for handling tank system components and ancillary equipment to prevent damage during installation. Prior to placing any tank system or 20 component in hazardous waste service, an independent, qualified installation inspector or an independent, qualified, registered Alabama Professional Engineer, in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), will inspect the tank system and ancillary equipment in regard to the following conditions:

25

30

- weld breaks in tanks, piping or other ancillary components; •
- punctures in tanks, piping or other ancillary components; •
- scrapes of internal and external protective coatings on tanks;
- cracks in tanks, piping or other ancillary components;
- corrosion of tanks, piping or other ancillary components; •
- proper installation of piping and support for ancillary equipment to protect against physical damage or excessive stress due to settlement, vibration, expansion or contraction in accordance with an appropriate, recognized national standard such as ANSI B31.3 and the tank system design;
- proper installation of tank level controls in accordance with the tank system design; 35 SectionD-2Text.docx Section D-2

- proper installation of tank pressure controls in accordance with the tank system design;
- proper installation and functionality of automatic feed cut offs in accordance with the tank system design;
- proper installation and functionality of leak detection systems in accordance with the tank system design;
 - proper dimensions of secondary containment systems in accordance with the tank system design;
 - proper installation of secondary containment concrete coating system(s) in accordance with Appendix D-1-3 of this Application;
 - proper placement of waterstops in concrete joints within the secondary containment system;
 - integrity of the concrete secondary containment concrete system regarding the presence of leakable cracks or gaps (i.e., cracks or openings that compromise the containment system as opposed to: 1) minor surface striations; 2) surface fractures covered and sealed by coatings; 3) cracks sealed with an appropriate sealant system; or 4) other such partial penetrations that do not compromise the containment system);
 - proper installation of cathodic protection systems and test apparatus;
- proper installation of the backfill material for tank systems or components that are placed underground in accordance with the tank system design;
 - other structural damage or inadequate construction/installation of tanks, piping or other ancillary components.
- All discrepancies, damage, or other inadequacies discovered during the installation inspection of tank systems will be corrected, repaired, or replaced prior to placing the tank system in hazardous waste service.
- In addition to the inspections outlined above, all tanks and ancillary equipment will be tested for tightness in accordance with an appropriate, recognized national standard such as API-650 or ANSI B31.1 prior to being placed in hazardous waste service. If a tank system or ancillary component fails to meet the requirements of the tightness testing, the system or component(s) will be repaired to correct the source of the breach of integrity prior to being placed in hazardous waste service.
- 35

5

10

15

20

In accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f), the Facility obtains an assessment

SectionD-2Text.docx

and certification for the installation of tank systems for which construction commenced after July 14, 1986 in which hazardous wastes are managed. In accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), installation assessments and certifications for the following tank systems, which have been previously installed and are currently in service at the Facility, are maintained within the Facility Operating Record:

- Tank T-520 in Container & Tank Management Unit 520;
- Tank T-725 in Laboratory Tank Storage Unit 708;
- Tanks T-901 through T-904 in Wheel Wash & Tank Storage Unit 900;
- Tanks T-1201A and T-1202A in Containment Building/Container & Tank Management Unit 1200A;
- Tanks T-1405 through T-1420 in Tank Management Unit 1400; and
- Tank T-A and Tanks T-1701,T-1702, T-1703 and T-1704 in Leachate Tank Storage Units 1700A, B & C.

15

10

5

20

In accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f), the Facility also obtains an assessment and certification for the installation of new tank systems in which hazardous wastes are managed in accordance with 40 CFR 262.34(a)(1)(ii) and ADEM Administrative Code Rule 335-14-3-.03(5)(a)1.(ii). In accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-3-.03(5)(a)1.(ii). In accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an installation assessment and certification for the 90-day generator accumulation tank system in Laboratory Tank Storage Unit 708 (Tank T-726), which is currently in service at the Facility, is maintained within the Facility Operating Record.

25

30

D-2-3k Recordkeeping for Wastes Managed in Tank Systems

In accordance with the requirements of 40 CFR 264.73(b)(1) and ADEM Administrative Code Rule 335-14-5-.05(4)(b)1., the Facility maintains within the Facility Operating Record a description and quantity of each hazardous waste managed in tank systems, and the method(s) and date(s) of treatment, storage, or disposal. In accordance with the requirements of 40 CFR 264.73(b)(2) and ADEM Administrative Code Rule 335-14-5-.05(4)(b)2., the Facility also maintains within the Facility Operating Record a description and quantity of hazardous waste transferred into and out of each of the tank system management units at the Facility.

D-2-4 General Description of Treatment in Tank Systems

This subsection provides general information regarding the types of waste treatment that are conducted in tank systems at the Facility. Although the specifics of treatment in tank systems in each unit are unique, certain types of treatment are performed in the same general manner in many of the tank systems at the Facility. Supplemental information regarding the treatment of wastes in tank systems is provided as necessary in the unit-specific descriptions provided in Subsection D-2-5.

D-2-4a Types and Quantities of Waste Treated in Tank Systems

The types of waste that are treated in each tank system at the Facility are indicated by general hazard class in Appendix D-2-1 of this Application. As shown in this Appendix D-2-1, each tank or tank system is designed to accommodate the storage and/or treatment of a broad range of wastes within the various hazard classes. Tables C-1-1 and C-1-2 in Section C of this Application list the EPA waste codes that are treated in tank systems at the Facility. All waste codes are listed in these tables due to the fact that EPA has determined that treatment residuals, wastewaters, dilute concentrations of hazardous waste constituents, and mixtures of hazardous constituents in non-hazardous waste maintain, by virtue of the derived-from rule and mixture rule, their listed code(s) regardless of the concentration of hazardous constituents in the waste. Therefore, specific waste code groupings for each of the tank management systems cannot be assembled.

20

25

30

5

Within the unit-specific information on tank systems provided in Subsection D-2-5 of this Application, the estimated design capacities for treatment in the tank systems are provided. These rates are based on wastes received for treatment and may be expressed in time units of minutes, hours, days, weeks, months, or years. However, due to the wide variety of physical characteristics of wastes managed, instantaneous treatment capacities will vary and may exceed the stated capacities. Thus, all units of treatment capacity provided within this Application are implied to be average, annualized totals equated to the specific time units expressed within any description in this section. Units of measure normally associated with liquids, such as gallons, may also be used to express the equivalent volume of solids. Likewise, units of measure normally associated with solids, such as cubic feet or cubic yards, may also be used to express the equivalent volume of liquids.

D-2-4b Description of Treatment Processes Performed in Tank Systems

Hazardous wastes are treated in tank systems in five units at the Facility (i.e., all tank management units except for Laboratory Tank Storage Unit 708 and Leachate Tank Storage
Units 1700A, B & C (which are used solely for storage)). The treatment of hazardous waste in tank systems at the Facility includes the following processes:

TANK TREATMENT PROCESSES (T01) SPECIFIC HANDLING CODES

	A. Chemical Treatment	Processes			
	1. Chemical fixation		T21		
5	2. Chemical oxida	ation	T22		
	3. Chemical prec	ipitation	T23		
	4. Chemical redu	ction	T24		
	5. Chlorination		T25		
	6. Cyanide destru	T27			
10	7. Degradation		T28		
	8. Detoxification		T29		
	9. Neutralization		T31		
	10. Other				
	a. Extractio	on (Washing)	T34		
15	b. Immobili	b. Immobilization (Microencapsulation)			
B. Physical Treatment Processes					
1. Separation of components					
	a. Centrifuç	T35			
	b. Clarificat	T36			
20	c. Coagulat	T37			
	d. Decanting		T38		
	e. Microencapsulation		T39		
	f. Filtration		T40		
	g. Floccula	tion	T41		
25	h. Sedimentation		T44		
	i. Thickening		T45		
	j. Other				
	(i)	Extraction (Abrasive Blasting)	T47		
	(ii)	Extraction (Scarification)	T47		
30	(iii)	Extraction (Spalling)	T47		
	SectionD-2Text.docx	Section D-2			

	(iv) Extraction (Vibratory Finishing)	T47	
	(v) Extraction (Pressure Washing)	T47	
	(vi) Size Reduction (Shredding)	T47	
	(vii) Encapsulation (Sealing)	T47	
5	(viii) Screening	T47	
2. Removal of Specific Components			
	a. Activated carbon	T49	
	b. Blending	T50	
	c. Leaching	T59	
10	C. Biological Treatment		
	1. Activated sludge	T67	
	2. Aerobic tank	T69	
	3. Other (Anaerobic tank)	T77	

Treatment in tank systems may be accomplished through a number of processes applicable to a 15 particular waste depending on the physical and chemical characteristics of the specific waste stream. Under most normal conditions, a particular waste requires only one type of treatment, with portions of the waste treatment residuals directed for further treatment as appropriate. However, in some cases it may be necessary to utilize one or more of the treatment processes identified above in order to provide the necessary and appropriate treatment of a particular 20 waste. The necessary processes for treatment of wastes in tank systems, such as compatibility evaluations and treatability evaluations, are described in Subsection D-2-3 and in the Waste Analysis Plan in Section C of this Application. Within any of the tank management units, certain basic treatment functions such as decanting, bulking, blending, mixing, phase and component separation, etc. may be performed. Descriptions of these basic treatment functions are 25 provided in the following subsections. Unit-specific treatment processes are provided within the descriptions of each tank system management unit in Subsection D-2-5.

D-2-4b(1) Phase Separation, Component Separation and Decanting in Tank Systems

D-2-4b(1)(a) Description of Process

³⁰ Phase separation, component separation, and decanting describe any process by which a waste mixture is separated into components, layers, or phases by physical means. Certain wastes may stratify into fairly distinct layers of separate components or phases. The withdrawal and separation of these layers and phases is designed to provide components which are more amenable to subsequent treatment or recovery than is the composite mixture. Multi-layered

SectionD-2Text.docx

wastes are particularly amenable to phase separation. Within tank systems this process is primarily achieved through the identification of separate layers or phases via sight glass inspection and/or sampling and the subsequent removal of the layer or phase through isolation and pumping.

5

Separated or decanted liquids, sludges, or semi-solid fractions are most often pumped into another tank of similar, compatible material but can also be pumped into a container for transfer to another unit on-site or to off-site reclamation or treatment facilities. The phase and component separation processes may be conducted in all organic and inorganic tank treatment systems, including the neutralization/detoxification systems.

10

15

Although the phase and component separation processes are most often applicable to liquids, sludges or semi-solid wastes, the separation process may also be applied to wastes that are solid. For example, large solids or debris may be removed from a tank of predominantly smaller solids and placed in a separate tank or container. The separation of solids may also be performed using screens or other mechanical devices.

D-2-4b(1)(b) Types of Waste Amenable to Phase and Component Separation

Practically all types of liquid, semi-solid, and solid wastes and mixtures thereof are amenable to phase and component separation. The actual types of waste considered for separation will depend on the type of subsequent treatment, recovery or disposal required. For example, organic wastes may be separated for solvent recovery, with the unrecoverable residuals destined for off-site incineration. Inorganic wastes may be separated for subsequent stabilization, treatment as debris, direct disposal or transfer off-site for subsequent management.

25 **D-2-4b(2) Blending, Mixing and Bulking in Tank Systems**

D-2-4b(2)(a) Description of Process

Blending, mixing, and bulking describe any process in which wastes are combined by physical means. The combining of wastes is designed to provide a final mixture which is more amenable to subsequent treatment or recovery than are the individual wastes. The process involves
blending or mixing two or more wastes, or a waste and reagents, at prescribed ratios to obtain a final mixture that exhibits the desired physical and/or chemical characteristics. The process is accomplished in tank systems by pumping, pouring, conveying or otherwise adding one or more waste streams and/or reagents into a tank while mixing is provided by an agitator, backhoe, shredder or other physical means. Bulking of waste in tank systems primarily refers to the combining of waste streams to achieve a sufficient quantity of waste to enable efficient treatment via subsequent processes. Bulking may be performed with or without the aid of mechanical mixing devices, and pretreatment reagents may or may not be employed.

Although most wastes to be blended, mixed, or bulked will be liquids, semi-solids, or sludges, waste solids may also be subject to this type of processing in units in which the appropriate equipment is available. Blending, mixing, and bulking may be performed in all organic and inorganic tank treatment systems, including the neutralization/detoxification systems.

5

10

D-2-4b(2)(b) Types of Waste Amenable to Blending, Mixing and Bulking

Practically all types of liquid, semi-solid and solid waste and mixtures thereof may be blended, mixed or bulked provided they conform to the requirements of the Waste Analysis Plan (Section C). The actual types of waste considered for blending, mixing or bulking depend on the type of subsequent treatment, recovery or disposal required. For example, organic wastes may be blended for off-site incineration. Inorganic wastes may be mixed or bulked to accommodate subsequent stabilization, treatment as debris, direct disposal or transfer for off-site management.

D-2-5 Unit-Specific Information

- The following subsections provide a description of the unique design features and the management practices utilized in each of the units in which hazardous wastes are managed in tank systems. The general design features and management practices described in Sections D-2-2 and D-2-3, respectively, apply to each of these units, except as noted. Specific information regarding the design and function of each tank and tank system at the Facility is summarized in Appendix D-2-1 of this Application. The information provided in Appendix D-2-1 shall be referenced throughout Subsection D-2-5. Appendix D-2-1 of this Application includes the following information:
 - Tank Identification No. and Unit No.;
 - regulatory function of tank (i.e., storage/treatment/generator);
 - type of waste managed in tank (i.e., ignitable, corrosive, reactive, toxicity characteristic, acute hazardous, toxic);
 - tank service date;
 - type of leak detection (i.e., visual, slotted base, double-wall, etc.);
 - Design Code(s) (i.e., API-620, API-650, ASTM-D3299, ASME RTP-1, etc.);
 - tank materials of construction/internal coatings (i.e., carbon steel, fiberglass reinforced plastic (FRP), etc.);
 - tank configuration (i.e., vertical, horizontal, cone bottom, etc.);
 - tank diameter or tank length;

25

• tank shell length or tank height;

5

10

15

20

- tank bottom cone or dish depth or tank width;
- total permitted capacity of each tank;
- total permitted capacity of all tanks in each unit; and
- maximum design specific gravity of waste to be managed within each tank.

In addition, information regarding the shell thicknesses of each tank at the Facility is summarized in Appendix D-2-3 of this Application. The tank information contained in Appendix D-2-3 shall be referenced throughout Subsection D-2-5. Appendix D-2-3 of this Application includes the following information for each tank or group of tanks at the Facility:

- the design minimum corrosion allowance of each shell course, the roof, cone and bottom as specified by the user;
- the minimum thickness of each shell course, the roof, cone and bottom, not including the design minimum corrosion allowance, as calculated to meet structural requirements per the design code;
- the minimum thickness of each shell course, the roof, cone and bottom, not including the design minimum corrosion allowance, as specified in the design code;
- the minimum thickness of each shell course, the roof, cone and bottom, including the design minimum corrosion allowance, as specified by the user; and
 - the allowable service life corrosion relative to the design code structural requirements.
- ²⁵ Other tank system design features are included on the Piping and Instrumentation Diagrams, Tank Layouts, Tank System Sections and Tank System Details in the Engineering Drawings for each unit, which are located in Appendix D-1 to Section D of this Application.

A design assessment and certification attesting to the structural integrity and suitability for managing hazardous waste in each of the tanks at the Facility is included within the attachments in Appendix D-2-4 of this Application. These assessments include a Tank Design Data Sheet for each tank and the supporting documentation and calculations to demonstrate the adequacy of the tank materials, structural components and foundations.

D-2-5a Container & Tank Management Unit 520

Unit 520 is located just south of Unit 603 at the Facility. Unit 520 consists of one (1) tank and one (1) associated bulk container storage and loading/unloading station. The primary function of Unit 520 is to enable the blending, mixing, and/or bulking of organic waste liquids for loading and subsequent transfer off-site for solvent recovery, energy recovery, incineration, or other appropriate treatment.

The following Engineering Drawings for Unit 520 are located in Appendix D-1 to Section D of this Application:

10

5

- Drawing No. 0520-010-001 Container & Tank Management Unit 520 P&ID; •
- Drawing No. 0520-020-001 Container & Tank Management Unit 520 Plan View; •
- Drawing No. 0520-030-001 Container & Tank Management Unit 520 Sections; • and

15

25

Drawing No. 0520-040-001 Container & Tank Management Unit 520 - Details. •

Unit 520 consists of the bulk container storage and loading/unloading station (Containment Area 1) and the tank management area (Containment Area 2). The design and management of the bulk container storage and loading/unloading station is described in Section D-1 of this Application.

20

D-2-5a(1) Types and Quantities of Wastes Managed in the Tank in Unit 520

The types of wastes managed in Tank T-520 within Unit 520 will primarily be ignitable wastes. However, due to the derived-from and mixture rules, virtually all types of hazardous wastes listed and identified in 40 CFR Part 261 and ADEM Administrative Code Chapter 335-14-2. except for corrosive and reactive wastes, may be managed in the T-520 tank system as shown in Appendix D-2-1 of this Application. In addition, non-hazardous wastes and treatment residues from listed wastes may also be managed in Tank T-520.

The total capacity for storage in tanks (S02) in Unit 520 is indicated in Appendix D-2-1 of this Application. The design capacity for treatment in tanks (T01) in Unit 520 is 50,000 gallons per 30 day of blending, mixing, bulking, etc., excluding transfers between tanks and containers.

D-2-5a(2) Design of Unit 520

The design of Tank T-520 within Unit 520 is in accordance with the general design features for aboveground tanks in which ignitable wastes are managed as described in Subsection D-2-2. The design of Tank T-520 also facilitates and enables adherence to the general management

practices and procedures for aboveground tanks in which ignitable wastes are managed as described in Subsection D-2-3. Specific design features for Tank T-520 are provided in Appendices D-2-1 and D-2-3. The design assessment and certification for Tank T-520 is provided in Appendix D-2-4. The installation assessment and certification for Tank T-520 is maintained within the Facility Operating Record.

Tank T-520 is located within Containment Area 2 of Unit 520. As shown in Drawing Nos. 0520-020-001, 0520-030-001, and 0520-040-001, the design of the secondary containment system for Containment Area 2 of Unit 520 is in accordance with the general design features described in Subsection D-2-2. The secondary containment system for Containment Area 2 is equipped with a roof to minimize the volume of rainfall that will collect within the unit; however, the containment area does not have sidewalls and there is an open portion of the roof surrounding the outer perimeter of Tank T-520. Therefore, rainfall accumulation is accounted for through the roof opening and via blow-in from the sides of the structure in the secondary containment area 2 of Unit 520 are provided in Appendix D-2-2 of this Application.

D-2-5a(3) Management of Unit 520

The management practices and procedures utilized in Unit 520 are in accordance with the general management practices and procedures for aboveground tanks in which ignitable wastes are managed as described in Subsection D-2-3.

20

25

30

5

10

15

D-2-5a(4) Treatment of Wastes in Unit 520

The treatment of wastes in Unit 520 consists primarily of the blending, mixing, and bulking of ignitable and other organic liquids accumulated and transferred from other units on-site. As shown in the Drawing No. 0520-010-001, the design of Tank T-520 and associated ancillary equipment facilitates the safe and efficient storage and treatment of waste in Unit 520. Treatment of wastes in Tank T-520 via blending, mixing or bulking is facilitated by the agitator and side sample manifold provided. In addition, the arrangement of the pump and piping system enables the receipt of waste from the Unit 604 decant station, the recirculation of waste through T-520, and the transfer of wastes between T-520 and tankers located within the Bulk Container Storage and Loading/Unloading Station. Upon verification confirming that the desired treatment has been obtained, wastes are transferred to a tanker truck for shipment off-site.

D-2-5b Container & Tank Management Unit 600

35

Unit 600 is located adjacent to and within the same building as Unit 604 at the Facility. The tank system in this unit is located in Containment Area 3 of Unit 600 and consists of three storage tanks (T-634, T-635, and T-636) and ancillary equipment and an associated tanker loading/unloading station located inside the building. The primary function of the tank system in

Unit 600 is to provide adequate capacity to accumulate and store solvents used as PCB transformer flush agents, to receive liquids decanted from containers in Unit 604, and to provide a system for the transfer of these liquids to tanker trucks for shipment solvent recovery, energy recovery, incineration, or other appropriate treatment.

5

10

20

The following Engineering Drawings for Unit 600 are located in Appendix D-1 to Section D of this Application:

- Drawing No. 0600-010-001 Tank Management Unit 600 P&ID;
- Drawing No. 0600-020-001 Tank Management Unit 600 Plan View;
- Drawing No. 0600-030-001 Tank Management Unit 600 Sections;
- Drawing No. 0600-030-002 Tank Management Unit 600 Sections; and
- Drawing No. 0600-040-001 Tank Management Unit 600 Details.

15 **D-2-5b(1)** Types and Quantities of Wastes Managed in Unit 600

Tanks T-634, T-635, and T-636 are primarily used to store combustible rinsates and flush materials in Unit 600. However, due to the derived-from and mixture rules, virtually all types of hazardous wastes listed and identified in 40 CFR Part 261 and ADEM Administrative Code Chapter 335-14-2, except for corrosive and reactive wastes, and including TSCA-regulated PCB wastes may be managed in Tanks T-634, T-635, and T-636 as shown in Appendix D-2-1 of this Application.

The total capacity for storage in tanks (S02) in Unit 600 is indicated in Appendix D-2-1 of this Application. The quantity of wastes processed in this tank storage unit varies depending on the quantity of containerized wastes received, the proportion of decantable free liquids contained in these wastes, and the quantity of PCB transformers processed within a given period of time. The design capacity for treatment in tanks (T01) in Unit 600 is 60,000 gallons per day of blending, mixing, bulking, phase separation, etc., excluding transfers between tanks and containers and transfers between tanks.

30 **D-2-5b(2) Design of Unit 600**

The design of the tank system in Unit 600 is in accordance with the general design features for aboveground tanks in which ignitable wastes are managed as described in Subsection D-2-2, with the exceptions noted below. The design of the tanks in Unit 600 also facilitates and enables adherence to the general management practices and procedures for aboveground tanks in which ignitable wastes are managed as described in Subsection D-2-3. Specific design

features for Tanks T-634, T-635 and T-636 are provided in Appendices D-2-1 and D-2-3. The design assessment and certification for Tanks T-634, T-635, and T-636 is provided in Appendix D-2-4 of this Application.

- ⁵ Tanks T-634, T-635, and T-636 are located within Containment Area 3 of Unit 600. As shown in Drawing Nos. 0600-020-001, 0600-030-001, 0600-030-002 and 0600-040-001, the design of the secondary containment system for Containment Area 3 of Unit 600 is in accordance with the general design features described in Subsection D-2-2. Containment Area 3 is located within a building to facilitate the processing of PCB transformers. Although the piping between Unit 604
- and the tanks in Unit 600 is located within a secondary containment system, double-walled piping is used to minimize the potential for mixing of incompatibles should the primary carrier pipe leak or fail. Since Containment Area 3 is enclosed within a building, rainfall allowance is neglected in the secondary containment calculations. The calculations of secondary containment capacity for Containment Area 3 of Unit 600 are provided in Appendix D-2-2 of this Application.

D-2-5b(3) Management of Unit 600

The management practices and procedures utilized in Unit 600 are in accordance with the general management practices and procedures for aboveground tanks in which ignitable wastes are managed as described in Subsection D-2-3. In addition, the management practices and procedures required to comply with the standards for storage of TSCA waste are utilized.

20

25

D-2-5b(4) Treatment of Wastes in Unit 600

The treatment of wastes in Unit 600 consists primarily of the blending, mixing and bulking of ignitable and other organic liquids generated from the decanting of containers in Unit 604 or from the flushing of PCB transformers in Unit 600. As shown in Drawing No. 0600-010-001, the T-634, T-635, and T-636 tank system and associated ancillary equipment facilitate the safe and efficient storage and treatment of waste in Unit 600. The arrangement of the pumps and piping system within Unit 600 enables the decanting of waste into any of the three tanks and the transfer of wastes between any of the tanks and tankers located within Unit 600.

D-2-5c Organic Container & Tank Management Unit 703

³⁰ Unit 703 is located adjacent to the northeast corner of Unit 700. All tanks and ancillary equipment have been removed, only the secondary containment area remains. This unit is inactive.

D-2-5d Laboratory Tank Storage Unit 708

Unit 708 tank systems are located just east of Unit 707/708 as shown on Drawing No. 0100-020-001 in Appendix D-1 to Section D of this Application. The Unit 708 tank

SectionD-2Text.docx

system consists of one storage tank (T-725), one accumulation tank (T-726, which is a 90-day generator tank that does not require a permit), and the ancillary equipment for waste collection, transfer, and removal, and for leak detection. The primary function of Tank T-725 is to collect and store miscellaneous diluted organic and acidic washwater wastes generated during the operation of the laboratory. After storage in Tank T-725, these wastes are transferred to Tank T-726 or directly into tanker trucks for transfer to other units on-site. Tank T-726 is used to receive and accumulate wastes from Tank T-725, and is operated as a 90-day generator accumulation tank in accordance with the applicable requirements of 40 CFR 262.34(a)(1)(ii) and ADEM Administrative Code Rule 335-14-3-.03(5)(a)1.(ii). Wastes are transferred from Tank T-726 into tanker trucks for transfer to other units on-site.

10

5

The following Engineering Drawings for Unit 708 are located in Appendix D-1 to Section D of this Application:

- 15
- Drawing No. 0708-010-001 Laboratory Tank Storage Unit 708 P&ID; and
- Drawing No. 0708-020-001 Laboratory Tank Storage Unit 708 Piping Layout & Tank Details.

D-2-5d(1) Types and Quantities Of Wastes Managed in Unit 708

- Due to the nature of the operations conducted in the laboratory, virtually all types of hazardous wastes listed and identified in 40 CFR Part 261 and ADEM Administrative Code Chapter 335-14-2, except for ignitable wastes, may be managed in the Unit 708 tank systems as indicated in Appendix D-2-1 of this Application.
- The total capacity for storage in tanks (S02) in Unit 708 is indicated in Appendix D-2-1 of this Application. Treatment of waste does not occur within Tank T-725, excluding transfers between tanks and containers and transfers between tanks.

D-2-5d(2) Design of Unit 708

The design of Tank T-725 is in accordance with the general design features for underground,
 double-walled tanks in which reactive wastes are stored as described in Subsection D-2-2. The design of Tank T-725 also facilitates and enables adherence to the general management practices and procedures for underground, double-walled tanks in which reactive wastes are managed as described in Subsection D-2-3. Specific design features for Tank T-725 are provided in Appendices D-2-1 and D-2-3. The design assessment and certification for Tank
 T-725 is provided in Appendix D-2-4 of this Application. The installation assessment and certification for Tank T-725 is maintained within the Facility Operating Record. The design and

installation assessment and certification for 90-day generator accumulation Tank T-726 is maintained within the Facility Operating Record.

Drawing No. 0708-020-001 depicts the gravity piping system leading from the laboratory to Tank
 T-725. This piping system is a double-walled, high density polyethylene piping system. Wastes from Tank T-725 are periodically transferred by pump to the generator Tank T-726 for accumulation of sufficient quantities to facilitate efficient treatment at other units at the Facility. The transfer piping system and controls for Tanks T-725 and T-726 are depicted on Drawing No. 0708-010-001.

10

15

Leak detection for Tank T-725 is accomplished by a pressure sensor which continuously monitors the interstitial space between the tank wall and the outer tank shell. If a loss of integrity of the primary tank shell occurs, the vacuum in the interstitial space will be lost, and an audible and visual alarm will be activated. Within the secondary containment system for the underground piping, there is a liquid sensor to detect a failure of the primary carrier piping and collection of liquid within the outer secondary containment pipe. This piping liquid sensor also provides an audible and visual alarm indicating a potential leak within the piping system.

The secondary containment for Tank T-725 is provided by the outer shell of the tank in accordance with the general design features for integral, double-walled tanks as described in Subsection D-2-2d of this section. The verification of adequate secondary containment capacity for Tank T-726 is provided in the design and installation assessment and certification for Tank T-726, which is maintained within the Facility Operating Record.

D-2-5d(3) Management of Unit 708

The management practices and procedures utilized for Tank T-725 in Unit 708 are in accordance with the general management practices and procedures for underground tanks in which reactive wastes are managed as described in Subsection D-2-3.

D-2-5e Wheel Wash and Tank Storage Unit 900

Unit 900 is located east of Unit 707/708 and south of Unit 1300, as shown on Drawing No. 0100-020-001 in Appendix D-1 to Section D of this Application. The management of hazardous waste in tanks in Unit 900 is performed in two (2) aboveground tanks (T-901 and T-902) and two (2) in-ground tanks (T-903 and T-904). Tanks T-901 and T-902 are used to store the recovered wash-waters collected in Tanks T-903 and T-904 located in the automatic wheel wash and manual equipment wash bays, respectively.

35

The following Engineering Drawings for Unit 900 are located in Appendix D-1 to Section D of this Application:

- Drawing No. 0900-010-001 Wheel Wash & Tank Storage Unit 900 P&ID;
- Drawing No. 0900-020-001 Wheel Wash & Tank Storage Unit 900 Plan View; • and
- Drawing No. 0900-030-001 Wheel Wash & Tank Storage Unit 900 Sections & Details.

D-2-5e(1) Types and Quantities of Wastes Managed in Unit 900

The types of wastes managed in Unit 900 will primarily be aqueous in nature and are non-hazardous. However, for permitting purposes, CWM assumes that virtually all types of hazardous wastes listed and identified in 40 CFR Part 261 and ADEM Administrative Code 10 Chapter 335-14-2, except for ignitable, corrosive, and reactive wastes, may be managed in the Unit 900 as indicated in Appendix D-2-1 of this Application.

The total capacity for storage in tanks (S02) in Unit 900 is indicated in Appendix D-2-1 of this Application. The quantity of wastes processed in this tank storage unit varies depending on the 15 quantity of truck wheels washed. The design capacity for treatment in tanks (T01) in Unit 900 is 15,000 gallons per day of phase separation, mixing, etc., excluding transfers between tanks and containers and transfers between tanks.

D-2-5e(2) Design of Unit 900

5

The design of the tank systems in Unit 900 is in accordance with the general design features for 20 in-ground and aboveground tanks as described in Subsection D-2-2. The design of tank systems in Unit 900 also facilitates and enables adherence to the general management practices and procedures for in-ground and aboveground tanks as described in Subsection D-2-3. Specific design features for Tanks T-901 through T-904 are provided in Appendices D-2-1 and D-2-3. The design assessment and certification for Tanks T-901 through 25 T-904 is provided in Appendix D-2-4 of this Application. The installation assessment and certification for Tanks T-901 through T-904 is maintained within the Facility Operating Record.

Tanks T-901 and T-902 are located within Containment Area 1, Tank T-903 is located within Containment Area 2, and Tank T-904 is located within Containment Area 3 of Unit 900. As 30 shown in Drawing Nos. 0900-020-001 and 0900-030-001, the design of the secondary containment system for Tanks T-901 and T-902 (Containment Area 1) is in accordance with the general design features for aboveground tanks as described in Subsection D-2-2. The secondary containments for Tanks T-903 and T-904 are provided by the outer shells of the tanks in accordance with the general design features for integral, double-walled tanks as 35 described in Subsection D-2-2d of this section. Tank leak detection for Tanks T-903 and T-904

SectionD-2Text.docx

between the tank walls. If a loss of integrity of the primary tank shell occurs, the vacuum in the interstitial space will be lost and an audible and visual alarm will be activated.

5

Since Containment Areas 1, 2, and 3 are enclosed within a building, rainfall allowance is neglected in the secondary containment calculations. The calculations of secondary containment capacity for Containment Areas 1, 2, and 3 of Unit 900 are provided in Appendix D-2-2 of this Application.

D-2-5e(3) Management of Unit 900

The management practices and procedures utilized in Unit 900 are in accordance with the general management practices and procedures for in-ground and aboveground tanks as 10 described in Subsection D-2-3.

D-2-5e(4) Treatment of Wastes in Unit 900

Drawing No. 0900-010-001 in Appendix D-1 to Section D provides the P&ID for Unit 900. The tank system is operated by collecting, reclaiming, and recycling the wash-water. Collected wash-water is pumped from Tank T-903 through a solids separation system to Tank T-901. The 15 water is then pumped through another solids separation system to Tank T-902. Water from the primary storage tank (T-902) is then pumped back into the washing system for reuse. Water from the secondary storage tank (T-901) is piped through the reclamation unit, then into the primary storage tank (T-902) for reuse. Both tanks have auxiliary ports from which water and accumulated solids can be removed and pumped, via the site pipe chase system, to Unit 1400. 20 Liquids from Tank T-904 are directed to the pipe chase system for transfer to Unit 1400. Solids collected in the tanks, sumps, and in roll-off boxes in this unit will be removed at least every 90 days and taken to the stabilization unit for processing. Most wash-waters are recycled back through the washing system. Periodically the wash-water is transferred to a tank in Unit 1400 via the pipe chase system or a tanker truck.

25

D-2-5f Containment Building/Container & Tank Management Unit 1200A

Unit 1200A is located to the south of existing Unit 1400 and to the east of Unit 2000, as shown in Drawing No. 0100-020-001, in Appendix D-1 to Section D of this Application. Unit 1200A consists of the Containment Building/Container Management & Tank Management Area (Area 1

on Drawing No. 1200A-020-001). 30

> The construction of Unit 1200A was planned to occur in three (3) phases. The first phase includes the Containment Building / Container Management & Tank Management Area, including the stabilization reagent storage silos. The first phase of Unit 1200A is existing. The second and third phases were proposed under the original facility permit, but are no longer proposed and are not included in this Permit Application.

This subsection provides unit-specific information relative to the design features of Unit 1200A, management practices and procedures utilized in the Tank Management Area of Unit 1200A, and the storage and treatment of wastes in Tanks T-1201A and T-1202A and the role and

- ⁵ function of equipment and processes which support the management of waste in these tanks. Information regarding the management practices and procedures and treatment processes relative to management of wastes in containers and in containment buildings is included in Section D-1 and in Section D-9, respectively, of this Application.
- ¹⁰ The following Engineering Drawings for Unit 1200A are located in Appendix D-1 to Section D of this Application:
 - Drawing No. 1200A-010-000 Building 1200A, Piping/Instrumentation Symbology;
 - Drawing No. 1200A-010-002A Building 1200A, P&ID;
 - Drawing No. 1200A-010-003 Building 1200A, P&ID;
 - Drawing No. 1200A-010-004 Building 1200A, P&ID;
 - Drawing No. 1200A-010-005 Building 1200A, P&ID;
 - Drawing No. 1200A-010-006 Building 1200A, P&ID;
 - Drawing No. 1200A-020-001 Building 1200A, General Arrangement;
 - Drawing No. 1200A-020-002 Building 1200A, General Arrangement;
 - Drawing No. 1200A-030-002 Building 1200A, Elevations;
 - Drawing No. 1200A-030-003A Building 1200A, Sections;
 - Drawing No. 1200A-030-004A Building 1200A, Liner System Subgrade Plan;
 - Drawing No. 1200A-030-005 Building 1200A, Containment Details & Sections;
 - Drawing No. 1200A-040-001 Building 1200A, Ground Floor and Foundation Sections and Details;
 - Drawing No. 1200A-040-002 Unit 1200A, Batch Stabilization Mixing Tanks -T-1201A & T-1202A; and

30 D-2-5f(1) Types and Quantities of Wastes Managed in Tanks in Unit 1200A

As shown in Appendix D-2-1 of this Application, virtually every type of hazardous waste listed and identified in 40 CFR Part 261 and ADEM Administrative Code Chapter 335-14-2 is managed in tank systems in Unit 1200A, except for ignitable wastes. In addition,

25

20

TSCA-regulated PCB wastes, non-hazardous wastes, and treatment residues from listed wastes are also managed in tank systems in Unit 1200A. Hazardous wastes managed in this unit will not contain volatile organic compounds in excess of 500 ppmw, with the exception of Subpart CC regulated waste pursuant to 40 CFR Part 264.1082c(4). This exemption is noted in Appendix D-10-1 (note Tank T-1202A is identified as T-1200B in Appendix D-10-1) of this

Application.

5

10

The total capacity for storage in tanks (S02) in Unit 1200A is indicated in Appendix D-2-1 of this Application. The quantity of wastes treated in tanks in this unit varies depending on the quantity of waste received at the Facility which is, or can be rendered to be, amenable to treatment via one or more of the processes conducted in Tanks T-1201A and T-1202A. The design capacity for treatment of debris and non-debris in Tanks T-1201A and T-1202A (T01) in Unit 1200A is 575,540 gallons per day.

D-2-5f(2) Design of Tank Systems in Unit 1200A

The design of the tank systems in Unit 1200A is in accordance with the general design features for in-ground tanks as described in Subsection D-2-2. The design of tank systems in Unit 1200A also facilitates and enables adherence to the general management practices and procedures for in-ground tanks as described in Subsection D-2-3. Specific tank design features for Tanks T-1201A and T-1202A are provided in Appendices D-2-1 and D-2-3. The design assessment and certification for Tanks T-1201A and T-1202A is provided in Appendix D-2-4 of this Application. The installation assessment and certification for Tanks T-1201A and T-1202A is maintained within the Facility Operating Record.

Secondary containment for Tanks T-1201A and T-1202A is provided by the outer shells of the tanks in accordance with the general design features for integral, double-walled tanks as described in Subsection D-2-2d of this Application. Tank leak detection for Tanks T-1201A and T-1202A is accomplished by liquid sensors which continuously monitor the interstitial space between the tank walls. If a loss of integrity of the primary tank shell occurs, the sensor will come in contact with liquids, and an audible and visual alarm will be activated to signal a potential leak in the primary tank. To minimize the accumulation of condensation in these interstitial spaces and to avoid false leak detections, each tank shall be equipped with a dry, compressed air supply and vent pipes located near the top and edge of each tank. This system will provide a sweep of dry air through the interstitial space to evaporate any small amounts of condensation that may occur, when necessary.

35

The Tank Management Area of Unit 1200A is designed to facilitate the processing and treatment of wastes with a diversity of physical and chemical characteristics. Several unique features have been incorporated into the design of this area so that sufficient flexibility and functionality is provided to enable the processing of waste in containers, tanks and on the floor

of the unit (i.e., containment building) within one area. This flexible and multi-functional design will minimize the on-site transfer of wastes from unit to unit and will enable the safe, effective, and efficient management of a wide variety of waste types.

- 5 The Tank Management Area of Unit 1200A consists of the following general functional components, systems or areas:
 - an enclosed and contained area for the unloading and cleaning of waste delivery vehicles or Facility vehicles, for the storage and processing of waste in containers, and for the management of waste in an area that complies with the requirements of a containment building;
 - two in-ground batch stabilization/mixing tanks (T-1201A and T-1202A);
 - an area for excavator(s) to mix wastes with the reagent in these tanks;
 - reagent storage silos and feed systems;
 - two (2) fugitive dust collection and management systems;
 - areas for container unloading/loading, container storage and treatment in containers, storage and treatment of wastes on the floor of the unit, and for the operation of the excavators; and
 - in addition to the tank management systems, this portion of Unit 1200A is equipped with an (8) eight-foot-high containment wall, a dual barrier containment system, and other features to comply with the requirements of 40 CFR 264 Subpart DD and ADEM Administrative Code Rule 335-14-5-.30 for Containment Buildings.
- The Tank Management Area of Unit 1200A is fully enclosed in a steel frame metal building with an eave height of approximately 45 feet and a reinforced concrete floor system with a perimeter curb. The building eave height enables the waste delivery vehicles to off-load bulk containers, and to back up, tip, and unload waste loads directly over the edge of the mixing Tanks T-1201A and T-1202A, while being within the confines of the building structure. The entire building, in this area, is underlain by a dual liner system which complies with the requirements for Containment Buildings as described in Section D-9 of this Application.

The base wearing surface of the Tank Management Area of Unit 1200A is constructed of a sloping, reinforced concrete slab equipped with a perimeter containment curb and wall. The height of the curb/wall is a minimum of eight (8) inches at all doorways and eight (8) feet at all other locations. The wearing surface of the building slopes in the direction of Tanks T-1201A and T-1202A at a minimum rate of approximately 1/8" per foot. The perimeter curb/wall

15

20

35

provides secondary containment, and the sloping floor of the building aids in the collection of solids, wash-waters generated during periodic cleaning, potential leaks from containers, etc. In addition, each of the interior of the metal wall panels in the Tank Management Area of Unit 1200A are fitted with a metal turn-out that intercepts and connects the wall panels with the perimeter curb/wall. The turn-out allows the wash-down of the interior wall surfaces and contains the wash-water within the area containment system.

10

5

To control particulate emissions from treatment conducted in the Tank Management Area of Unit 1200A, the bulk waste will be unloaded while the transport vehicle is entirely within the building with all exterior doors and other openings closed except as necessary to accommodate vehicular and personnel traffic. In addition, a particulate collection and control system consisting of an air intake plenum at each tank, ventilation duct work, dust collectors and exhaust fans will be utilized. This system will minimize particulate emissions from the operation.

D-2-5f(3) Management of Wastes in Tanks in Unit 1200A

The management practices and procedures utilized in Unit 1200A are in accordance with the general management practices and procedures for in-ground tanks as described in Subsection D-2-3. Additional practices and procedures are utilized to manage wastes within the Tank Management Area of Unit 1200A due to the multi-functional design of the area that enables the processing and treatment of wastes with a diversity of physical and chemical characteristics in containers, tanks and containment buildings.

Additional management practices employed within this area to enable flexible and multi-functional operations and management of a wide variety of waste types in a safe, effective and efficient manner are as follows:

25

30

- stabilization reagents that have buffering capacities to protect the carbon steel tanks from experiencing an excessive rate of corrosion are used in the stabilization process;
- the wear surface and containment walls are maintained to be free from significant cracks, gaps or other deterioration that could allow hazardous waste to be released from the primary barrier or containment walls into the secondary containment system or to the outside of the unit;
- within the containment building, waste may be stored or processed directly on the floor or within containers or tanks. While in storage, groups of containers are be positioned within the confines of secondary containment so that adequate space is allowed for inspection and for response to spills or emergencies, as described in Section D-1 of this Application;

- the dust collector(s) described in Section D-9 are operated, and all building openings (e.g., doors, windows, etc.) are managed to maintain a state of no visible emissions from any openings in the unit in accordance with 40 CFR 264.1101(c)(1)(iv) and ADEM Administrative Code Rule 335-14-5-.30 (2)(c)1.(iv). If necessary to maintain this state of no visible emissions from the containment building area of Unit 1200A, waste treatment and other activities are suspended during the periods required for personnel, vehicles or heavy equipment to enter or exit the building;
- in order to prevent the tracking of any significant quantities of hazardous waste out of the containment building when managing waste in mass on the floor, the tires of delivery vehicles, heavy equipment, portable treatment equipment such as mixers, compactors, washers, etc., or other items that come in contact with waste are observed and/or cleansed prior to removal from the containment area as described in Section D-9 of this Application. Any rinsate generated from this decontamination process is collected within the process container or the floor sumps in the unit, removed by portable pumps or other means, containerized, and properly managed (i.e., managed as a Facility generated waste, characterized based on knowledge of the waste that it contacted or characterized by other procedures as described in the Waste Analysis Plan);
- the unloading of wastes into the mix tanks, the addition of dry and liquid reagents, the mixing of wastes and the loading of roll-offs or trucks are supervised and/or controlled by the excavator operator. The operator has the ability to stop any of these transfers if spillage or over-filling is imminent;
 - the batch stabilization mix tanks are operated to maintain two (2) feet of freeboard to minimize the potential for spillage from these units;
 - the leak detection system for each mix tank is inspected daily. If any liquids that are not condensate (as determined by the lack of an immediate reoccurrence after evacuation and removal of accumulated liquids) are discovered in the leak detection system, the tank involved is removed from service, and cleaned, inspected, and repaired as necessary, and pressure tested prior to reuse;
 - the collected particulate accumulation container is inspected daily to prevent overfilling and is emptied at least once every 90 days;
 - wastes that contain volatile organic compounds in concentrations in excess of 10% by volume are not managed in tank systems in this unit; and
- in accordance with the procedures provided in the Facility's Waste Analysis Plan, incompatible wastes or reagents are not managed within the area in a manner to cause accelerated corrosion or deterioration of the containment components or undetectable failure of the primary barrier or secondary containment system.

5

10

15

20

25

30

D-2-5f(4) Batch Stabilization of Wastes in Tanks in Unit 1200A

The following P&ID's depict the general flow of wastes through Unit 1200A, and the equipment and engineering controls utilized in the treatment of wastes in tank systems in Unit 1200A. These drawings are located in Appendix D-1 to Section D of this Application:

5

10

- Drawing No. 1200A-010-002A Building 1200A, P&ID;
- Drawing No. 1200A-010-003 Building 1200A, P&ID;
- Drawing No. 1200A-010-004 Building 1200A, P&ID;
- Drawing No. 1200A-010-005 Building 1200A, P&ID; and
- Drawing No. 1200A-010-006 Building 1200A, P&ID.

As shown on these drawings, wastes can be introduced into Tanks T-1201A and T-1202A from the shredder or directly from bulk containers such as dump trailers or roll-off boxes. Each stabilization tank (i.e., T-1201A and T-1202A) is capable of accommodating batches of at least 15 two (2) to three (3) loads (20 to 30 cubic yards of waste per typical load) of waste and reagents, depending upon the physical and chemical characteristics of the waste, the recipe for stabilization and/or the type of other treatment required. Dry pre-treatment reagents may be added as required by manual means or via mechanical bag unloaders. Dry reagents are added to the tanks from the storage silos via a system of screw conveyors. Process water will be 20 supplied directly from a potable water line, will be pumped from the potable water storage tank located outside of the building into Tanks T-1201A and T-1202A, or will be supplied by noncontaminated surface water or leachate treated to F039 standards. Each of these stabilization components will be added in the quantities in accordance with the specified stabilization recipe. The mixture of waste and reagents is then thoroughly combined and blended by the excavator located adjacent to the tanks. Stabilized and treated wastes are subsequently out-loaded by the 25 excavator into roll-off boxes or dump beds which are staged in the back-in truck loading aisle. Waste out-loaded will be transported to Unit 2200 or other bulk container storage units for storage while sampling and testing to verify the adequacy of treatment are performed or transported to landfill units for disposal.

30 D-2-5f(5) Treatment of Debris in Tanks in Unit 1200A

One or more of the chemical or physical treatment techniques described in this subsection may be performed in Tanks T-1201A or T-1202A to render a waste amenable to direct landfill disposal, subsequent treatment via stabilization, or subsequent management in containers or tanks.

Physical treatment technologies which may be employed to render contaminated debris available for landfill disposal include extraction techniques such as abrasive blasting scarification, spalling, vibratory finishing, high pressure washing, or immobilization techniques such as sealing. Other physical treatment techniques which may be employed to render wastes available for landfill disposal or more amenable to subsequent stabilization or management in

containers or tanks include waste size reduction, waste blending and bulking, and leaching.

Chemical treatment technologies which may be employed to render contaminated debris available for landfill disposal include chemical extraction via washing with water or chemical reagents that enhance the removal of hazardous contaminants from the surface of debris and immobilization techniques such as microencapsulation.

Debris treatment residuals such as blast grit or rinse waters generated from the aforementioned treatment technologies and treated wastes which do not meet the land disposal restrictions will be collected, stored, and managed in accordance with 40 CFR 268.45 and ADEM Administrative Code Rule 335-14-9-.04(6). The process or storage areas of a unit may also be used to store wastes during curing, treatment verification, and as needed to schedule

20 Any of the aforementioned treatment techniques may be employed using specialized equipment to render contaminated debris suitable for landfill disposal or to provide treatment or pretreatment of debris treatment residuals or wastes separated from the contaminated debris prior to landfill disposal.

25 D-2-5f(5)(a) Physical Treatment of Debris in Tanks In Unit 1200A

subsequent treatment or disposal.

The primary physical treatments that will be performed include various physical extraction techniques that are designed to remove the surface contamination and/or surface layers from hazardous debris. The physical extraction techniques which may be performed in this area are as follows:

30

35

5

10

- abrasive blasting with water or air-propelled solid media such as sand, steel shot or glass beads;
- scarification with surface striking heads or grinding wheels;
- spalling by drilling or chipping holes into the surface of the debris;
- vibratory finishing utilizing scrubbing media or oscillatory mechanical devices;
 - spraying with high pressure steam or water
 - removal of debris components; or

• any other ADEM-approved technique.

The physical treatment techniques listed above may be performed utilizing portable equipment which may be temporarily stationed in the waste management unit. Solid treatment residuals will
be collected within Tanks T-1201A or T-1202A. Liquid treatment residuals will be collected within Tanks T-1201A or T-1202A and may be removed with portable pumps. Within this area, the utilization of the ventilation system, dust collector and management practices, as previously described, will minimize the escape of airborne fugitive emissions from the unit during the use of these techniques. The removal of the debris components may be performed within Tanks
T-1201A or T-1202A, which allows the separated debris to be further processed as debris and the non-debris component to be treated as necessary to meet the required restrictions.

Other physical treatments that may be performed in Tanks T-1201A or T-1202A to render contaminated debris available for landfill disposal include immobilization techniques such as sealing. These techniques involve the application of tightly adhering surface coating materials 15 to substantially reduce the exposure of contaminated debris surfaces to media which may leach contaminants after disposal. The application of such coatings will require the use of specialized portable mixing and/or application equipment, which may be temporarily stationed in an area of each unit. Specific requirements for the control of applied coatings and of airborne fugitive emissions will be addressed on a case-by-case basis to comply with the requirements of 40 20 CFR 264.1101 and ADEM Administrative Code Rule 335-14-5-.30 and the Facility's air permit. These immobilization techniques will achieve complete encapsulation of the debris. All encapsulation materials used will be resistant to degradation by the debris, its contaminants and the materials with which it may come into contact after disposal (e.g., leachate). The determination as to the suitability of encapsulation materials will be based on the following 25 factors:

- materials of construction of the land disposal unit (e.g., HDPE, etc.);
- industry standards and standards developed at other disposal facilities; or
- 30
- other materials as verified by testing (i.e., EPA Publication SW-846 third edition, Method 9090, etc.).

These standards will ensure that the likelihood of migration of contaminants is substantially reduced.

35

Some physical containment techniques may be employed in Tanks T-1201A or T-1202A to provide a waste that is subsequently more amenable to stabilization or other treatment. Waste size reduction, bulking and blending may be performed to achieve these goals. Contaminated

debris will not be reduced to a particle size of less than 60 mm prior to treatment, unless waste-specific treatment techniques are to be subsequently employed. Debris which has been decontaminated by cleaning and separation of the debris from the waste via a physical or chemical extraction technique may be reduced in size to accommodate subsequent disposal.

5 Contaminated debris will not be sized subsequent to treatment unless it is to be retreated. Other wastes may be reduced in size prior to treatment. Such wastes which are compatible and require the same treatment prior to disposal may be blended into bulk loads in Tanks T-1201A or T-1202A.

D-2-5f(5)(b) Chemical Treatment of Debris in Tanks in Unit 1200A

- The chemical extraction of specific or non-specific contaminants from the surface of debris may be achieved by washing the debris surface with aqueous solutions of contaminant soluble chemicals. This process is similar to and may be performed in Tanks T-1201A or T-1202A with the same equipment as is used to physically extract surface contamination of debris by high pressure washing. However, the use of chemicals, surfactants, water baths and/or elevated temperatures or pressures will allow the removal of contaminants from the solids in a manner similar to leaching. Chemical extraction of contaminants via washing will be performed in Tanks T-1201A or T-1202A using specialized portable washing equipment which may be stationed in the processing areas during use. Reagents to be used in the chemical washing process will be
- selected and managed in a manner to prevent accelerated corrosion or deterioration of Tanks T-1201A or T-1202A. Wash solutions collected from Tanks T-1201A or T-1202A during such a process may be recirculated to the application unit during the treatment of compatible waste batches requiring the same washing procedures. All spent wash solutions will be managed in accordance with 40 CFR 268.45 and ADEM Administrative Code Rule 335-14-9-.04(6).
- Another chemical treatment technique which may be performed in Tanks T-1201A or T-1202A is immobilization of contaminants through microencapsulation. Microencapsulation may be utilized to immobilize or reduce the leachability of contaminants on debris surfaces or in other types of wastes. Microencapsulation or stabilization of debris or other wastes will be achieved by bringing the contaminant into intimate contact with one of a number of materials. Other reagents may also be added to the mixture to enhance the curing and/or compressive strength of treated wastes. In addition, other types of immobilization agents may be used, provided a
- determination as to the suitability of these agents is performed based on industry standards and standards developed at other disposal facilities or verification by testing that the leachability of contaminants are immobilized or reduced. The microencapsulation to be performed in Tanks
- T-1201A or T-1202A may be the final treatment of contaminated debris prior to disposal or may be pre-treatment of wastes prior to final stabilization.

D-2-5f(5)(c) Combinations of Debris Treatment in Tanks in Unit 1200A

In some instances, the proper treatment of contaminated debris or other waste in Tanks T-1201A or T-1202A may only be achieved by utilizing combinations of the various physical and chemical treatment technologies discussed above. This section will provide a discussion of some of the potential treatment combinations which may be used; however, since there are a large number of potential combinations and since information on each individual treatment technique has been previously provided, a discussion of all treatment combinations is not warranted or required.

- One of the most common combination treatments will involve the removal of surface contamination via a chemical or physical extraction technique followed by sealing or even immobilization via microencapsulation. A specific example of this combination is the removal of surface contaminants from debris to prepare the surface for application of sealants to still-contaminated debris, as certain surface contaminants may interfere with some
- 15 immobilization techniques.

Another example of combination treatments involves the use of microencapsulated wastes as an agent in a mixture used for macroencapsulation of contaminated debris. Microencapsulated wastes are applied to contaminated debris to form a jacket of inert materials which substantially reduces the exposure of the surface of the debris to potential leaching media upon landfill

- disposal. Microencapsulated wastes are applied to achieve a full surface coating on contaminated debris, to form a jacket around the debris, and/or to fill void spaces within the debris (i.e., macroencapsulation) by submerging the debris within the microencapsulated waste, by pouring the microencapsulated waste into a container of debris such that the debris is
- 25 completely surrounded, or by other similar methods that successfully achieve macroencapsulation. Microencapsulated waste used to encapsulate debris is subject to compatibility and land disposal restriction (LDR) testing requirements as described in the Waste Analysis Plan, Section C of this Application. The use of encapsulated waste to macroencapsulate debris minimizes the use of reagents or materials.
- 30

20

5

For debris with hard-to-remove surface contamination, a combination of physical extraction techniques, such as abrasive blasting and high pressure washing, may be required to achieve a clean debris surface.

- Other combination treatment techniques may be required to achieve the alternate treatment standards for hazardous debris or the waste-specific treatment standards for other types of wastes. Combination and multiple treatment techniques may be employed within Tanks T-1201A or T-1202A as required to achieve appropriate disposal treatment standards. The design and management of Tanks T-1201A or T-1202A allows storage and treatment to be performed in a safe and efficient manner.
 - SectionD-2Text.docx

D-2-5f(5)(d) Debris Treatment Capacities in Tanks in Unit 1200A

As discussed in the previous sections, numerous hazardous waste treatment techniques will be performed in Tanks T-1201A or T-1202A. The actual treatment capacity that may be achieved for each of these techniques will vary depending on the physical and chemical characteristics of the debris, waste or contaminants. The treatment capacities for each technique represent the average capacity that may reasonably be achieved in Tanks T-1201A or T-1202A based on the physical and operational constraints of Tanks T-1201A or T-1202A. The combined, estimated design treatment capacity for specific debris treatment techniques to be conducted in tanks in Unit 1200A are indicated in the following list. These debris treatment techniques may be performed in either Tank T-1201A or in Tank T-1202A, and the following estimated design treatment capacities represents the combined capacity for both tanks:

	Treatment Technology	Treatment Technique	Treatment Code
Chamical	Extraction	Water Washing	T34
Chemical	Immobilization	Microencapsulation	T34
		Abrasive Blasting	T47
Physical		Scarification	T47
	Extraction	Spalling	T47
		Vibratory Finishing	T47
		High Pressure Washing	T47
	Removal of	Blending	T50
	Specific	Dhoop Constation	TEO
	Components	Phase Separation	T50
	Immobilization	Sealing	T47

TANK TREATMENT PROCESSES (T01)

15 D-2-5g Tank Management Unit 1400

Unit 1400 is centrally located within the active portion of the Facility to the south of PK-1000 and to the north of Unit 2000, as shown in Drawing No. 0100-020-001 in Appendix D-1 to Section D of this Application. Unit 1400 consists of sixteen (16) on-ground storage tanks (Tanks T-1405 through T-1420), all located within a single secondary containment system.

20

5

10

The general purpose of Unit 1400 is to store and treat all types of aqueous wastes including off-site receipts and Facility-generated wastes such as landfill leachate, landfill berm surface waters, secondary containment system catchment waters, and aqueous residues from treatment of other wastes. Additionally, Unit 1400 will house clean water storage tank(s) for the

Leachate Treatment Plant located in Unit 2001. The majority of the underground pipe chase is considered to be ancillary to Unit 1400. Only the portions of the underground pipe chase between the limits of the landfill trenches and the Unit 1700 tanks are considered to be ancillary to Unit 1700A, B & C. The underground pipe chase enables the collection of leachate from the landfill trenches, catchment waters from various tank secondary containment systems, blow-down from Unit 900, and wastewaters from Unit 708, and subsequent underground transfer of these wastewaters to Unit 1400. Schematic Diagrams for the underground pipe chase are provided in Drawing Nos. 0100-010-003 and 0100-010-004, which are located in Appendix D-1 to Section D of this Application. The underground pipe chase is constructed in phases as required to support the management of leachate generated from new landfill trenches and other wastewaters generated on-site.

10

5

The following Engineering Drawings for Unit 1400 are located in Appendix D-1 to Section D of this Application:

15

•	Drawing No.	1400-010-001	Tank Management Unit 1400, P&ID
---	-------------	--------------	---------------------------------

- Drawing No. 1400-010-002 Tank Management Unit 1400, P&ID;
- Drawing No. 1400-010-003 Tank Management Unit 1400, P&ID;
- Drawing No. 1400-010-004 Tank Management Unit 1400, P&ID;
- Drawing No. 1400-010-005 Tank Management Unit 1400, P&ID;
 - Drawing No. 1400-010-006 Tank Management Unit 1400, P&ID;
 - Drawing No. 1400-010-007 Tank Management Unit 1400, P&ID;
 - Drawing No. 1400-020-001 Tank Management Unit 1400, Area Foundation Location Plan;
- Drawing No. 1400-020-003 Tank Management Unit 1400, Area Paving Plan;
 - Drawing No. 1400-030-001 Tank Management Unit 1400, Sections;
 - Drawing No. 1400-030-002 Tank Management Unit 1400, Sections;
 - Drawing No. 1400-040-001 Tank Management Unit 1400, Details;
 - Drawing No. 1400-040-002 Tank Management Unit 1400, Details; and
- Drawing No. 1400-040-003 Tank Management Unit 1400, Details.

20

D-2-5g(1) Types and Quantities of Wastes Managed in Unit 1400

As shown in Appendix D-2-1 of this Application, virtually every type of hazardous waste listed and identified in 40 CFR Part 261 and ADEM Administrative Code Chapter 335-14-2 is managed in tank systems in Unit 1400, except for ignitable and reactive wastes. In addition, non-hazardous wastes, as well as treatment residues from listed wastes are managed in tank systems in Unit 1400.

The total capacity for storage in tanks (S02) in Unit 1400 is indicated in Appendix D-2-1 of this Application. The quantity of wastes treated in tanks in this unit varies depending on the quantity of aqueous wastes received at the Facility from off-site and the quantity of aqueous wastes, leachate, wheel wash blow-down, and catchment waters which are generated on-site. The design capacity for treatment in tanks (T01) in Unit 1400 is 1,008,723 gallons per day of mixing, blending, phase separation, removal of specific components, biological treatment, etc., excluding transfers between tanks and containers and transfers between tanks.

15 **D-2-5g(2) Design of Unit 1400**

5

10

20

The design of the tank system in Unit 1400 is in accordance with the general design features for on-ground tanks in which corrosive hazardous wastes are managed as described in Subsection D-2-2. The design of the tanks in Unit 1400 also facilitates and enables adherence to the general management practices and procedures for on-ground tanks as described in Subsection D-2-3. Specific design features of Tanks T-1405 through T-1420 are provided in Appendices D-2-1 and D-2-3. The design assessment and certification for Tanks T-1405 through T-1420 is provided in Appendix D-2-4 of this Application. The installation assessment and certification for Tanks T-1405 through T-1420 is maintained within the Facility Operating Record.

Tanks T-1405 through T-1420 are located within Containment Area 1 of Unit 1400. As shown in Drawing Nos. 1400-020-001, 1400-020-003, 1400-030-001, 1400-030-002, 1400-040-001, 1400-040-002, and 1400-040-003, the design of the secondary containment system for Unit 1400 is in accordance with the general design features for on-ground tank systems as described in Subsection D-2-2. Portions of Containment Area 1 are covered, and the tanks are equipped with roof gutters to minimize the generation of catchment waters from rainfall within the containment area. Therefore, rainfall accumulation within the uncovered portions of the containment area is accounted for in the secondary containment calculations. The calculations of secondary containment capacity for Containment Area 1 of Unit 1400 are provided in Appendix D-2-2 of this Application.

D-2-5g(3) Management of Unit 1400

The management practices and procedures utilized in Unit 1400 are in accordance with the general management practices and procedures for on-ground tanks in which corrosive hazardous wastes are managed as described in Subsection D-2-3.

5 D-2-5g(4) Treatment of Wastes in Unit 1400

As shown in Drawing Nos. 1400-010-001 through 1400-010-007 which are located in Appendix D-1 to Section D of this Application, Unit 1400 consists of 16 storage and treatment tanks and associated ancillary equipment. The treatment of wastes in Unit 1400 consists primarily of the equalization, biological treatment, blending, mixing, bulking, separation of phases and separation of components within aqueous wastes accumulated and transferred from other units or systems on-site such as landfill leachate, landfill berm surface waters, secondary containment system catchment waters, wheel wash blow-down and aqueous residues from treatment of other wastes. Aqueous wastes generated on-site are generally transferred to Unit 1400 via the underground pipe chase depicted in Drawing Nos. 0100-010-003 through 0100-010-007, which are located in Appendix D-1 to Section D of this Application. In addition, aqueous wastes may be transferred to Unit 1400 from on-site or off-site sources via tanker truck.

The biological treatment of the aqueous waste may be initiated within the limits of Unit 1400 and be regulated under RCRA requirements. This treatment will be referred to as pretreatment where initial inoculation of the aqueous waste occurs. Once pre-treated, the liquid will be transferred to the Leachate Treatment Plant located in Unit 2001 for completion of treatment.

As shown in Drawing Nos. 1400-010-001 through 1400-010-007, which are located in Appendix
D-1 to Section D of this Application, the design of Unit 1400 and associated ancillary equipment facilitates the blending, mixing or bulking of wastes. The side sample and withdrawal manifolds, pH meters, continuous level instrumentation on each tank, and the flow metering devices and general arrangement and flexibility of piping systems in Unit 1400 facilitates the blending, mixing, bulking and segregation of large quantities of aqueous wastes. The piping systems and ancillary equipment in Unit 1400 also enable the transfer of wastes between any of the tanks in the unit and tanker trucks located in the adjacent Loading/Unloading Station. The separation of phases in Unit 1400 consists primarily of the removal of solids and sludges that settle within the tanks. The separation of these materials is facilitated by the oversized withdrawal nozzles and the large clean-outs and access doors located at the bottom of each tank.

35

10

15

After the aqueous wastes have been treated to achieve the quantities and blends required or desired for effective subsequent treatment, the wastes are transferred to on-site units for further

treatment or reuse via the site pipe chase or tanker trucks. Alternately, aqueous wastes from Unit 1400 may be transferred via tanker truck to off-site treatment and/or disposal facilities.

D-2-5h Leachate Tank Storage Units 1700A, B, & C

Units 1700A, B, & C consists of the collection systems, storage tanks, secondary containment systems, and ancillary equipment to enable the collection of leachate and berm surface waters 5 generated in landfill Trenches 19, 21, and 22. Portions of the underground pipe chase between the limits of the landfill trenches and the Unit 1700 tanks are considered to be ancillary to Units 1700A, B, & C. The remaining portions of the underground pipe chase are considered to be ancillary to Unit 1400 as described in Subsection D-2-5g of this section. The underground pipe chase system enables the collection of leachate from the landfill trenches, catchment waters 10 from various tank secondary containment systems, blow-down from Unit 900 and wastewaters from Unit 708, and subsequent underground transfer of these wastewaters to Unit 1400. The general layout of and location of the underground pipe chase and the components of Units 1700A, B, & C are shown in Drawing No. 1700-020-001, and Schematic Diagrams for the Underground Pipe Chase are provided in Drawing Nos. 0100-010-003 and 0100-010-004, which 15 are all located in Appendix D-1 to Section D of this Application. Unit 1700 tank systems and the Underground Pipe Chase are constructed in phases as required to support the management of leachate generated from new landfill trenches and other wastewaters generated on-site. The following equipment and systems are considered to be ancillary components to the Unit 1700

20 tank systems:

25

- existing Tank T-A;
- existing portions of the underground pipe chase between Trench 19 and Tank T-A, as shown on Drawing No. 0100-010-003;
- existing Tanks T-1701 and T-1702;
- existing portions of the underground pipe chase between Trench 21 and Tanks T-1701 and T-1702, as shown on Drawing No. 0100-010-003; and
- existing portions of the underground pipe chase between Trench 22 and Tanks T-1703 and T-1704, as shown on Drawing No. 0100-010-004.
- ³⁰ The following Engineering Drawings for Unit 1700 are located in Appendix D-1 to Section D of this Application:
 - Drawing No. 1700-010-001 Leachate Tank Storage Units 1700B & C, Tanks T-1701 through T-1704, P&ID;
 - Drawing No. 1700-010-003 Leachate Tank Storage Unit 1700A, Tank T-A, P&ID;

- Drawing No. 1700-020-001 Underground Pipe Chase Units 1700A, B, & C Site Plan;
- Drawing No. 1700-020-002 Leachate Tank T-A, Unit 1700A, Plan & Sections;
- Drawing No. 1700-020-003 Leachate Tanks T-1701 & T-1702, Unit 1700B, Plan, Sections and Details;
- Drawing No. 1700-020-004 Leachate Tanks T-1703 & T-1704, Unit 1700C, Plan, Sections and Details; and
- Drawing No. 1700-040-001 Leachate Tank T-A, Unit 1700A, Details.
- ¹⁰ The following Engineering Drawings for the Underground Pipe Chase system are also located in Appendix D-1 to Section D of this Application:
 - Drawing No. 0100-010-003 Underground Pipe Chase Layout, Schematic Diagram;
 - Drawing No. 0100-010-004 Underground Pipe Chase Layout, Schematic Diagram;
 - Drawing No. 0100-010-005 Underground Pipe Chase, Trench 19, Unit 703A, Unit 708, & Unit 900, P&ID;
 - Drawing No. 0100-010-006 Underground Pipe Chase, Intermediate Locations, P&ID;
 - Drawing No. 0100-010-007 Underground Pipe Chase, Trench 21 Cells 1 & 2, P&ID;
 - Drawing No. 0100-010-008 Underground Pipe Chase, Trench 21 Cells 3 & 4, P&ID;
 - Drawing No. 0100-010-009 Underground Pipe Chase, Trench 22 Cells 1 & 2, P&ID;
 - Drawing No. 0100-010-010 Underground Pipe Chase, Trench 22 Cells 3 & 4, P&ID;
 - Drawing No. 0100-020-002 Underground Pipe Chase, Site Plan; and
 - Drawing No. 0100-040-001 Underground Pipe Chase Junction Vault Details.

5

20

25

30

D-2-5h(1) Types and Quantities of Wastes Managed in Units 1700A, B & C

The Unit 1700 tank systems are only used to accumulate and store leachate and berm surface waters resulting from the disposal in landfill Trenches 19, 21, and 22 of more than one of the restricted wastes classified as hazardous under Subpart D of 40 CFR Part 261 and ADEM Administrative Code Rule 335-14-2-.04 (e.g., EPA Hazardous Waste No. F039). The EPA 5 Hazardous Waste No. F039 waste generated in the landfill trenches is a dilute, aqueous solution which is listed in 40 CFR 261.31(a) and ADEM Administrative Code Rule 335-14-2-.04(2)(a) based solely on a Toxic Waste (T) Hazard Code. However, as indicated in Appendix D-2-1 of this Application, the F039 wastes generated in landfill Trenches 19, 21, and at the Facility have been (or are expected to be) determined to be capable of also meeting the 10 characteristics of corrosivity (C) and/or toxicity characteristic (E), but have not been (and are not expected to be) determined to be capable of meeting the characteristics of ignitability (I) or reactivity (R).

The total capacity for the storage of leachate and surface berm waters in Unit 1700 tank 15 systems (S02) is indicated in Appendix D-2-1 of this Application. The quantities of leachate generated are dependent on numerous factors including the status of construction of landfill trench, the total amount of hazardous wastes disposed in a cell, and rainfall amounts and intensities. Leachate and surface berm waters are not treated within the Unit 1700 tank systems, excluding transfers between tanks and containers and transfers between tanks. 20

D-2-5h(2) Design of Units 1700A, B & C

The design of the Unit 1700 tank systems is in accordance with the general design features for aboveground tanks as described in Subsection D-2-2. The design of the Unit 1700 tank systems also facilitates and enables adherence to the general management practices and procedures for aboveground tanks as described in Subsection D-2-3. Specific design features 25 for Tanks T-A and Tanks T-1701 through T-1704 are provided in Appendices D-2-1 and D-2-3. The design assessment and certification for Tank T-A and Tanks T-1701 through T-1704 is provided in Appendix D-2-4 of this Application. The installation assessments and certifications for Tank T-A and Tanks T-1701 and T-1702 are maintained within the Facility Operating Record.

30

35

Tank T-A is located within Unit 1700A (Containment Area 1), Tanks T-1701 and T-1702 are located within Unit 1700B (Containment Area 2), and Tanks T-1703 and T-1704 are located within Unit 1700C (Containment Area 3). As shown in Drawing Nos. 1700-020-001, 1700-020-002, 1700-020-003, and 1700-020-004, the design of the secondary containment systems for Tanks T-A and Tanks T-1701 through T-1704 is in accordance with the general design features for aboveground tank systems as described in Subsection D-2-2. Containment Areas 1, 2, and 3 are all separate, fully enclosed buildings; therefore, rainfall allowance is

neglected in the secondary containment calculations. The calculations of secondary containment capacity for each of the Unit 1700 tank systems are provided in Appendix D-2-2 of this Application.

- 5 The underground site pipe chase system consists of the piping systems and associated equipment to enable the automatic transfer of landfill leachate and berm surface waters from the landfill trenches to the Unit 1700 storage tanks, and from these tanks to Unit 1400. The underground site pipe chase system is considered to be ancillary equipment to the Unit 1700 and Unit 1400 tank systems. Portions of the pipe chase system that are located outside of the secondary containment systems for tanks are designed to comply with the requirements for secondary containment and leak detection for ancillary equipment as described in Subsections D-2-2d(5) and D-2-2e of this section.
- The underground site pipe chase system piping that is located outside of the secondary containment for a tank system is equipped with an outer containment pipe that completely surrounds and contains the inner carrier pipe. Underground site pipe chase piping system components such as valves, meters, flanges and other joints are located within secondary containment junction vaults. The outer containment pipes are sloped to drain back into the secondary containment system for the tanks or into a containment vault. Carrier pipes within these systems are equipped with check valves at appropriate intervals and locations to limit the volume of material that could drain or flow back into a secondary containment junction vault to less than the volume of the secondary containment junction vault. This design prevents the accidental over-fill of a secondary containment junction vault in the event of a leak or failure in a segment of the carrier pipe.
- 25

30

The secondary containment junction vaults within the underground site pipe chase system are equipped with automatic leak detection devices to indicate the presence of liquids within the containment. These leak detection systems operate continuously and provide a visual alarm to ensure that the potential leak is recognized in a timely manner so that it can be addressed through the appropriate management procedures. The leak detection systems within the underground site pipe chase system junction vaults are liquid detection probes located within the junction vaults. The location of these liquid detection probes and other relevant junction vault design and construction features are provided in Drawing No. 0100-040-001 which is located in Appendix D-1 to Section D of this Application.

35 D-2-5h(3) Management of Units 1700A, B & C

The management practices and procedures utilized in Unit 1700 tank systems are in accordance with the general management practices and procedures for aboveground tanks as described in Subsection D-2-3. However, because only leachate and berm surface waters

generated from the landfill disposal trenches will be managed in Unit 1700 tanks, there is no concern for mixing of incompatible wastes in these tanks systems.

As shown in Drawing Nos. 1700-010-001 and 1700-010-003 and Drawing Nos. 0100-010-003 through 0100-010-010, the removal of leachate and berm surface waters from the landfill cells is accomplished through the use of pumps located within the landfill cell risers or on the surface of an active landfill cell. Each landfill cell riser is equipped with a leachate removal pump that operates automatically to limit the amount of leachate accumulated in a cell. The landfill berm surface water pumps are operated manually. The leachate and berm water is pumped through

- ¹⁰ portions of the underground site pipe chase system to the nearest set of Unit 1700 leachate storage tanks. The quantities of all leachate and berm waters is metered and recorded within the system prior to discharge into one of the Unit 1700 storage tanks. When the quantity of liquids accumulated within any one of the Unit 1700 storage tanks reaches a certain preset level, the leachate and berm water mixtures are automatically pumped through the underground
- site pipe chase system to Unit 1400. If the level of leachate in any one of the Unit 1700 storage tanks reaches a high-high level, all pumping of leachate from the cells within the associated portion of the underground site pipe chase system is automatically discontinued.

20

[End of Section D-2 Text]

APPENDIX D-2-1 SECTION D-2

SUMMARY OF TANK DESIGN INFORMATION

Revision No. 5.0

TABLE D-2-1.1SUMMARY OF TANK DESIGN INFORMATIONCHEMICAL WASTE MANAGEMENT, INC. EMELLE, ALABAMA

						Material of						
						Construction/	/	Diameter/	Shell/	Bottom	Total	Design
Tank	Regulatory	Waste	Service	Type of Leak	Design	Internal	Configuration	Length	Height	Width	Capacity [5]	Max.
No.	Function [1]] Types [2]	Date	Detection	Code	Coatings [3]	of Tank [4]	(ft)	(ft)	(ft)	(gal)	Sp. Gr.
CONTA	INER & TAN	IK MANAGE	MENT UNIT 5	<u>20</u>								
T-520	S & T	I/E/H/T	May-91	Visual	API-620	CS	V/FR/CB/A	16.00	14.00	8.00	25,066	1.50
							Uni	Total Peri	nitted C	Capacity	25,066	-
CONTA	INER & TAN	IK MANAGE	MENT UNIT 6	<u>00</u>								
T-634	S & T	I/E/H/T	Sep-83	Slotted Base	API-650	CS	V/FR/FB/A	12.00	12.00	0.00	10,152	1.50
T-635	S & T	I/E/H/T	Sep-83	Slotted Base	API-650	CS	V/FR/FB/A	12.00	12.00	0.00	10,152	1.50
T-636	S & T	I/E/H/T	Sep-83	Slotted Base	API-650	CS	V/FR/FB/A	12.00	12.00	0.00	10,152	1.50
							Uni	Total Peri	nitted C	Capacity	30,456	-
LABOR	ATORY TAP	NK STORAG	<u>E UNIT 708</u>									
T-725	[6] S	C/R/E/H/T	Dec-90	Double Wall	UL-58	CS/C1	H/DW/A	4.00	10.67	0.00	1,003	1.80
T-726	G	C/R/E/H/T	Jun-91	Slotted Base A	ASTM-D3299	FRP-2	V/DR/FB	8.00	12.58	0.00	4,731	1.30
							Unit To	tal Permitt	ed Cap	acity [7]	5,734	-
WHEEL WASH & TANK STORAGE UNIT 900												
T-901	S & T	E/H/T	Oct-89	Visual	API-620	CS/C2	V/FR/CB/A	6.00	8.00	3.00	1,903	1.10
T-902	S & T	E/H/T	Oct-89	Visual	API-620	CS/C2	V/FR/CB/A	6.00	8.00	3.00	1,903	1.10
T-903	S & T	E/H/T	Oct-89	Double Wall	ACI/AISC	CS/C2	R/DW/OT/A	3.00	40.00	3.46	3,104	1.10
T-904	S & T	E/H/T	Oct-89	Double Wall	ACI/AISC	CS/C2	R/DW/OT/A	3.00	40.00	3.46	3,104	1.10
							Uni	Total Peri	nitted C	Capacity	10,014	
CONTA	INMENT BU	ILDING/COM	NTAINER & TA	NK MANAGEN	MENT UNIT 1	<u>200A</u>						
T-1201A	S&T	C/R/E/H/T	Oct-94	Double Wall	ACI/AISC	CS	R/OT/A	20.67	12.00	12.00	20,802	2.40
T-1202A	S&T	C/R/E/H/T	Oct-94	Double Wall	ACI/AISC	CS	R/OT/A	20.67	12.00	12.00	20,398	2.40
							Uni	Total Peri	mitted C	Capacity	41,200	

TABLE D-2-1.1SUMMARY OF TANK DESIGN INFORMATIONCHEMICAL WASTE MANAGEMENT, INC. EMELLE, ALABAMA

						Material of						
						Construction/	,	Diameter/	Shell/	Bottom/	Total	Design
Tank	Regulatory	Waste	Service	Type of Leak	Design	Internal	Configuration	Length	Height	Width C	apacity [5]	Max.
No.	Function [1]	Types [2]	Date	Detection	Code	Coatings [3]	of Tank [4]	(ft)	(ft)	(ft)	(gal)	Sp. Gr.
TANK N	MANAGEMEN	<u>NT UNIT 1400</u>										
T-1405	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	52.00	32.00	0.00	508,333	1.10
T-1406	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	52.00	32.00	0.00	508,333	1.10
T-1407	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	52.00	32.00	0.00	508,333	1.10
T-1408	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	52.00	32.00	0.00	508,333	1.10
T-1409	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1410	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1411	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1412	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1413	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1414	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1415	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1416	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1417	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1418	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1419	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
T-1420	S & T	C/E/H/T	Dec-88	Slotted Base	API-650	CS/C3	V/DR/FB/A	39.00	28.00	0.00	250,195	1.10
							Uni	t Total Perr	nitted C	Capacity	5,035,672	
LEACH	<u>ATE TANK S</u>	TORAGE UN	<u>TS 1700</u>									
T-A	Storage	C/E/H/T	Nov-93	Visual	ASTM 1998	XLHDPE	H/A	5.33	15.92	0.00	2,500	1.10
T-1701	Storage	C/E/H/T	Feb-89	Visual	UL-142	CS/C3	H/IL/A	12.00	30.00	0.00	25,379	1.10
T-1702	Storage	C/E/H/T	Feb-89	Visual	UL-142	CS/C3	H/IL/A	12.00	30.00	0.00	25,379	1.10
T-1703	Storage	C/E/H/T	Mar-96	Visual	UL-142	CS/C3	H/IL/A	12.00	30.00	0.00	25,379	1.10
T-1704	Storage	C/E/H/T	Mar-96	Visual	UL-142	CS/C3	H/IL/A	12.00	30.00	0.00	25,379	1.10
							Uni	t Total Perr	nitted C	Capacity	104,016	

TABLE D-2-1.1 SUMMARY of TANK DESIGN INFORMATION CHEMICAL WASTE MANAGEMENT, LLC, EMELLE, ALABAMA

NOTES:

- [1] Abbreviations for Regulatory Designations:
 - S = Storage T = Treatment G = Generator

[2] Abbreviations for Waste Types:

- I = Ignitable R = Reactive H = Acute Hazardous
- C = Corrosive E = Toxicity Characteristic T = Toxic

[3] Abbreviations for Materials of Construction and Interior Coatings:

- Materials of Construction
- CS = Carbon Steel
- XLHDPE = Cross-Linked High Density Polyethylene
- FRP (Fiberglass Reinforced Plastic):

- Interior Coatings for Carbon Steel Tanks C1 = Vinyl Ester C3 = Epoxy C2 = Epoxy Polyamide
- FRP-1 = Derakane 470 Epoxy Vinyl Ester Resin Throughout with 200 mil Inner Corrosion Barrier including Double Synthetic (Nexus ®) Surfacing Veil
- FRP-2 = Derakane 411 Epoxy Vinyl Ester Resin Throughout with 100 mil Inner Corrosion Barrier including Synthetic (Nexus®) Surfacing Veil
- FRP-3 = Isophthalic Polyester Structural Laminate with 100 mil Inner Corrosion Barrier of Derakane 411 Epoxy Vinyl Ester including 10 mil "C" Glass Surfacing Veil

[4] Abbreviations for Tank Configuration:

- V = Vertical Shell H = Horizontal Shell R = Rectangular Shape DW = Double Wall A = Atmospheric Vessel (< 5 psig)
- FR = Flat Roof DR = Dished/Domed Roo SR = Sloped Roof OT = Open Top P = Pressure Vessel (> 5 psig)
- CB = Coned Bottom DB = Dished Bottom FB = Flat Bottom
- [5] Total tank capacity is based on the physical dimensions of the tank. This figure represents the maximum volume of waste that could be physically stored within the tank and establishes the permit capacity for the tank.
- [6] T-725 is the only tank at the Facility that is in direct contact with the soil.
- [7] Since T-726 is a 90-day generator accumulation tank its total capacity is not included in the permitted tank storage capacity (S02) for Unit 708 or the Facility.

APPENDIX D-2-2 SECTION D-2

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

Revision No. 5.0

APPENDIX D-2-2

SECTION D-2

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

TABLE OF CONTENTS

D-2-2-1	Basis for Secondary Containment Calculations	.1
D-2-2-2	Explanation of Terminology Referred to in the Containment Calculations	.2
D-2-2-3	Certification of the Calculations of Secondary Containment for Tanks	.2

LIST OF FIGURES

D-2-2.1 25-Year, 24-Hour Rainfall Data

D-2-2.2 Typical Containment Area Configuration

LIST OF TABLES OF SECONDARY CONTAINMENT CALCULATIONS

- D-2-2.1 Summary of Secondary Containment Capacities for Tank Management Units
- D-2-2.2 Container & Tank Management Unit 520
- D-2-2.3 Container & Tank Management Unit 600
- D-2-2.4 Wheel Wash and Tank Storage Unit 900
- D-2-2.5 Wheel Wash and Tank Storage Unit 900
- D-2-2.6 Wheel Wash and Tank Storage Unit 900
- D-2-2.7 Tank Management Unit 1400
- D-2-2.8 Leachate Tank Storage Unit 1700A
- D-2-2.9 Leachate Tank Storage Unit 1700B
- D-2-2.10 Leachate Tank Storage Unit 1700C

APPENDIX D-2-2

SECTION D-2

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

In accordance with the requirements of 40 CFR 270.16(g) and ADEM Administrative Code Rule 335-14-8-.02(7)(g), this appendix provides the calculations of secondary containment capacity for the storage of waste in tank systems. In conjunction with the information provided within Appendix D-2-1, Summary of Tank Design Information, this appendix demonstrates compliance with the requirements of 40 CFR 264.193(e)(2)(i) and (ii), or (3)(i), and ADEM Administrative Code Rule 335-14-5-.10(4)(e)2.(i) and (ii), or 3.(i) regarding the provision of adequate secondary containment capacity within the tank management units at the Facility.

D-2-2-1 Basis for Secondary Containment Calculations

15

20

25

- The containment system must be designed and operated to contain 100 percent of the capacity of the largest tank, as required by 40 CFR 264.193(e)(2)(i) and ADEM Administrative Code 335-14-5-.10(4)(e)2.(i).
- b. In addition, the containment system must be designed and operated to prevent run-on or infiltration of precipitation into the secondary containment system unless the collection system has sufficient excess capacity to contain run-on or infiltration. Such additional capacity must be sufficient to contain precipitation from a 25-year, 24-hour rainfall event, as required by 40 CFR Part 264.193(e)(2)(ii) and ADEM Administrative Code 335-14-5-.10(4)(e)2.(ii). The 25-year, 24-hour rainfall event for Emelle, Alabama is approximately 7½" as indicated in Figure D-2-2.1, which is an excerpt from <u>Technical Paper No. 40</u>, published by the U.S. Department of Commerce, Washington, DC, in May 1961.
- c. Rainfall allowance is not required for containment areas which are enclosed within a building. Where applicable, blow-in rainfall allowance is taken into account for the units or areas which are partially enclosed (e.g. roof only or units with partial siding). It is assumed that the rainfall blow-in will occur at a 30° angle to the vertical as measured at the top of the opening. This assumption of blow-in for an entire 25-year, 24-hour storm event is a worst-case scenario and provides a conservative approach.

D-2-2-2 Explanation of Terminology Referred to in the Containment Calculations

- a. "Capacity within Perimeter Containment Curb" This term refers to the capacity created by the perimeter containment curb only (see Figure D-2-2.2, Zone 1). The additional capacities created from sloped floors and/or sumps are not taken into account in this category.
- b. "Capacity of Sloped Floor" This term refers to the capacity created by the slope of the floor only (see Figure D-2-2.2, Zone 4). In cases where a sump is part of the containment system, the area above the sump is considered as part of the sloped floor capacity (see Figure D-2-2.2, Zone 2). As a conservative approach, the sloped floor capacity is calculated only when additional secondary containment capacity is required or when no containment curb capacity is available.
- c. "Capacity of Sumps" This refers to the capacity within the collection sumps (see Figure D-2-2.2, Zone 3).
- d. "Capacity Deductions" This term refers to the capacity which is occupied by equipment, structures, or other appurtenances within the containment area, such as the capacity of flat bottom tank pedestals, columns, pump pads, tanks, etc. The capacity for each item is subtracted from the "Gross Secondary Containment Capacity" to obtain the "Net Secondary Containment Capacity."
- e. "Required Secondary Containment Capacity" This term refers to the amount of secondary containment capacity that must be provided within each containment area in order to comply with the regulations. The required capacity is the sum of:
 - 100 percent of the capacity of the largest tank (see Section D-2-2-1a, above) and
 - the rainfall allowance (see Section D-2-2-1b & c, above).
 - f. The abbreviation "NA" means "Not Applicable".

D-2-2-3 Certification of the Calculations of Secondary Containment for Tanks

- The estimated secondary containment capacities for the tank management units at the Facility have been calculated based upon the overall containment area dimensions, the sump dimensions, the curb heights, the depths of containment due to floor slope, and other dimensional information depicted on the applicable RCRA Part B Permit Application Drawings provided in Appendix D-1 to Section D of this Application. These RCRA Part B Permit Application Drawings were prepared for the sole, specific purpose of providing the information
- 35 Application Drawings were prepared for the sole, specific purpose of providing the inform

AppendixD-2-2Text.docx Se

5

10

15

25

Section D-2, Appendix D-2-2

required to obtain a RCRA Part B Permit for the Facility. This certification is intended to address the calculations of secondary containment capacities for the tank management units at the Facility as provided within the tables of Appendix D-2-2, and does not certify the accuracy or completeness of any of the other information provided within this Application.

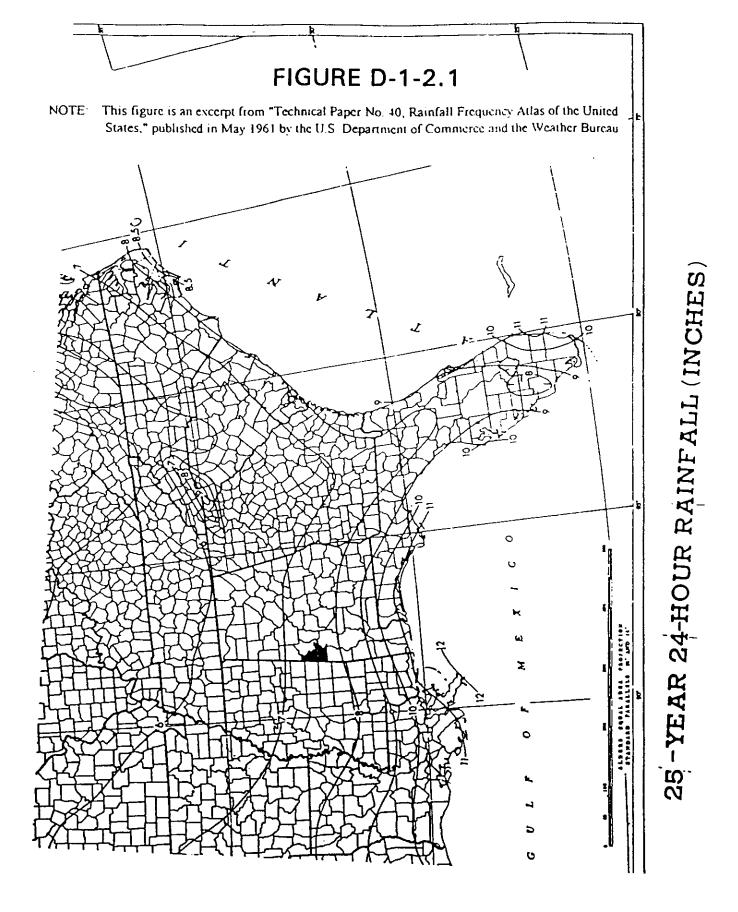
5

10

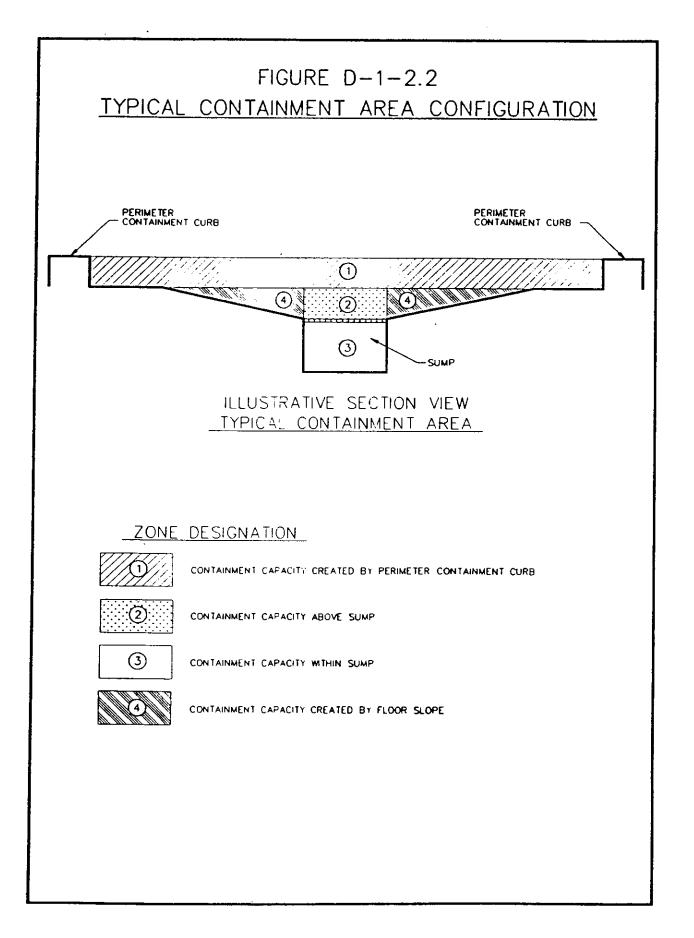
15

With regards to the secondary containment capacity calculations prepared to demonstrate compliance with the requirements of 40 CFR 264.193(e)(2)(i) and (ii), or (3)(i), and ADEM Administrative Code Rule 335-14-5-.10(4)(e)2.(i) and (ii), or 3.(i) for the tank management units at the Facility, I certify under penalty of law that the modified calculations were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Michael T. Feeney, P.E. Alabama P.E. No.: 15895 Jacobs Engineering Group Inc. Ten 10th Street NW Atlanta, Georgia 30309


[End of Appendix D-2-2 Text]

APPENDIX D-2-2


SECTION D-2

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

FIGURES

Section D-2, App. D-2-2, Figures Page 1 of 1 **Revision 5.0**

APPENDIX D-2-2

SECTION D-2

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

TABLES

TABLE D-2-2.1 SUMMARY OF SECONDARY CONTAINMENT CAPACITIES FOR TANK MANAGEMENT UNITS CHEMICAL WASTE MANAGEMENT, INC. EMELLE, ALABAMA FACILITY

Unit	Containment Area		Table	Largest Tank	Rainfall	Secondary Containmen Capacity			
Number	Identifier	Tank(s)	Iaple	<u>Volume</u> (gallons)	<u>Allowance</u> (gallons)	<u>Required</u> (gallons)	<u>Provided</u> (gallons)		
520	2	T-520	D-2-2.2	25,066	1,900	26,966	32,542		
600	3	T-634, 635, & 636	D-2-2.3	10,152	NA	10,152	51,750		
708	NA ¹	T-725	NA ¹	5,734	NA ¹	NA ¹	NA ¹		
900	1	T-901 & 902	D-2-2.4	1,903	NA	1,903	3,840		
900	2	T-903	D-2-2.5	3,104	NA	3,104	11,431		
900	3	T-904	D-2-2.6	3,104	NA	3,104	13,745		
1200A	NA ¹	T-1201A & T-1202A	NA ¹	20,802	NA ¹	NA ¹	NA ¹		
1400	1	T-1405 thru T-1420	D-2-2.7	508,333	101,939	610,272	784,264		
1700A	1	Tank T-A	D-2-2.8	2,500	NA	2,500	10,714		
1700B	2	Tanks T-1701 and T-1702	D-2-2.9	25,379	NA	25,379	36,543		
1700C	3	Tanks T-1703 and T-1704	D-2-2.10	25,379	NA	25,379	36,543		

Notes:

 Tank T-725 (Unit 708) and Tanks T-1201A and T-1202A (Unit 1200A) are underground or in-ground tanks that utilize a double-walled design for secondary containment in accordance with the requirements of 40 CFR 264.193(e)(3) and ADEM Administrative Code Rule 335-14-5-.10(4)(e)3. Therefore, calculations of secondary containment capacity are not applicable for these tanks/tank systems.

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

CONTAINER & TANK MANAGEMENT - UNIT 520 Containment Area No. 2 (Tank T-520) (Reference Drawing Nos. 0520-020-001, 0520-030-001, & 0520-040-001)

I.	Secondary Containment Capacity A. Capacity within the Perimeter Containment Curb [38'-8"× 28'-8" × 3'-11"]	=	4,346 cu. ft.
	B. Capacity of Sloped Floor	=	NA
	C. Capacity in Sumps [2' × 2' × 2']	=	8 cu. ft.
	Gross Secondary Containment Capacity	=	4,354 cu. ft.
	 D. Capacity Deductions 1) less volume of tank pedestals [4 × (1'-1 1/2" × 1'-1 1/2" × (6" + 2"))] 	=	-3 cu. ft.
	Capacity Deductions Subtotal	=	-3 cu. ft.
	Net Secondary Containment Capacity	= or	4,351 cu. ft. 32,542 gallons
II.	Required Secondary Containment Capacity A. Volume of Largest Tank	=	25,066 gallons
	 B. Rainfall Allowance (25-year, 24-hour storm event of 7.5") 1) Rain through roof opening on top of tank and gap around tank [(pi × (8'-3")²) × 7¹/₂"/12 × 7.48 gal/ft³] 2) Rain blow-in under covered portion of containment area (This area is partially covered by a roof; however allowance must be made for blow-in on longest side. Assume 30° blow-in, with an effective eave height of 12'-1", and a roof overhang of 2'.) 	=	1,000 gallons
	[((tan 30° × 12'-1" eave) - 2' overhang) × 38'-8" width × (7½"/12) × 7.48 gal/ft³]	=	900 gallons
	Total Capacity Required	=	26,966 gallons

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

CONTAINER & TANK MANAGEMENT - UNIT 600 Containment Area No. 3 (Tanks T-634, T-636, and T-636) (Reference Drawing Nos. 0600-020-001, 0600-030-002, & 0600-040-001)

I.	Secondary Containment Capacity A. Capacity within the Perimeter Containment Curb		
	[145'-4" × 78'-8" × 7 1/4"]	=	6,860 cu. ft.
	B. Capacity of Sloped Floor	=	NA
	C. Capacity in Sumps (based on minimum depth) [(2'-6" × 138'-4" × 2'-0 3/8") + (2'-6" × 17'-6" × ((4'-0 3/8" + 10 3/4")/2)]	=	810 cu. ft.
	D. Offset in SW corner (near T-634) [15'-9" × 3'-4" × 7 1/4"]	=	31 cu. ft.
	Gross Secondary Containment Capacity	=	7,701 cu. ft.
	 E. Capacity Deductions less volume of forklift ramp (no allowance for slope) 1/4" × (10' + 8" + 8") × 80'] 2) less volume of tank pedestals × pi × (6'-6")² × 7 1/4"] 	=	-544 cu. ft. -239 cu. ft.
	Capacity Deductions Subtotal	=	-783 cu. ft.
	Net Secondary Containment Capacity	= or	6,918 cu. ft. 51,750 gallons
II.	Required Secondary Containment Capacity A. Volume of Largest Tank	=	10,152 gallons
	 B. Rainfall Allowance (25-year, 24-hour storm event of 7.5") (Tanks are enclosed within a building. Therefore, rainfall allowance is neglected.) 	=	NA
	Total Capacity Required	=	10,152 gallons

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

WHEEL WASH AND TANK STORAGE - UNIT 900 Containment Area No. 1 (Tanks T-901 and T-902) (Reference Drawing Nos. 0900-020-001 & 0900-030-001)

I.	Secondary Containment Capacity A. Capacity within the Perimeter Containment Curb [47'-8" × 19'-4" × 8"]	=	617 cu. ft.
	B. Capacity of Sloped Floor	=	NA
	C. Capacity in Sumps [2' × 2' × 2']	=	8 cu. ft.
	Gross Secondary Containment Capacity	=	625 cu. ft.
	D. Capacity Deductions1) less volume of roll-off box pedestal		
	[18'-1" × 7'-3" × 8"]	=	-88 cu. ft.
	 less volume of pump pedestal [6' × 6' × 8"] 	=	-24 cu. ft.
	Capacity Deductions Subtotal	=	-112 cu. ft.
	Net Secondary Containment Capacity	= or	513 cu. ft. 3,840 gallons
II.	Required Secondary Containment Capacity A. Volume of Largest Tank	=	1,903 gallons
	 B. Rainfall Allowance (25-year, 24-hour storm event of 7.5") (Tanks are enclosed within a building. Therefore, rainfall allowance is neglected.) 	=	NA
	Total Capacity Required	=	1,903 gallons

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

WHEEL WASH AND TANK STORAGE - UNIT 900 Containment Area No. 2 (Tank T-903) (Reference Drawing Nos. 0900-020-001 & 0900-030-001)

I.	Secondary Containment Capacity A. Capacity within the Perimeter Containment Curb [88'-8" × 18'-10" × (233.00' - 232.33')]	=	1,119 cu. ft.
	B. Capacity of Sloped Floor (below 232.33') (Based on volume of a truncated pyramid) $= h/3 \times (A1 + A2 + (A1 \times A2)^{1/2})$ $[(1/3)(232.33' - 232.13') \times$		400 6
	((68'-8" × 18'-10")+(40' × 3')+(1293 sf × 120 sf)^1/2)]	=	120 cu. ft.
	C. Capacity in Sump [40' × 3' × 3'-5 1/2"]	=	415 cu. ft.
	Gross Secondary Containment Capacity	=	1,654 cu. ft.
	 D. Capacity Deductions 1) less volume of ramps [2 × ((1/2)(10' × 8") × 18'-10")] 	=	-126 cu. ft.
	Capacity Deductions Subtotal	=	-126 cu. ft.
	Net Secondary Containment Capacity	= or	1,528 cu. ft. 11,431 gallons
II.	Required Secondary Containment Capacity		
	A. Volume of Largest Tank [40' × 3' × 3'-5 1/2"]	=	3,104 gallons
	 B. Rainfall Allowance (25-year, 24-hour storm event of 7.5") (Tank is enclosed within a building. Therefore, rainfall allowance is neglected.) 	=	NA
	Total Capacity Required	=	3,104 gallons

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

WHEEL WASH AND TANK STORAGE - UNIT 900 Containment Area No. 3 (Tank T-904) (Reference Drawing Nos. 0900-020-001 & 0900-030-001)

I.	Secondary Containment Capacity A. Capacity within the Perimeter Containment Curb [88'-8" × 24'-2" × (233.00' - 232.33')]	=	1,436 cu. ft.
	 B. Capacity of Sloped Floor (below 232.33') (Based on volume of a truncated pyramid) = h/3 × (A1 + A2 + (A1×A2)^1/2)) [(1/3)(232.33' - 232.13') × ((68'-8" × 24'-2")+(40' × 3')+(1660 sf × 120 sf)^1/2)] 	=	148 cu. ft.
	$((00 - 0 - 24 - 2)^{-}(40 - 3)^{-}(1000 - 31 - 120 - 31)^{-}(12)]$	-	140 Cu. II.
	C. Capacity in Sump [40' × 3' × 3'-5 1/2"]	=	415 cu. ft.
	Gross Secondary Containment Capacity	=	2,000 cu. ft.
	D. Capacity Deductions 1) less volume of ramps $[2 \times ((1/2)(10' \times 8'') \times 24'-2'')]$	=	-162 cu. ft.
	Capacity Deductions Subtotal	=	-162 cu. ft.
	Net Secondary Containment Capacity	= or	1,838 cu. ft. 13,745 gallons
II.	Required Secondary Containment Capacity A. Volume of Largest Tank [40' × 3' × 3'-5 1/2"]	=	3,104 gallons
			o, io+ ganono
	 B. Rainfall Allowance (25-year, 24-hour storm event of 7.5") (Tank is enclosed within a building. Therefore, rainfall allowance is neglected.) 	=	NA
	Total Canadity Barwingd	_	3 104 collons
	Total Capacity Required	=	3,104 gallons

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

TANK MANAGEMENT - UNIT 1400

Containment Area No. 1 (Tanks T-1405 thru T-1420) (Reference Drawing Nos. 1400-020-001 & -003, -030-001 & 002, & -040-001 thru 003)

I.	Secondary Containment Capacity A. Capacity within the Perimeter Containment Wall [{((244'-8"×240'-8")-(½)(49'-7½"×49'-7½")) × (272.19'-269.94')} + {((243'-7"×239'-7")-(½)(49'-4"×49'-4"))×(269.94'-269.69')}]	=	144,005	cu. ft.
	B. Capacity of Sloped Floor (below 269.69') [((243'-7"×239'-7")-(½)(49'-4"×49'-4")) × ½(269.69'-268.07')]	=	46,284	cu. ft.
	C. Capacity in Sumps [4' × 4' × 5']	=	80	cu. ft.
	Gross Secondary Containment Capacity	=	190,368	cu. ft.
	 D. Capacity Deductions less volume of tank pedestals [(270.92-½(269.69'+268.07')) × {(12×(½×8×16'-9 ¼"×20'-3") + (4×(½×8×22'-1 ¾"×26'-9"))]] 2) less volume of tank cylinders ((4(pi)(26')² + 12(pi)(19.5')²) × (272.19' - 270.92')] 3) less volume of pump platform ((270.92' - 267.80') × (32' × 32')] 4) less volume of ramp ((½)(272.19' - 269.50') × 26' × 12'] 5) less volume of pump pedestals ((270.19' - 268.32') × 4'-10" × 1'-9" × 2] 6) less volume of pipe rack pedestals ((270.92-½(269.69'+268.07')) × (71 × 1'-6" × 1'-4")] 		-32	cu. ft.
	Capacity Deductions Subtotal	=	-85,520	cu. ft.
	Net Secondary Containment Capacity		104,848 784,264	

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

TANK MANAGEMENT - UNIT 1400

Containment Area No. 1 (Tanks T-1405 thru T-1420) (Reference Drawing Nos. 1400-020-001 & -003, -030-001 & 002, & -040-001 thru 003)

II.	Required Secondary Containment Capacity A. Volume of Largest Tank	= 508,333 gallons
	 B. Rainfall Allowance (25-year, 24-hour storm event of 7.5") (Net area not covered by canopies or guttered tank roofs) 1) Total Tank Farm Area 	
	´ [(244'-8" × 240'-8")-(½)(49'-7½" × 49'-7½")] 2) less Guttered Area of Tank Roofs (all but approx. 1/6 of roof area)	57,653 sf)
	[5/6 × (4(pi)(26') ² + 12(pi)(19.5') ²)]	-19,025 sf
	3) less Area Covered by Canopy (over pipe racks, most of perimeter) -16,823 sf
	Net Area Exposed to Rainfall	= 21,805 sf
	Net Rainfall Allowance Volume Calculation [21,805 sq. ft. × 7.5"/12" × 7.48 gal/ft³] 	= 101,939 gallons

Total Capacity Required = 610,272 gallons

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

LEACHATE TANK STORAGE - UNIT 1700A Containment Area No. 1 (Tank T-A) (Reference Drawing Nos. 1700-020-002 & 1700-040-001)

I.	Secondary Containment Capacity A. Capacity within the Perimeter Containment Curb [21'-8" × 17'-8" × 3'-11 3/4"]	=	1,524 cu. ft.
	B. Capacity of Sloped Floor	=	NA
	C. Capacity in Sump	=	NA
	Gross Secondary Containment Capacity	=	1,524 cu. ft.
	 D. Capacity Deductions less volume of existing tank supports 2 × (11' × 1'-6" × 8"/12)] 2) less volume of new tank supports (15'-5" - (2 × 1'-6")) × 6'-1" × 8"/12] 3) less volume of pump pad * 2' × 8"/12] 4) less volume of column supports * 4 × 10" × 10" × 3'-11 3/4"] Capacity Deductions Subtotal Net Secondary Containment Capacity	=	-22 cu. ft. -51 cu. ft. -8 cu. ft. -11 cu. ft. -92 cu. ft. 1,432 cu. ft.
II.	Required Secondary Containment Capacity	or	10,714 gallons
	A. Volume of Largest Tank	=	2,500 gallons
	 B. Rainfall Allowance (25-year, 24-hour storm event of 7.5") (Tank is enclosed within a building. Therefore, rainfall allowance is neglected.) 	=	NA
	Total Capacity Required	=	2,500 gallons

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

LEACHATE TANK STORAGE - UNIT 1700B Containment Area No. 2 (Tanks T-1701 and T-1702) (Reference Drawing No. 1700-020-003)

I.	Secondary Containment Capacity A. Capacity within the Perimeter Containment Curb [50' × 40' × 2'-6"]	=	5,000 cu. ft.
	B. Capacity of Sloped Floor	=	NA
	C. Capacity in Sump [3' × 3' × 1']	=	9 cu. ft.
	Gross Secondary Containment Capacity	=	5,009 cu. ft.
	 D. Capacity Deductions less volume of pump pads 2 × 5'-4" × 2'-5" × 1'-6"] 2) less volume of tank supports 4 × 1'-6" × 6"] 3) less volume of column supports 8 × 1'-4" × 1'-4" × 2'-6"] Capacity Deductions Subtotal Net Secondary Containment Capacity	=	-39 cu. ft. -50 cu. ft. -35 cu. ft. -124 cu. ft. 4,885 cu. ft.
		or	36,543 gallons
II.	Required Secondary Containment Capacity A. Volume of Largest Tank	=	25,379 gallons
	 B. Rainfall Allowance (25-year, 24-hour storm event of 7.5") (Tanks are enclosed within a building. Therefore, rainfall allowance is neglected.) 	=	NA
	Total Capacity Required	=	25,379 gallons

CALCULATIONS OF SECONDARY CONTAINMENT CAPACITY

LEACHATE TANK STORAGE - UNIT 1700C Containment Area No. 3 (Tanks T-1703 and T-1704) (Reference Drawing No. 1700-020-004)

I.	Secondary Containment Capacity A. Capacity within the Perimeter Containment Curb [50' × 40' × 2'-6"]	=	5,000 cu. ft.
	B. Capacity of Sloped Floor	=	NA
	C. Capacity in Sump [3' × 3' × 1']	=	9 cu. ft.
	Gross Secondary Containment Capacity	=	5,009 cu. ft.
	 D. Capacity Deductions less volume of pump pads 2 × 5'-4" × 2'-5" × 1'-6"] 2) less volume of tank supports 4 × 1'-6" × 6"] 3) less volume of column supports 8 × 1'-4" × 1'-4" × 2'-6"] Capacity Deductions Subtotal Net Secondary Containment Consolity		-39 cu. ft. -50 cu. ft. -35 cu. ft. -124 cu. ft.
	Net Secondary Containment Capacity	= or	4,885 cu. ft. 36,543 gallons
II.	Required Secondary Containment Capacity A. Volume of Largest Tank	=	25,379 gallons
	B. Rainfall Allowance (25-year, 24-hour storm event of 7.5") (Tanks are enclosed within a building. Therefore, rainfall allowance is neglected.)	=	NA
	Total Capacity Required	=	25,379 gallons

APPENDIX D-2-3 SECTION D-2

SUMMARY OF TANK DESIGN SHELL THICKNESSES

Revision No. 5.0

TABLE D-2-3.1 SUMMARY OF TANK DESIGN SHELL THICKNESSES CHEMICAL WASTE MANAGEMENT, INC., EMELLE, ALABAMA FACILITY

										Min. Co	do Thia	knoss	Minimum	Design	Thickness	for New	/ Tank					
Calculate								(in.) ³ without Design			5				Calculated Minimum Thickness (in.) ⁵							
							Shell	Course	,		Min. Corr. Allow.					II Cours	e			Sł	Shell Course	
Tank No.	Design Code	Material of Construction	Design Min. ¹ Corrosion Allowance (inches)	Roof (or Head)	Bottom (or Cone)	One (or Base)	Two (or at Top)	Three	Four	Roof (or Head)	Bottom (or Cone)	Shell	Roof (or Head)	Bottom (or Cone)	One (or Base)	Two (or at Top)	Three/Four	Roof (or Head)	Bottom (or Cone)	One (or Base)	Two (or at Top)	Three/Four
CONTAINER & TAN		NT UNIT 520	<u>)</u>																			
T-520	API-620	CS	0.1250	NA	NA	0.055				3/16	3/16	3/16	3/8	3/8	3/8			NA	NA	0.320		
CONTAINER AND T	ANK MANAGEN		600																			
T-634 thru T-636	API-650	CS	0.0625	NA	NA	0.042				3/16	1/4	3/16	1/4	5/16	5/16			NA	NA	0.271		
LABORATORY TAN	K STORAGE UI	NIT 708											0.135		0.135							
T-725	UL-58 / sti-P3		NA	NA		NA							(10 ga.)	NA	(10 ga.)							
WHEEL WASH & TA	NK STORAGE	UNIT 900																				
T-901 & T-902	API-620	CS	0.0625	NA	0.017	0.012				3/16	3/16	3/16	3/16 6	1/4	1/4			NA	0.233	0.238		
T-903 & T-904	ACI/AISC	CS	0.1250	NA	0.093	0.093				NA	NA	NA	NA	1/2	1/2			NA	0.407	0.407		
CONTAINMENT BUI	LDING/CONTA	INER & TAN	K MANAGEM	ENT UN	IIT 1200	Δ																
T-1201A & T-1202A		CS	0.1250	NA	0.429	_				NA	NA	NA	NA	1.00	1.00			NA	0.571	0.571		
TANK MANAGEMEN	NT UNIT 1400																					
T-1405 thru T-1408	API-650	CS	0.0625	NA	NA	0.268	0.202	0.135	0.068	3/16	1/4	1/4	5/16	5/16	7/16	5/16	5/16	NA	NA	0.170	0.111	0.178
T-1409 thru T-1420	API-650	CS	0.0625	NA	NA	0.176	0.118	0.060		3/16	1/4	3/16	1/4	5/16	5/16	1/4	1/4	NA	NA	0.137	0.132	0.190
LEACHATE TANK S	TORAGE UNITS	S 1700																				
T-A	ASTM 1998	XLHDPE	0.1250	NA	NA	NA				0.187	NA	0.187	3/4	NA	3/4			NA	NA	NA		
T-1701 thru T-1704	UL-142	CS	0.0625	NA	NA	NA				0.24	NA	0.24	3/8	NA	3/8			NA	NA	NA		

Notes:

1. The Design Minimum Corrosion Allowance is the thickness specified by the Owner (or Engineer) prior to fabrication as the minimum allowance to be included in the design calculations for determining the tank shell thickness, prior to any rounding to nominal shell thickness commonly used in fabrication.

2. The Calculated Minimum Thickness is the shell thickness calculated by the methods in the applicable code as the minimum required for structural integrity for the tank design conditions.

3. The Minimum Code Thickness is the shell thickness specified within the applicable code as the minimum required for fabrication or erection of the tank, not including any corrosion allowance.

4. The Minimum Design Thickness is the specified shell thickness for tank fabrication, considering all shell thickness calculations, code requirements, and the Design Minimum Corrosion Allowance.

5. The Allowable Service Life Corrosion is the difference between the Minimum Design Thickness and the Calculated Minimum Thickness, indicated only where both of these thicknesses are available to determine the difference.

The Allowable Service Life Corrosion is analogous to an actual corrosion allowance and should always be equal to or greater than the Design Minimum Corrosion Allowance.

6. T-901 and T-902 are internally coated, so no corrosion allowance was included for the roof, which is specified at the minimum code thickness of 3/16".

7. CS is Carbon Steel.

APPENDIX D-2-4 SECTION D-2

TANK SYSTEM DESIGN ASSESSMENTS AND CERTIFICATIONS

Revision No. 5.0

APPENDIX D-2-4 SECTION D-2 TANK SYSTEM DESIGN ASSESSMENTS AND CERTIFICATIONS

TABLE OF CONTENTS

D-2-4-1	Introduction	1
	Tank System Design Assessments and Certifications Included within this RCRA Part Application	1
	Tank System Design Assessments and Certifications Maintained within the Facility g Record	2

LIST OF ATTACHMENTS

- Attachment D-2-4-1 Attachment D-2-4-2 Attachment D-2-4-3 Attachment D-2-4-4 Attachment D-2-4-5 Attachment D-2-4-6 Attachment D-2-4-7
- Tank Design Assessment and Certification Unit 520 Tank Design Assessment and Certification - Unit 600
- Tank Design Assessment and Certification Unit 708
- Tank Design Assessment and Certification Unit 900
- Tank Design Assessment and Certification Unit 1000
- Tank Design Assessment and Certification Unit 1200A
- Tank Design Assessment and Certification Unit 1400
- Tank Design Assessment and Certification Units 1700A, B, & C

APPENDIX D-2-4

SECTION D-2

TANK SYSTEM DESIGN ASSESSMENTS AND CERTIFICATIONS

5 **D-2-4-1 Introduction**

In accordance with the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), the Facility has obtained an assessment of the design of each tank system for which construction commenced after July 14, 1986 at the Facility in which hazardous wastes are managed. These assessments have been reviewed by an independent, qualified, registered Alabama Professional Engineer and certified in accordance with 40 CFR 270.16(a) and ADEM Administrative Code Rule 335-14-8-.02(2)(d). The certifications attest that the assessment of the design of the tank system demonstrates that the tank system foundation, structural supports, seams, connections, and pressure controls are adequate, and that the tanks have sufficient structural strength and compatibility with the wastes to be managed and/or protection from corrosion so that they will not collapse, rupture or fail when properly installed, operated within the design limits, and properly inspected and maintained.

D-2-4-2 Tank System Design Assessments and Certifications Included within this RCRA Part B Permit Application

20

10

15

In accordance with the requirements of 40 CFR 264.192(g) and 40 CFR 270.16(a), and ADEM Administrative Code Rules 335-14-5-.10(3)(g) and 335-14-8-.02(7)(a), the design assessments and certifications, prepared by an independent, qualified, registered Alabama Professional Engineer for each tank system included within this RCRA Part B Permit Application, are provided in an attachment to this appendix as follows:

25

30

- Attachment D-2-4-1 Tank Design Assessment and Certification Unit 520;
- Attachment D-2-4-2 Tank Design Assessment and Certification Unit 600;
- Attachment D-2-4-3 Tank Design Assessment and Certification Unit 708;
- Attachment D-2-4-4 Tank Design Assessment and Certification Unit 900;
- Attachment D-2-4-5 Tank Design Assessment and Certification Unit 1200A;
- Attachment D-2-4-6 Tank Design Assessment and Certification Unit 1400; &
 - Attachment D-2-4-7 Tank Design Assessment and Certification Units 1700A, B, & C.

D-2-4-3 Tank System Design Assessments and Certifications Maintained within the Facility Operating Record

The tank system design assessments and certifications provided within this appendix are not intended to invalidate or replace the previously prepared tank system design assessments and certifications maintained within the Facility Operating Record for the following tank systems at the Facility for which construction commenced between July 14, 1986 and the date of this RCRA Part B Permit Application:

- Tank T-520 in Unit 520 (Attachment D-2-4-1);
- Tanks T-634, T-635, and T-636 in Unit 600 (Attachment D-2-4-2);
- Tank T-725 in Unit 708 (Attachment D-2-4-3);
- Tanks T-901 through T-904 in Unit 900 (Attachment D-2-4-4);
- Tanks T-1201A and T-1202A in Unit 1200A (Attachment D-2-4-5);
- Tanks T-1405 through T-1420 in Unit 1400 (Attachment D-2-4-6); and
- Tanks T-A & T-1701 through T-1704 in Units 1700A, B, & C (Attachment D-2-4-7).

The tank system design assessments and certifications provided in the above listed attachments were prepared for the sake of consistency and completeness of this RCRA Part B Permit Application and to reflect current Facility practices and procedures. The tank system design assessments provided in these attachments shall be used by the Facility as necessary for all future modifications, repairs or replacements of tanks or tank system components within these existing tank systems.

In accordance with the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative
Code Rule 335-14-5-.10(3)(a), the Facility also obtains an assessment and certification for the design of new tank systems in which hazardous waste are managed in accordance with 40 CFR 262.34(a)(1)(ii) and ADEM Administrative Code Rule 335-14-3-.03(5)(a)1.(ii). In accordance with the requirements of 40 CFR 264.192(g) and 40 CFR 270.16(a) and ADEM Administrative Code Rules 335-14-5-.10(3)(g), 335-14-2(2)(d) and 335-14-8-.02(7)(a), a design assessment and certification, prepared by an independent, qualified, registered Alabama Professional Engineers for the 02 class approximate accordance to the protect of the other tank of the protect of the other tank of the other tank of the protect of the other tank of the other tank of the protect of the other tank.

Engineer for the 90-day generator accumulation tank system in Laboratory Tank Storage Unit 708 (Tank T-726) is maintained within the Facility Operating Record.

[End of Appendix D-2-4 Text]

AppendixD-2-4Text.docx

Section D-2, Appendix D-2-4 Page 2

10

15

35

5

ATTACHMENT D-2-4-1 APPENDIX D-2-4 SECTION D-2

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 520

Revision No. 5.0

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 520 TANK T-520

TABLE OF CONTENTS

Ι.	Introduction	1
II.	Tank Design	1
III.	Tank Foundation Design	2
IV.	Ancillary Equipment Design	2
V.	Secondary Containment System Design	3
VI.	Tank Venting Requirements	3
VII	. Hazardous Characteristics of the Waste Managed	4
VII	I. Certification of Tank System Design Assessment	5

LIST OF EXHIBITS

- Exhibit A Tank Data Sheets
- Exhibit B Tank Design Calculations
- Exhibit C Tank Foundation Design Calculations
- Exhibit D Calculations of Tank Venting Requirements
- Exhibit E Tank Material of Construction Compatibility Information

LIST OF REFERENCED DRAWINGS

0520-010-001	Container & Tank Management Unit 520 - P&ID
0520-020-001	Container & Tank Management Unit 520 - Plan View
0520-030-001	Container & Tank Management Unit 520 - Sections
0520-040-001	Container & Tank Management Unit 520 - Details
0520-080-020	Tank Data Sheet - T-520

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 520

TANK T-520

I. Introduction

15

This document provides the assessment and certification for the design of the hazardous waste storage tank system at Tank Management Unit 520 at the Chemical Waste Management, Inc. Facility in Emelle, Sumter County, Alabama. The assessment was performed to address the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), regarding the design of the system within Tank Management Unit 520 which is comprised of the tanks (i.e., Tank T-520), the tank foundation, the associated ancillary equipment and the secondary containment system.

Tank Management Unit 520 is located just south of Unit 603 at the Facility as shown on Drawing No. 0100-020-001 in Appendix D-1 to Section D of the RCRA Part B Permit Application. The primary function of the tank system within Unit 520 is to enable the blending, mixing and/or bulking of organic waste liquids for loading and subsequent transfer off-site for solvent recovery, energy recovery, incineration or other appropriate treatment.

The following drawings were used in the preparation of this Assessment and Certification and are provided either in Exhibit A (Tank Data Sheets) or in Appendix D-1 to Section D of the RCRA Part B Permit Application:

Drawing No.	Drawing Title
0520-010-001	Container & Tank Management Unit 520 - P&ID
0520-020-001	Container & Tank Management Unit 520 - Plan View
0520-030-001	Container & Tank Management Unit 520 - Sections
0520-040-001	Container & Tank Management Unit 520 - Details
0520-080-020	Tank Data Sheet - T-520
	0520-010-001 0520-020-001 0520-030-001 0520-040-001

II. Tank Design

- Tank T-520 has been designed in accordance with the design codes and standards indicated within the DESIGN DATA section of the Tank Data Sheet (i.e., Drawing No. 0520-080-020) provided in Exhibit A to this tank system design assessment. The criteria utilized in the assessment of the design of the shell, structural support, and anchorage for Tank T-520 are also provided within the DESIGN DATA section of the Tank Data Sheet, as well as within the tank design calculations provided in Exhibit B to this tank system design assessment.
 - AttachD-2-4-1Text.docx

The calculations provided in Exhibit B to this tank system design assessment demonstrate that the tank shell, structural supports and anchorages are, as designed, adequate to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as applicable, at the design conditions indicated on the tank data sheets.

5

10

III. Tank Foundation Design

The design of the reinforced concrete foundation for Tank T-520 is indicated in Detail 7 on Drawing No. 0520-040-001 which is provided in Appendix D-1 to Section D of the RCRA Part B Permit Application. The criteria utilized in the assessment of the design of the foundation for Tank T-520 are provided within the tank foundation design calculations provided in Exhibit C to this tank system design assessment.

The tank foundation design calculations provided in Exhibit C demonstrate that the tank foundation is, as designed, adequate to support the load of the full tank and to withstand associated environmental stresses at the design conditions indicated on the tank data sheets and provided within foundation design calculations.

IV. Ancillary Equipment Design

All tank system ancillary piping systems shall be designed, installed and tested in accordance with the American Society of Mechanical Engineers (ASME) Standard B31.3, "Chemical Plant and Petroleum Refinery Piping", or an equivalent nationally recognized standard, and in accordance with recognized good engineering practices to ensure that they are supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

25

All other ancillary equipment for the tank system shall be designed, installed and tested in accordance with appropriate recognized standards, if any, and in accordance with recognized good engineering practices to ensure that it is supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

30

35

In order for this tank design assessment and associated certification to be maintained, and prior to the tank system being placed in use, the Facility shall ensure that the tank system ancillary equipment is properly installed and that all required inspections, tests and repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f). Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-

AttachD-2-4-1Text.docx

.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested.

5 V. Secondary Containment System Design

The design features of the secondary containment system for the tank system within Unit 520 are indicated on Drawing Nos. 0520-020-001, 0520-030-001, and 0520-040-001 which are located in Appendix D-1 to Section D of the RCRA Part B Permit Application. As shown on these drawings and in accordance with the applicable requirements of 40 CFR 264.193 and ADEM Administrative Code Rule 335-14-5-.10(4), the secondary containment system design is comprised of a reinforced concrete base, with all joints sealed with chemical-resistant waterstops, and all concrete surfaces sealed with chemical-resistant concrete coating system.

Information on the concrete coatings available for use on the secondary containment system is

provided within Appendix D-1-3 to Section D-1 of the RCRA Part B Permit Application.

15

10

Calculations demonstrating that the design secondary containment capacity meets or exceeds the applicable requirements 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e) are provided in Appendix D-2-2 to Section D-2 of the RCRA Part B Permit Application.

VI. Tank Venting Requirements

- As indicated on the P&ID for Unit 520 (i.e., Drawing No. 0520-010-001 which is located in Appendix D-1 to Section D of the RCRA Part B Permit Application), Tank T-520 is designed as closed top tank that passively vents through a closed system to an activated carbon adsorber. The P&ID and the Tank Data Sheet (i.e., Drawing No. 0520-080-020) provided in Exhibit A to this tank system design assessment also indicate that the designed tank vent system includes a pressure/vacuum relief valve (i.e., conservation vent) and an emergency relief vent on the tank. The Tank Data Sheet specifies the diameter of the pressure/vacuum relief valve nozzle and the emergency vent nozzle on the tank.
- The requirements for normal (i.e., liquid displacement and thermal effects) and emergency (i.e., fire exposure) venting capacities for the Unit 520 tank were evaluated in accordance with American Petroleum Institute Standard 2000, Venting Atmospheric and Low-Pressure Storage Tank (i.e., API 2000). As shown in the venting calculations provided in Exhibit D to this tank system design assessment, the size of the conservation vent nozzle on the tank is adequate to allow the tank under normal conditions to be maintained within the design limitations for pressure and vacuum as specified on the Tank Data Sheet provided in Exhibit A and within the tank design calculations provided in Exhibit B to this tank system design assessment. The venting calculations provided in Exhibit D also demonstrate that the size of the emergency vent

```
AttachD-2-4-1Text.docx
```

nozzle on the tank is adequate to allow the tank to be maintained within the design limitations for pressure in the event of exposure to fire. The venting calculations provided in Exhibit D to this tank system design assessment also indicate the design pressure and vacuum settings for the conservation vent, the design pressure setting for the emergency relief vent, and the design maximum tank fill and withdrawal rates which were used in the evaluation of the tank venting requirements.

5

10

VII. Hazardous Characteristics of the Waste Managed

In accordance with the requirements of 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., this section presents an evaluation of the compatibility of the wastes managed within the Unit 520 tank system with the materials of construction of Tank T-520 and the ancillary equipment (i.e., pumps and piping) to determine their suitability for service in this unit.

The types of wastes managed within Tank T-520 will primarily be ignitable wastes. However,
due to the derived-from and mixture rules, virtually all types of hazardous wastes listed and
identified in 40 CFR Part 261 and ADEM Administrative Code Rule 335-14-2, except for
corrosive and reactive wastes, may be managed in the T-520 tank system as shown in
Appendix D-2-1 of this Application. In addition, non-hazardous wastes and treatment residues
from listed wastes may also be managed in Tank T-520. Tank T-520 and the ancillary
equipment that contact wastes within this system are primarily constructed of carbon steel
without internal corrosion protection.

Exhibit E to this tank system design assessment presents information which provides an indication of the relative compatibility of carbon steel with a wide variety of chemical compounds and other substances. The table in Exhibit E provides corrosion/compatibility information for 25 carbon steel exposed to pure chemical compounds which, in general, tend to have a more severe corrosive effect than wastes which contain mixtures and complexes of these compounds. Although this table may not provide corrosion data and service recommendations for all of the potential constituents of the wastes or waste mixtures which may be managed within the tank system in Unit 520, the table does demonstrate that carbon steel is generally 30 compatible with and, under normal conditions, should not experience an accelerated rate of corrosion or deterioration when exposed to a majority of the types and classes of wastes which are managed within the Unit 520 tank system. In addition to the compatibility/corrosion data provided in Exhibit E, the compatibility of carbon steel with the types of ignitable wastes managed within Unit 520 is further validated by the empirical data provided by many years of 35 comparable service applications within a variety of units at the Facility.

Based on the information provided in Exhibit E of this tank system design assessment and the empirical data compiled at the Facility for comparable service applications, it is the conclusion of

AttachD-2-4-1Text.docx

this evaluation that the carbon steel tank system components are generally compatible with the types of waste managed within the Unit 520 tank system. It is further concluded that these materials of construction are suitable for this service if the tank system is operated within the design limitations set forth within this assessment, and that, if the tank system is managed in accordance with the following minimum practices, these materials of construction should not experience an accelerated rate of corrosion or deterioration which may result in a catastrophic failure of the tank system, throughout its useful life:

- Prior to placement of a waste into the tank system the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. References other than Exhibit E of this document, such as publications by the National Association of Corrosion Engineers (NACE) or other
 recognized sources of corrosion data, may also be used to evaluate compatibilities. The Facility shall prohibit the placement into the Unit 520 tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components, including hazardous wastes that exhibit the characteristic of corrosivity as defined in 40 CFR 261.22 and ADEM Administrative Code Rule 335-14-2-.03(3); and
 - The Facility shall perform an annual inspection of the tank shell to ensure that minimum code thicknesses are maintained and that adequate corrosion allowance is available for continued service.

VIII. Certification of Tank System Design Assessment

In accordance with the requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), this section provides a certification by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), that an assessment of the design of the following tank system demonstrates that the tank system foundation, structural supports, seams, connections, and pressure controls are adequate, and that the tank has sufficient structural strength, compatibility with the wastes to be managed and/or protection from corrosion so that it will not collapse, rupture or fail, if properly installed, operated within the design limits, and properly inspected and maintained:

	Tank System Location:	Chemical Waste Management, Inc.
35		Emelle, Alabama
	Tank System Identification:	Tank Management Unit 520
	Applicable Tank:	T-520

5

At a minimum, the assessment of the tank system design, which is incorporated herein by reference, addresses and considers the following factors with respect to the intended use of the tank system:

- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tank design has been evaluated for structural integrity with regards to the ability of the designed tank shell, structural supports and anchorages to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as applicable;
 - In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tank has been evaluated with regards to the adequacy of the designed tank to provide the necessary capacity for normal and emergency venting;
 - In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which piping and other ancillary equipment shall be designed and constructed to maintain this certification;
 - In accordance with 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., the assessment of the tank system design considers the compatibility of the tank's materials of construction and/or internal coatings with the types of hazardous wastes to be managed;
 - In accordance with the applicable requirements of 40 CFR 264.192(a)(5) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)5., the assessment of the tank system design considers the ability of the designed tank system foundation to support the load of the full tank and to withstand associated environmental stresses; and
 - The assessment of the tank system design considers the adequacy of the capacity of the designed tank secondary containment system as required by the applicable requirements of 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e).
- 35

15

20

25

30

In order for this certification to be maintained, the Facility shall comply with the applicable requirements of 40 CFR 264 Subpart J and ADEM Administrative Code Rule 335-14-5-.10, and shall perform all routine management procedures, periodic inspections and reviews, and tank

AttachD-2-4-1Text.docx

system functionality and integrity tests as required by the permit including, but not limited to, the following:

- The Facility shall ensure that the tank system is properly installed and that, prior to • placing the tank system in use, all required inspections, tests and necessary repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f);
- Prior to the tank system being placed in use, the Facility shall obtain and place • within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested;
 - Prior to placement of a waste into the tank system, the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the Unit 520 tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components, including hazardous wastes that exhibit the characteristic of corrosivity as defined in 40 CFR 261.22 and ADEM Administrative Code Rule 335-14-2-.03(3);
- Prior to placement of a waste into the tank system, the Facility shall verify the 25 specific gravity of the waste in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the tank system of any waste that has a specific gravity that exceeds the design maximum value specified within the tank system design assessment; 30
 - Prior to placement of a waste into the tank system, the Facility shall verify in . accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application that the treatment of the waste will not cause temperatures within the tank system to exceed the design maximum value specified within the tank system design assessment;
 - The Facility shall perform a daily inspection of the visible aboveground portions of the tank exterior to detect excessive corrosion or deterioration;

20

5

10

15

35

- The Facility shall perform a daily inspection of the visible aboveground portions of the tank secondary containment system to detect leakable cracks or gaps, or excessive deterioration of the concrete base and/or chemical-resistant concrete coatings;
- The Facility shall perform an annual inspection of the tank shell, as described in Subsection F-2-6 of Section F-2 of the RCRA Part B Permit Application, to ensure that minimum code thicknesses are maintained and that adequate corrosion allowance is available for continued service;
 - The Facility shall perform an annual inspection of the tank structural supports and anchorages to ensure that their integrity is maintained;
 - The Facility shall perform a periodic inspection of the tank venting and emergency relief devices to ensure that they are in good working order with the appropriate vent or relief settings to maintain the tank within the design limits for pressure as specified within the tank system design assessment. The frequencies and procedures for inspection of all tank venting devices shall be as recommended by the manufacturer;
 - The Facility shall perform a periodic inspection of the tank level sensing, overfill control devices and associated interlocks to ensure that they are in good working order with the appropriate settings to prevent overfilling of the tank. The frequencies and procedures for inspection of all tank level sensing and overfill control devices shall be as recommended by the manufacturer;
 - The Facility shall perform a periodic inspection of any other operational controls for the tank system to ensure that they are in good working order with the appropriate settings to maintain the tank within its design limits as specified within the tank system design assessment. The frequencies and procedures for inspection of other tank system operational controls shall be as recommended by the manufacturer;
 - The Facility shall perform periodic inspections of the integrity of any tank system grounding and lightning protection systems; and
- 30

35

5

10

15

20

25

• The Facility shall perform periodic inspections of the integrity of any tank system fire protection systems.

Based on the information provided within the tank system design assessment and supporting documentation, the design of Tank T-520 within Tank Management Unit 520 meets the current RCRA requirements relative to the design of new hazardous waste tank systems. The design assessment addresses only the applicable requirements of 40 CFR 264.192 and 40 CFR 264.193, and ADEM Administrative Code Rules 335-14-5-.10(3) and (4), and does not consider

compliance with other codes or regulations, including, but not limited to, the requirements of the Occupational Safety and Health Act (OSHA).

With regards to the assessment and certification of the design of hazardous waste tank systems
in accordance with the applicable requirements of 40 CFR 264.192(a) and (g), and ADEM Administrative Code Rules 335-14-5-.10(3)(a) and (g), I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and

imprisonment for knowing violations.

15

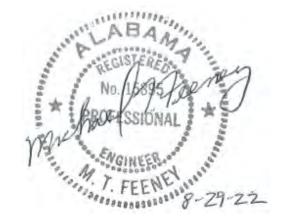
William O. Hagerman, P.E. Alabama P.E. No.: 14014 President ETI Corporation 6799 Great Oaks Road, Suite 100

20 Memphis, Tennessee 38138-2500

298111. A.I. 3-1-95

This certification was originally submitted in 1995. As part of the 2002 Part B Application Renewal, revisions were made to the text in this attachment. These revisions consisted primarily of renaming the section for the Waste Analysis Plan to Section C to maintain consistency with the other Sections contained within this Part B Permit Application. No revisions were made to this attachment during this Part B Permit Application renewal process (Revision 5.0).

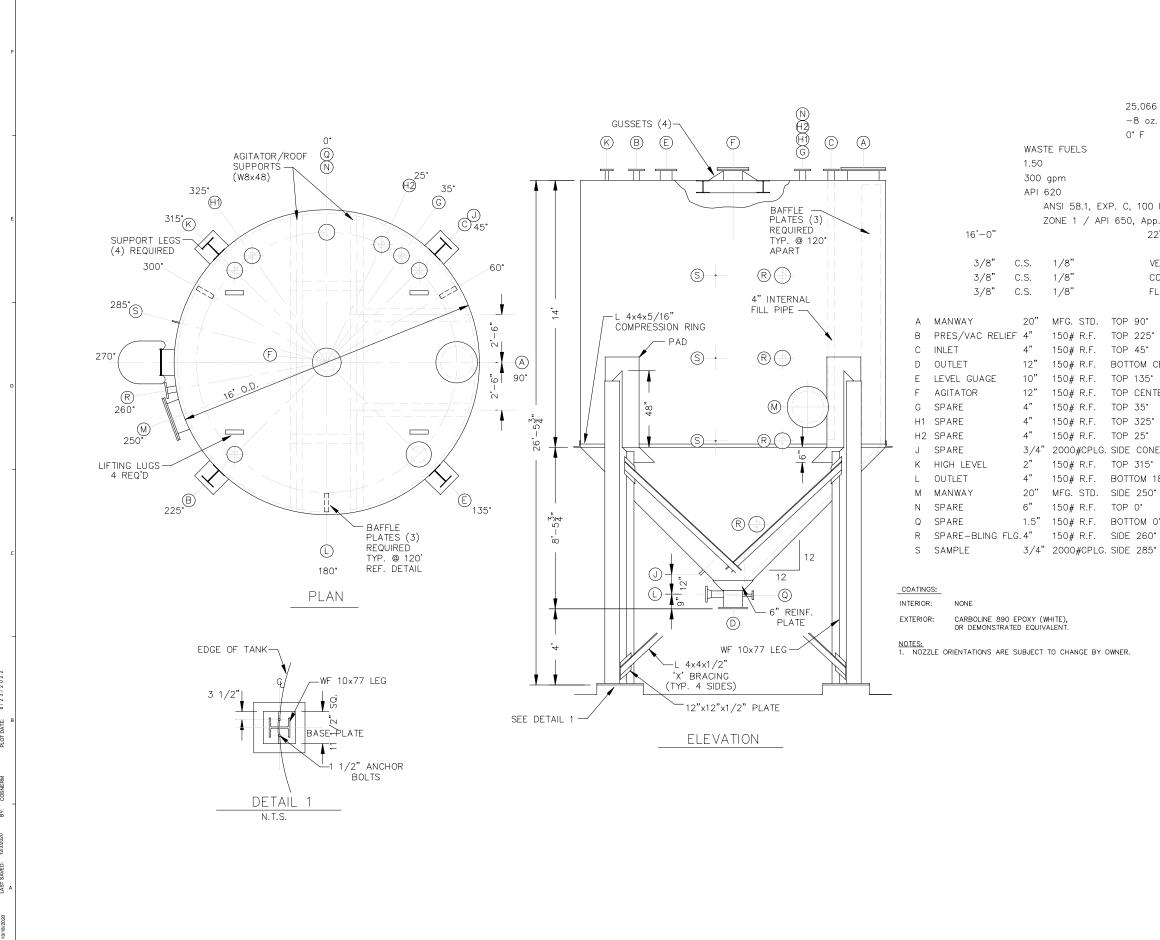
30


35

With regards to the revisions noted above, I certify under penalty of law that these modifications were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Michael T. Feeney, P.E. Alabama P.E. No.: 15895 Jacobs Engineering Group Inc. Ten 10th Street NW Atlanta, Georgia 30309

5


10

[End of Attachment D-2-4-1 Text]

EXHIBIT A

TANK DATA SHEETS

		25,066 gal.	
		-8 oz. / +16 0° F	ò az. 150° F
STI	E FUELS	5 1	
0			24"
	gpm		300 gpm
6		P. C, 100 MPH	0.70
Z	ONE 1 / AP	1 650, App. E 22'-5 3/	/4"
	1/8"	VERTICAL	14'-0"
	1/8"	CONE	8'-5 3/4"
	1/8"	FLAT	_
,	MFG. STD.	TOP 90*	EMER. RELIEF
	150# R.F.		FLAME ARST.
	150# R.F.		W/ FILL PIPE
		BOTTOM CENTER	
		TOP 135°	-
	150# R.F.	TOP CENTER	W/ GUSSETS
	150# R.F.	TOP 35°	BLIND FLG.
		TOP 325*	BLIND FLG.
	"	TOP 25"	BLIND FLG.
4"		SIDE CONE @ 45	₩/ PLUG
	150# R.F.		_
,	150# R.F. MFG. STD.	BOTTOM 180° SIDE 250°	-
	MFG. STD. 150# R.F.	TOP 0°	– Blind Flg.
"	150# R.F. 150# R.F.		BLIND FLG. BLIND FLG.
	150# R.F.		4 REQ'D
4"			3 REQ'D

		Jacobs			10 Tenth Street	Suter 14:00 Attantia, GA 30309 404.978.76:00					
					NUI KELEASEU FUK	CONSTRUCTION					
			WASTE MANAGEMENT								
RCRA PART B PERMIT APPLICATION		CHEMICAL WASTE MANAGEMENT INC.		SUMTER COUNTY, AL							
				RCRA PART B PERMIT RENEW AL		REVISION DESCRIPTION					
				08/22		DATE					
	G WHEN	PLOTTED		IS O	NE IN	E REV					
THIS LINE IS ONE INCH LONG WHEN PLOTTED FULL SCALE THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE APPLICABLE OR GOVERNING TECHNICAL SPECIFICATIONS AND OTHER CONTRACT DOCUMENTS.											
PROJECT NO: D3279702 DATE: AUGUST 2022 DISC. LEADI: DESIGNER: CHECKER: MTF RAK SB T											
MTF RAK SBT SHEET TITLE TANK DATA SHEET - T-520											
SHEET	0520	-080-	02	0							

EXHIBIT B

TANK DESIGN CALCULATIONS

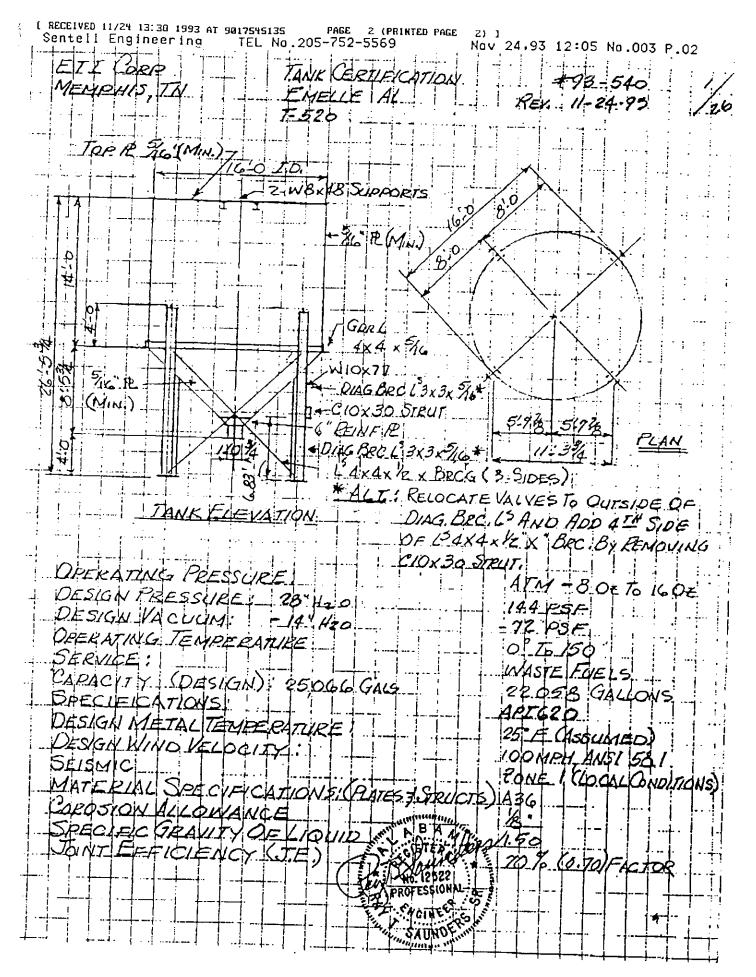


Exhibit B Page 1 of 22

(RECEIVED 11/24 13:39 1993 AT 9017545135 PAGE 3 (PR Sentell Engineering TEL No.205-752-5569 3 (PRINTED PAGE 3)] Nov 24,93 12:05 No.003 P.03 TANK CERTIFICATION ETICORP £93 540 MEMPHIS TN EMELLE AL REU 11-24-93 7.5201 KINGWALL REQUIREMENTS (API 650) SIMILARTO API 620 METHOD) SHELL SHT#3 FOR API 620 CALCS.) SEE NOTE: USE NOMINAL DIMENSIONS DEGO ', 3/16" R MIN REQD LESS CA TANK AREA $(16)^{2}(0.7854) = 201.06^{41}$ $t = \frac{2 k_0 D (H-Y) G}{E 2 1,000} + CA$ $C_{IR} = \pi D = \pi K_0 O' = 50.27$ VoL = 2814.84 + 424.41 = 2.6 (16.0) (14-1) (15) + 0.125 = 0.1802 = 3739.25 CAPACITY = 24231 GALS 0.70(21,000) < == + /8= LIQ.WT. = 303/94 # = .04 + 0.125" = 0.129" = 36" MINITCA 2.6 D(H-1)G= 2.6 (6.0)(14-1X1.5) USETIC +18 CA = 76 & MINIMUM - 4326.41 PSI < 15,000 psi 1. OK ROOF STEEL REQUIREMENTS KSEE SHEET + FOR CALCS.) DEAD LOAD: 5,25 PSF WIT. DAR & APPURT W/O CA IVE LOAD : 25 PSF DESIGN PRESSURES: 28+420 = 1.0 psi = 144.0.PSF MINUMUM RE THICKNESS SHALL BE FICH + CA = 9/16 + 18 9/16" MINIMUM EXTERNAL FORCES = (25,0 PSF + 5,25 PSF)/1414" = 0.21 ps1 4 1,0, ps1 TATERNAL FORCES = Y.O | PSU WILL GOVERN DESIGN PRESSURES PLATE STRESS: 1. ASSUME THE THE THERE BASE DW. DESIGN OF WELDED PLATE STRUCTUR (BY BLODGE)

Exhibit B Page 2 of 22

(RECEIVED 11/24 13:40 1993 AT 9017545135 PAGE 4 (PRINTED PAGE Sentell Engineering TEL No.205-752-5569 4) J Nov 24.93 12:05 No.003 P.04 I LORA 7.4 NK ÆRT/ 1-24-93 QHĽS. <u>, ----</u> 13/20 SHELL RINGWALL REQUIREMENTS RIG20 (SIMILAR TO ARI A 650) 4102# $R_{c} = R_{2} = B'(r_{2}) = 96'$ W = TOP SHELL OBS R= 43(14.0)(1.5) = 9.03 ps1 0 6% DETAIL 6 068 = \$03,194# 28953 A= 1854 (10x12) Ŧ. Pa (IP+ W+F 77.= 96" (1.00 psc. 9 303 194 10.68 24 杤 9 55 2 568,37,05i 17 5000,054 0.04 6 7/6 THE R 56837.ps MINIMUM 5000+ 0.04 " + 0.125 TIS MINIMON 8 CA Ø. ŧ 76 SAUNDE Exhibit B

Page 3 of 22

[RECEIVED 11/24 13:41 1993 AT 9017545135 17545135 PAGE 5 (PRINTED PAGE TEL No.205-752-5569 5) 1 Nov 24,93 12:05 No.003 P.05 Sentell Engineering TANK GERTIEICATION ETI CORP. #93-540 Rev 11-24-93 EMELLE AL MEMPHIS, TN T520 PLATE STRESS (CONT'D) 3. ASSUME EDGES FIXED AND ALMIFORM LOAD 4. ASSUME WBX48 BEAM REINFORCEMENT PLATE STRESS @ CENTER $G_{\mu} = G_{t} = -0.488 \text{ pr}^2 = 0.488(1.0)(16.0 \times 12^{\circ})^2 = 511,705 \text{ ps}$ $t^2 = (.0.1875^{\circ})^2 = 15000 \text{ ps}$ REINFORCEMENT IS REQUIRED. PLAJE STRESS @ EDGE $\mathcal{O}_{F} = 3 \mu$ 3(1.0 psi)(16 0×12' 4(0,1875") 2 786,432 psi >1500psi REINFORCEMENT IS REQUIRED 69 2.93 是"他" W8×48 PROPS Ò. <u>ш</u>, 8,5 - K/8x48 1:6 116 1-6 133 X6/ 5 <u>409</u> 15.0 PART ARN AREA MOM 354 0.0938 361×12 7656 2.8.24 u/8k48 375 125. bd **†**α'' 312 126 PARI ĄĮ 9374 14.48 12 0.0392 241 4063 39.64 WBX4A 368.00 Ă1. 93 3.0312 = 524

Exhibit B Page 4 of 22

RECEIVED 11/24 13:42 1993 AT 9017545135 6 (PRINTED PAGE Nov 24.93 12:05 No.003 P.06 Sentell Engineering TEL No.205-752 5569 TANK CERTIFICATION ETI, CORP #08_540 MEMPHIS TN NELLE REV. 11-24-93 7.520 $\frac{9r^2}{6}(1+r) = \frac{144\,\text{PSF}(8.0)^2}{14\,\text{O}(1+0.11)} = 639.66^{\pm}$ -91 - 114 PSF (8.0) = 1152 # $M_{(EDGE)} =$ TOP PLATE STRESS CHECK W/REINF 639.7 (#(12) = 44.39 psi - 15,000 psi 172.93 3 tý. , OK $f_{B} = \frac{M}{5_{B}} = \frac{1152'\#(12')}{92.67''^{3}} = 149.17 \text{ psi} = 15,000 \text{ psi}.$ · OK BOTTOM R REQUIREMENTS (CONICAL AND ELEVATED) Min. R. THICKNESS = 376 SHELL the = 3/16" + 18" CA = 5/16 THE CONICAL BOTTOM SHACL BE CONICAL BOTT 76 + 18 CA = Fic Min. ED AS PART OF SHELL & SUSPENDED BOTTOM. FORMULAS PER STRUCTURAL ENGINEERS HANDEOOK (BY GAYLORD & KAYLORD) 16.0' 0 Y (Q- he Kane)(x + 2kc + Q Chrb) SPRING LINE Ы r (D-he tang)(2+he) 00 46.9274 AT THE SPRINGLINE, THE STRESSES ARE! $\overline{V_2} = \underbrace{Y_1}_{2GSB} \left(\begin{array}{c} 0_2 \\ 2 \\ \end{array} \right) \underbrace{X_1 + \frac{1}{2}}_{2} \left(\begin{array}{c} 0_2 \\ \end{array} \right)$ TI = YDX/2GS

Exhibit B Page 5 of 22

[RECEIVED 11/24 13:42 1993 AT 9017545135 17545135 PAGE 7 (PR TEL No.205-752-5569 7 (PRINTED PAGE Nov 24.93 12:05 No.003 P.07 Sentell Engineering ETI, CORP TANK CERTIFICATIO # 93-540 MEMPHIS, IN. EMELLE REV 11-24-93 7926 68 5284 93.60 PCF 8.4.792 tan 46.9271 × (14.0)+ 16.0' (2 x 7.4792 + 16,0 75. 主 2 65 46727 ÷ 21.4197 (16.0' - 7.4792 tan 46,9271 × 14 + 7.4792') $T_1 = 93.60 PCF$ Cos 46.9271 O (NEGLIGIBLE) NOTE : WHERE O = APEX 4, AT THE APEX TZ = TT STRESS CHECK AT SPRING LINE 93.60 PCF (16) (14 + 16 205 46.9271 7- 6 TAN 46.92 9041.94 #1, T2 = 9001.94#/1 4019 pst x 15000 psi OK 12×0.1875 15350#1 60 PCF (16X14) 9B Ca346.927 15350#/ 6,822 051 ×15,000 251 OK 0,1875) HEAR COMPRESSION STRESSES FECTIVE WOTH OF CONES ACTILLG AS 61 Car Q) De tano Us j= 0.78 8093 6 tan 46,9271 14.0 +16 UC=0.78 1/1966×12 KO18 TAN \$6.97 49920.0# w = 6.09 WS F. 49.920 7 = 44313 1.1875 15,000 psl COMPRESSION GIRDER IS REOD

Exhibit B Page 6 of 22

(RECEIVED 11/24 13:43 1993 AT 9017545135 PAGE 8 (PR Sentell Engineering TEL No.205-752-5569 PAGE 8 (PRINTED PAGE B) J Nov 24.93 12:05 No.003 P.08 ΥA 14 5 APHIS, Th 24-9 Æ И£С 3 Rev. II 5 روج ECKI SHELL 匆 ANE JUNCTION TOR P GMPRE55YOW k ዊਤ لا2 لا EFF 6 (tc + ᆖ L1 ((AR5 + D.P. 'G Ó 24960 290 7 15,000 A josi \sim 2 GIRDER L WILLE Ma AS DE 18 "R R MIN WI GOR L Te-Ð WII Ma \mathcal{P} Ø lse. ŧ (SEE SHT # 8 Fae Gor. CARCS. L e. 1252 (IIIIII) a SAUND Exhibit B Page 7 of 22

(RECEIVED 11/24 13:44 1993 AT 9017545135 17545135 PAGE 9 (PR TEL No.205-752-5569 9 (PRINTED PAGE Sentell Engineering 24.93 12:05 No.003 P.09 Nov ETI, CORP. MEMPHIS, TN TANK CERTIFICATION #93-540 Rev. 11-24-93 IELLE AL \$20 REED REOD 49,920# = 3.330" 15,000 ASL The RE (The REFF.) MAX ディー 他(是"REFF.) 3,33.4"+6(.1875")= 2.204" 1 4 × 4 × 516 A= 2.400 $P_{c} = \frac{49,920}{67.18251 + 2.40} = 14,162 \text{ psl} < 15000 \text{ psl}$ UPPER COMPRESSION RING (API 620 SIMILAE TO APT 650) $\begin{array}{l} A = D^{2} \left(P - 8 f_{1} \right) \\ \hline 30,800 \ Tan \theta \end{array} = \frac{(16)^{2} (144 \ PSP - 8 (.1875)}{30,800 \ Tan 0^{2}} = \end{array}$ THE FLAT FLATE DESIGN WILL PLACE THE ROOF PATE IN TENSION AT THE SHELL. THE MODLE ROOF SUPPORTS WILL RELIEVE SHELL OF SOME FORCES AND COMPRESSION. Wr. DE SHELL W/CA + 6% W/O CA + 6% DESCRIPTION 8982# 9521# CRS # 1 5389# 5712 H

Exhibit B Page 8 of 22

[RECEIVED 11/24 13:45 1993 AT 9017545135 17545135 PAGE 18 (PRINTED PAGE TEL No.205-752-5569 10)] Sentell Engineering Nov 24,93 12:05 No.003 P.10 9 ETI CORI TANK CERTIFICATION #93:540 ENELLE AL MEMPHIS REV 11-24-95 5201 METAL LOADS! 46% W/CA + 6% PART ULLO CA 41.02 4348 9076 TOP. 3.26,0 9521 8982 SHÈLL 5789 5712 3750 Borr. 3975 2385 16834 17.844 0715 11357 5879 JUPPORTE 6232 5879 6232 17589 16:594 221713 24076 TANK SUPPORT REQUIREMENTS MATILS ASTM-A36 E. + 15.0 KSI FC = 15.0 KS1 PA = 3217 F6 = 15.0KS1 P = \$03,194 Fp = 20,0 KS/ (Col RS) FV = 9, 95 KSI WEBOF BAS P2= 17844 w/= 4.032# FV = 1.25KSI (TANKES ; STRUCT CONN MATES LIQUID LOAD! P.F. 303, 194 # 957 3 W=ZW= 4032#+ 957# + 10937-194 0 KB= 1003# 60115 032 (19 48)+ 957 9.81 Wa 194 i6232# + 1003 + (6 24) + 19 + (4.5) V= 6011# = 94,276 # WIND LOAD DIAGENM DEE SEISMIC CONDITIONS 180BSE(10)(Ke) = 4032# 106)12 × 74792×1585F= 957# (0.07)(12,4792 (30)(4 1003# Was 9# (106) (10) × 18 a

Exhibit B Page 9 of 22

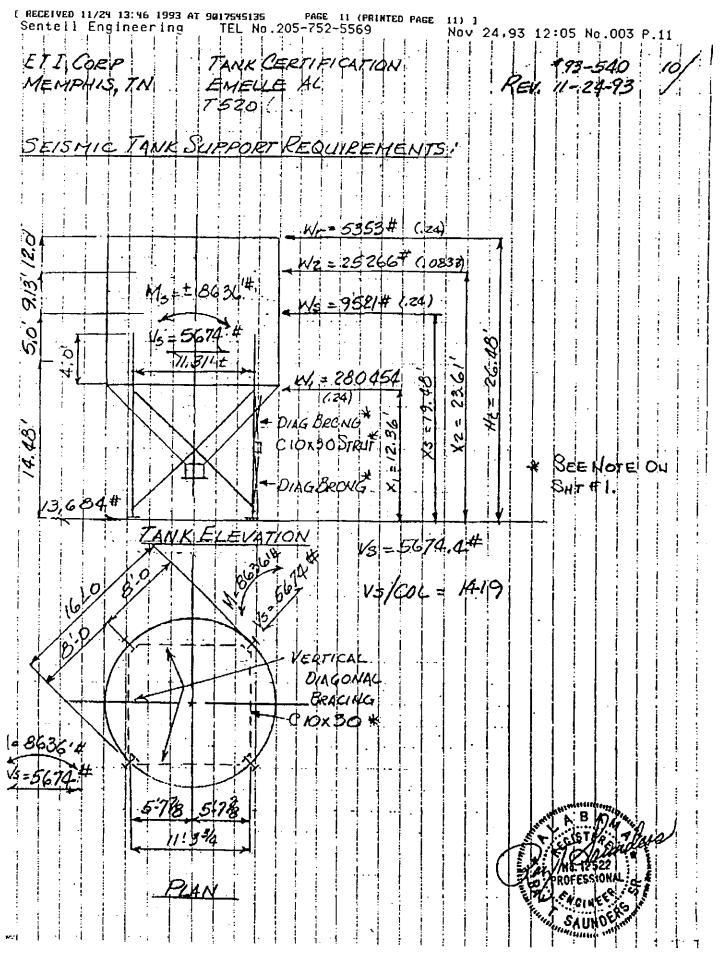


Exhibit B Page 10 of 22

(RECEIVED 11/24 13:47 1993 AT 9017545135 17545135 PAGE 12 (PRINTED PAGE 12)] TEL No.205-752-5569 Nov 24,93 12:05 No.003 P.12 Senteil Engineering TANK CERTIFICATION 93-540 ETI CORP. EMELLE AL MEMPHIS IN 11.24.93 7520 HECK STRUCTURE FOR SEISMIC FONE R EQUIREMENTS APPENDIX E APIGSC M = ZI(Ciklsxs + CiWp H+ + Ciklix, + Czklzxz) SONE COEFFICIENT (FIGELS TABLE EI 2=0.1875 ESSENTIAL FACILITIES FACTOR I = I o $E_{3,3,1}$ 0,24 SEE BELON 0.0833 TANK SHELL, IN POULIDS 15 - 9521 HON FROM BASE R. TO SHELLS COFG s = 19.48 RODE + PORTION SUDVILLOAD = 434B + 1005 = 534TANK = 26.48 TAL HE TANK SHELL TN FEFT = 280,454# W/2 OF EFFECTIVE MASS OF THE TA ONTENTS CHUSON WI TANK SHEL FROM DOTT OF TANK SHELL TO DEISMIC FORCE APPLIED TO K = 25,266# OF EFFECTIVE MASS OF TANK CONTENTS IN FIRST SLOSHING (E.3.2. HT FROM BOTT OF TANK SHELL TO THE CETROID OF X2 = 23.61 LATERAL SEISMIC FORCE APPLIED TO KIZ ENFERTIESI TANK CONTENTS IN POUNDS TOTAL L/r= 303 NOMINAL DIAM OF TANK IN FEET MAX. DESIGN LOCHOLEVEL 4792 Tri FEFT ÷ WHEN < 1.5 Pg = 0.305 - : : Fig 7 For . : K VALUE اكنك ŧ \leq 1.35 S YEN TZ TE AMPLAFICATION FROM HEPES TARIE FO İ ATLIRAL PERIODOE シテレット SLOSHING MODE V= ZI(C, WS+C, Wr+C, W, +C2 Hz Ì 4ci v ł SAUNDE ÷

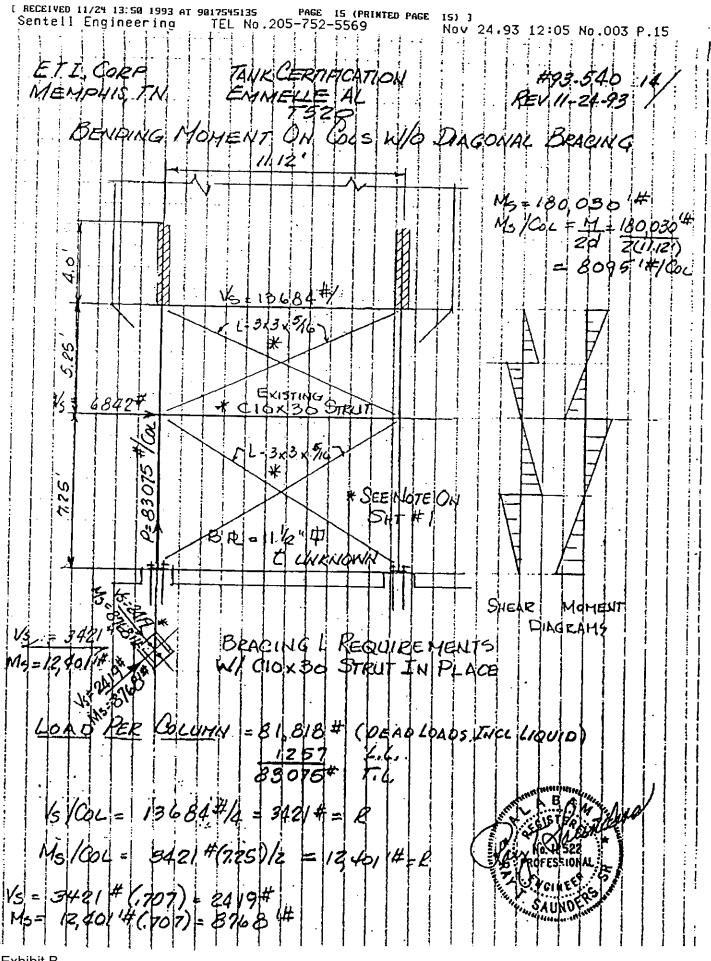
Exhibit B Page 11 of 22

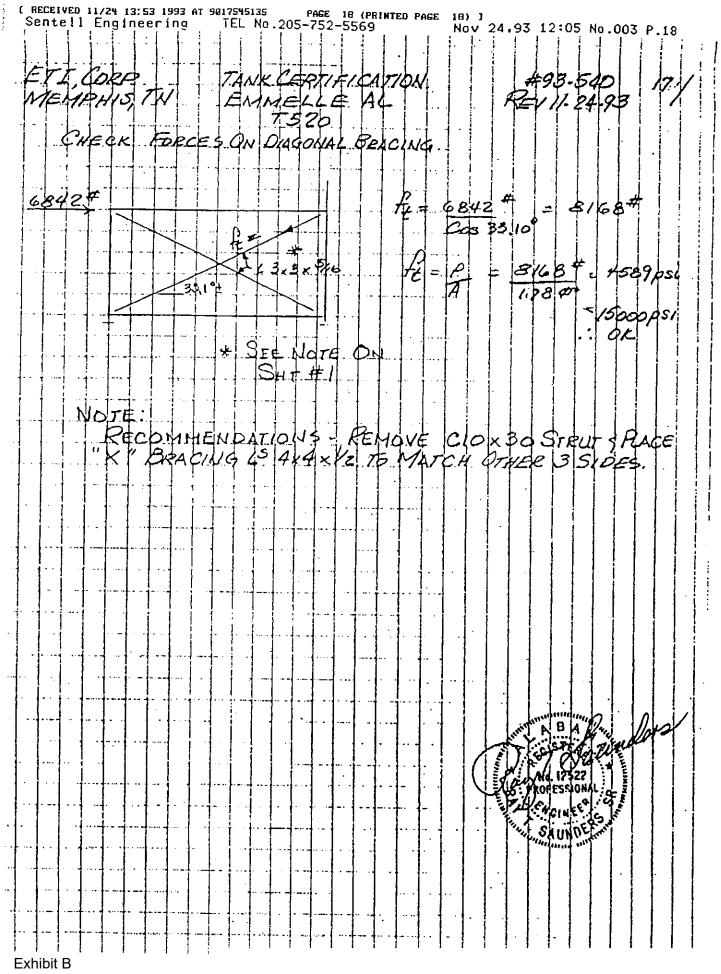
[RECEIVED 11/24 13:48 1993 AT 9017545135 17545135 PAGE 13 (PRINTED PAGE TEL No.205-752-5569 13)] Sentell Engineering Nov 24,93 12:05 No.003 P.13 ETI CORP TANK CERTIFICATION MENIPHIS TW REV 11-24-93 FMELLA 7520 T= 0.575(16.0) = 2.30 $O_{H}^{\prime} = \frac{16.0'}{26.4792'} = 0.378$ K= 0.575 (PER FIG 7) $C_2 = 0.305 = 0.30(12) = 0.1565$ 0,4667 (26.4792) = 12.36 0.8917 (26.4792) = 23 61 \mathcal{V}_{2} $W_{1} = 0.9250(303292) = 280,454$ 0.0833(303,194)= 25,2664 $\frac{K/2}{K/T} =$ $\sqrt{1} = (0.1875 \times 1.6) \left[(0.24) \times 9521 + (19.48') + (0.24) \times 5353 + (26.48') \right]$ = 180,030 1# (90.1% GRENTER THAN WIND MOMENTS) $V = (0.1875(1.0) \left[(0.24)(9521) + (0.24)(5553) + (0.24)(280, 454) + (0.0833)(526) \right]$ = 13684 # (127 % > THAN WIND SHEAR SEISMIC FORCES BOVERN - USE FOR SUPPORT DESGN B 180,090,# 13,684# MAX. SELSMIC LOAD/LEGORCOWMN & M. + 180,030 # = 1/252 # (ALIAL TO COL) HOTE: DIAGONIAL BEACING SHALL BE USED TO TEANSFER SEISMIC FORCES TO THE FOUNDATION. AXYAL KOADS ON COLLEGS W/0 LIQUID BU = 17844#16232# = 6019 #/COL W/LIQUID P. = 303 194#+17844#+6232# = 81,818#

Exhibit B Page 12 of 22

[RECEIVED 11/24 13:49 1993 AT 9017545135 PAGE 14 (PRINTED PAGE 14)] Sentell Engineering TEL No.205-752-5569 Nov 24,93 12:05 No.003 P.14 ETI GRP TANK CERTIFICATION #93-54O 15 MEMPHIS, TN. EMELLE 44 REV 11-24-93 1520 IVE LOAD (SLOW LOAD NEGLIGIBLE - APPEOX. 50 PSF) AREA = (16.0) 0.7854 = 201,06# 201.26 (25 PSF) = 1257 #/ COL COLUMN REQUIBENTENTS W/O SENTIC OF WIND LOADS & W/KIVE LOADS THE DIAGONAL BEACING RELIEVES THE COLUMNS OF BENOING MOMENTS 40 = 1148' P= 81,818 # COL SIZE - WIDX 77 PLOPERTIES CHE WIOX 77 A 1= 18000 18,000 d = 10.611.48x12)4=15,571 ps 10. 18000 1-2/ 18000(216)4 > 15,000 psi LUSE 2= 81,818 # +1257#= 83075# /COL Ξ; (ALLOW.) = Fa A = 15,000 (22.64) = 339,000 # : OK 21 60 kl = 11,48 (12") = 58.98 CHECK CHANNEL STRUT - 18.08 KSi KL 4 200 AISC HANDBO Sec. 22: Note: Kl = 11.0/= (12) = 197,3 = 200 ON FUTURE TANKS 0.669 SIMILIAR TO T520 0 K GHTER COLUMN WILL BE ADEQUATE

Exhibit B Page 13 of 22




Exhibit B Page 14 of 22

[RECEIVED 11/24 13:51 1993 AT 9017545135 PAGE 16 (PRINTED PAGE Sentell Engineering TEL No.205-752-5569 16) J Nov 24.93 12:05 No.003 P.16 ETTIC bpp #93-54 MEMPHIS 24 -93 le fai 9 3675 291 ۳_ A 3496 PSI 768 (12 N 2250 8 12 B 16 9 jt i 4 Fo 3 44 3 θ =1865 ksi ħ 17.50 (12) 33.41 Fa = 19.65 LSI Y.x SAUNDE L 0.39 1 C 000(1.133) 94 b. 5 8, 뇡 000 33 COLS W10x77 0 X 3,0 10 STRU 4 BASE REATE REQUIREMENTS Arklasse CONDYTION 影 纥 24 0% 10% (575 5 9 633 = 0 /s=#4|9 PAB sti245 psc [2"] ŕ ۲ S 3, 133/3 (6 8768 ୟ 115 (9.75 -= 163.99 6 +483 psi ົ \$768 #(12) ρ ų 9, 4335(16339) ž 9 Exhibit B

Page 15 of 22

[RECEIVED 11/24 13:52 1993 AT 9017545135 PAGE 17 (PRINTED PAGE 17)] TEL No.205-752-5569 Sentell Engineering Nov 24,93 12:05 No.003 P.17 ETI, CORP NK GERTIFICATION \$93.54 16 MEMPHIS, Th A4 11.24 fal=P 628 psu 98079 MAK PRESSURE WILL OCCUR AN CORVER OF BASER fj = -628 + 1845 +483 411,00 Asu 2356 psc 2 1000 (13313 7628 215-483 \$3;3 josc ASSUMING 4000 DSI CONCRETE WAS USED THE TOE PRESSURE OVERSTRESS 43 27% THIS REQUIRE S'X" BRACING OR A 115 ED ENLARGED BRG. PLATE AND A WIDE SPACED A.B. CLACIET ON ANCHOR GOLTS: b = A83075 = +41357 # PRESERE / BOLI BOURS +19/33 <u>8768</u> 2×48: + 5694 # 768 9 #Bacts ANCHOR 6 530 CESSION BOLTS 6R BRACING WILL BE REQUIRED REQUIRED BELOW AND ABOVE THE PREVENT CONC PIER OVERSTRESS. HANNEL STELN BRACING LENGTH = (825) + (1/12) 2 18,27 r= 13,27/12 = 0,53" В Ф ¢ 15= 13 3 x 3 x 9/6 W/ TE GUSSERT RS. SAUNDE

Exhibit B Page 16 of 22

(RECEIVED 11/24 13:53 1993 AT 9017545135 PAGE 19 (PRINTED PAGE 19)] Sentell Engineering TEL No.205-752-5569 Nov 24,93 12:05 No.003 P.19 ETI, CORP TANK GERTIFICATION 18 13-540 MEMPHIS, TH IFIIF AL 11-24-93 20 GONAL BRACING REQUIREMENTS TOTAL VS = 13,684 MAX VS WILL QCEUP WHEN SEISMIC FORCES ARE PARALLEL TO THE DIAGONIAL BRACING. d 13,684 1/2 = 6842 (MAX) 9749 6842# Cos 45.4 '1.\$1 9749# = 0.49# 15000ps1)(1/3) r <u>- KK</u> 300 Kly = 300 LS 32×3×575 LLH ROEQUATE (MINIMUM) (12)(1.2) 300 The THE GUS. RS ADEQUATE USE 12" THE GUS RS (MINIMUH) 0.60 HECK TANKEDR WIND . LOADS AND OVERTURNING RESISTANCE WID LIQUID 10 12 LIVELOAD = 24.076 = 6019 # + 6232 POLF PLL(4) = 1757#/2= 629 94276 # = 5892 Ρŵ

Exhibit B Page 18 of 22

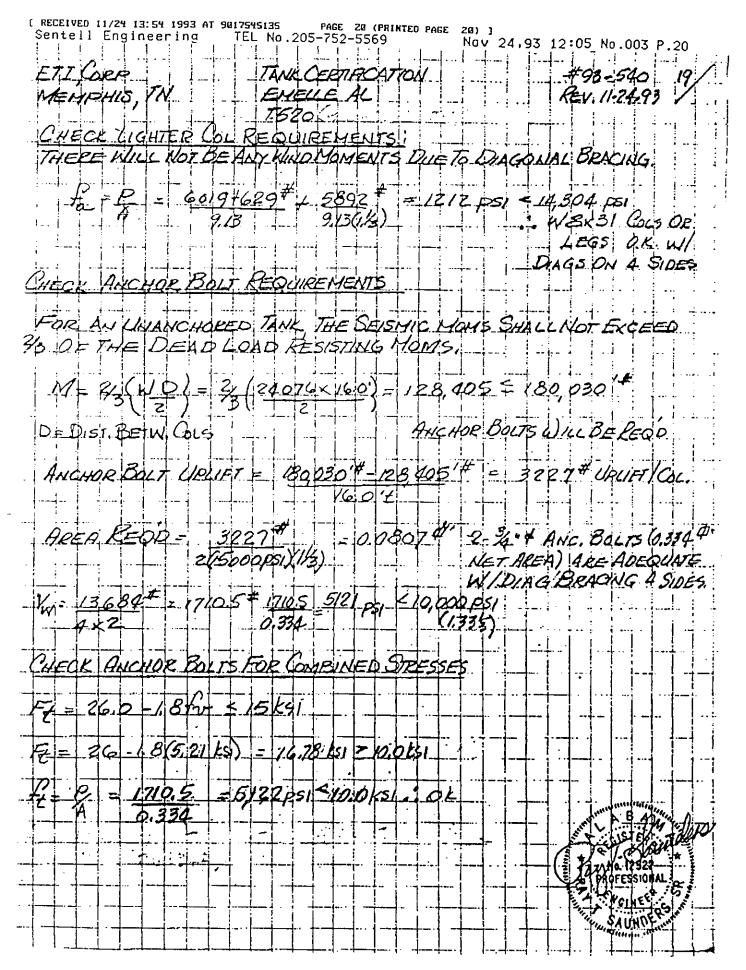


Exhibit B Page 19 of 22

[RECEIVED 11/24 13:55 1993 AT 9017545135 21 (PRINTED PAGE 21)] Nov 24,93 12:05 No.003 P.21 PAGE Sentell Engineering TEL No.205-752-5569 ETI CORP. TANK CERTIFICATION 99-540 NEMP'HIS, TH REV 11-24-93 7-526 PHECK BASE R REQUIREMENTS - MAX LOADS TOTAL WE OF TANK AND SIMPORTS 24076 TSUPPORTED BY EACH LEG 60:19 OTALKI, OFLOUID 203,194 + SUPPORTED BY EACH LEG 75,790 80,030 EISMIC MOMENT EISMIC FORCE TO COL. OR 7959 14. 11,252 629 4 12 C.L. / COL (2516 # TOTAL) 93690 # MAX COLLOAD fp = 2 p = 82438 1125 P. = 6019 #0.1 687.18 psi 75790#LL (4QUID) 687.18 por (1,674) 629 14 (12) P3 = ł 0.04 Pa = 11252 # DEISNIC FRECE TO COL. Pa = 7959 # w/2 Cous REGISTIC oopsi ISTING DIAGRAGM @ BASE 6(0,048) 0.54 2 0.7/5 10.07" 0.7/5 m16/22 USE RS 1 × 12×12 ഗ ÷ - C/52 Ĵ, 64 "x112"x112

Exhibit B Page 20 of 22

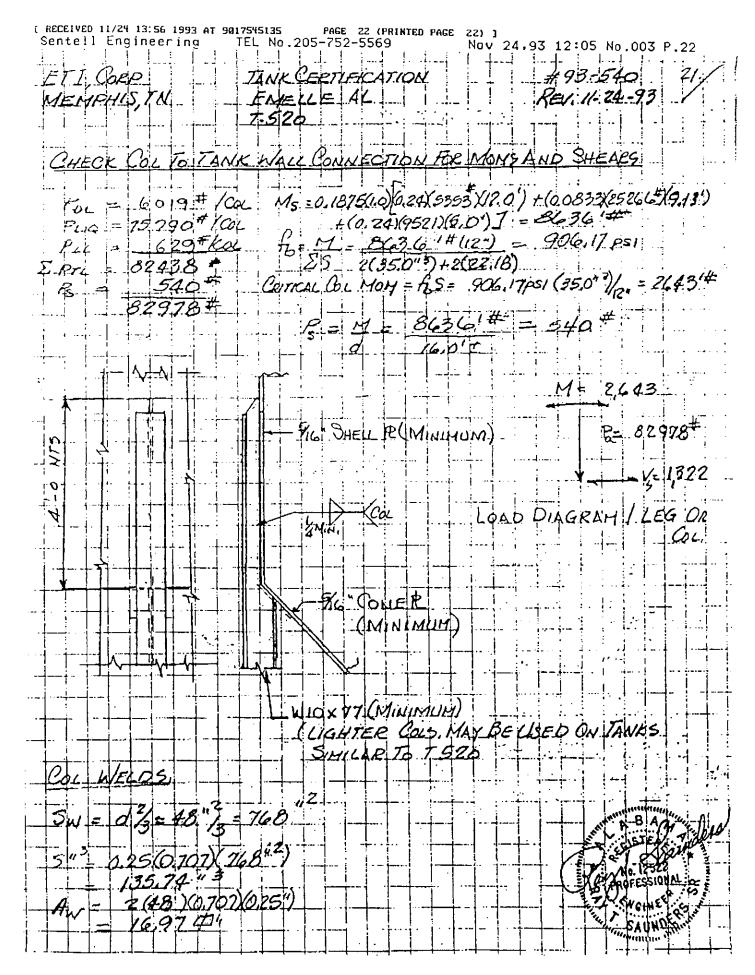


Exhibit B Page 21 of 22

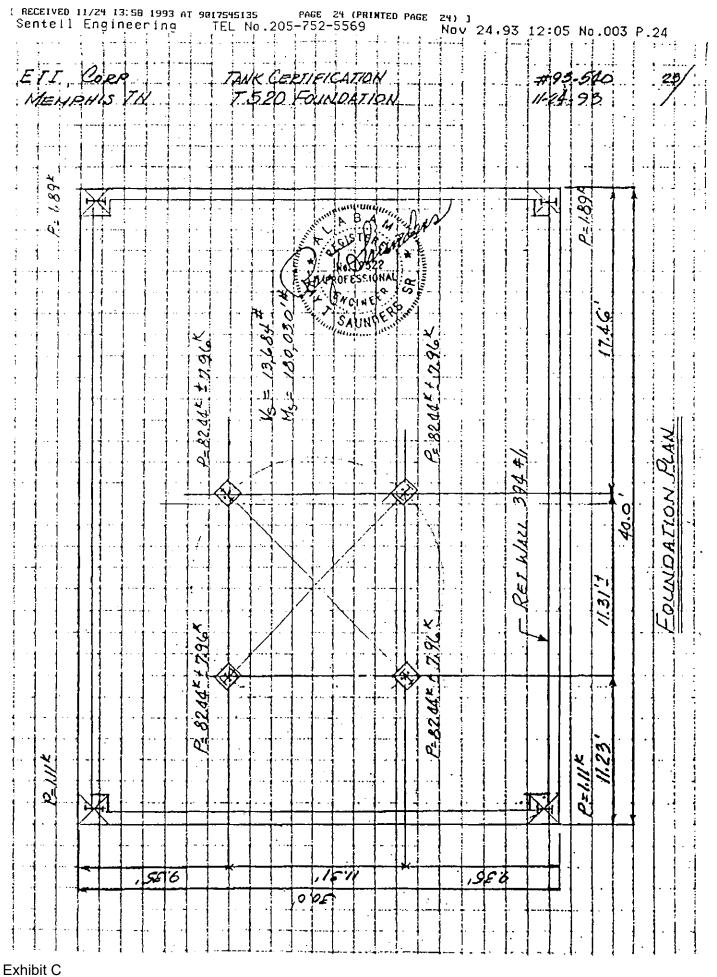

Sentell Engineering TEL No PAGE 23 (PRINTED PAGE -752-5569 23) 1 Nov 24.93 12:05 No.003 P.23 TEL No.205-752-ETI CORP. MEMPHIS, Th ANK CERTIFYCH TY ON REV 11-24 520 2 \mathcal{T} ΗN 0.325° 5. Ø, RECA 8 38,5 0 < 198 6:1 19,8' EFFRER 7,49 FROM TANK TO FORM WF Parr P -ix 5W1385 17.4 2 3 Fix 198 619 89 5 03 41.46"3 Fy (Top) Ka 95.05 268571 0a 3 Ϋ́р 112 $\boldsymbol{\oslash}$ (7.) 202 19:18 20215 219 3 Z 4 22:1 2 CHECK Par WEL AS4895,27 ps4 6 8000.ASU S

Exhibit B Page 22 of 22

2. j.

EXHIBIT C

TANK FOUNDATION DESIGN CALCULATIONS

Page 1 of 4

[RECEIVED 11/24 13:59 1993 AT 9017545135 PAGE 25 (PRINTED PAGE 25)] TEL No.205-752-5569 Sentell Engineering Nov 24,93 12:05 No.003 P.25 ETT, CORP. MENAPHIS, Th TANK CERTIFICATION 93.54 520 FOLINDATION WIDTH OF FON SUPPORTING TWO (2) COLS = 150 WALL LONDS + 150 x.67 × 3.92 × 1.0 × 150P 5.9 SAUN 40= 3.38 K (SCA8) Nor REQO WGT OF SLAB = 0.225 KSH 15.0 × 0.225 = 3.38% 1R=36.04 -DN DE 0,47KSE 0.31 15 Rz + 139.50 01 59/1 82.44 82.44 Þ.91 0.33 5,64 9.01 0.33 9.61 5.6 Ц RR= 71,915 03.74K Ri 10.62 2| ____ R = $5_{x} = 150(30.0)$ 0.07-031 (30)(15,0) 225Þ 2 360 1125 $g_{i} = 1$ (30)(150) = 0.31 (30,0) 15,0) 13950 $\mathcal{R}_{lacklash}$ P= 2(8244)+ 2(591) = 176.70 ASE Ζ MAX SOIL PRESSURE = 180,03 = 0.47KSF MX/SX. SOVE PRETSSURE ۴ 0.3/155 MIN 65 Э Z Z эd XIS 4.65 (9.54)/2. - 36 K (10,66) +11.31 -465 (20.66)/2 103.74 4.65× (9.34)/2 + 4.65 (20.66) /2 + 36× (0.66) - 113/ RR : 13 ÷. Exhibit C

Page 2 of 4

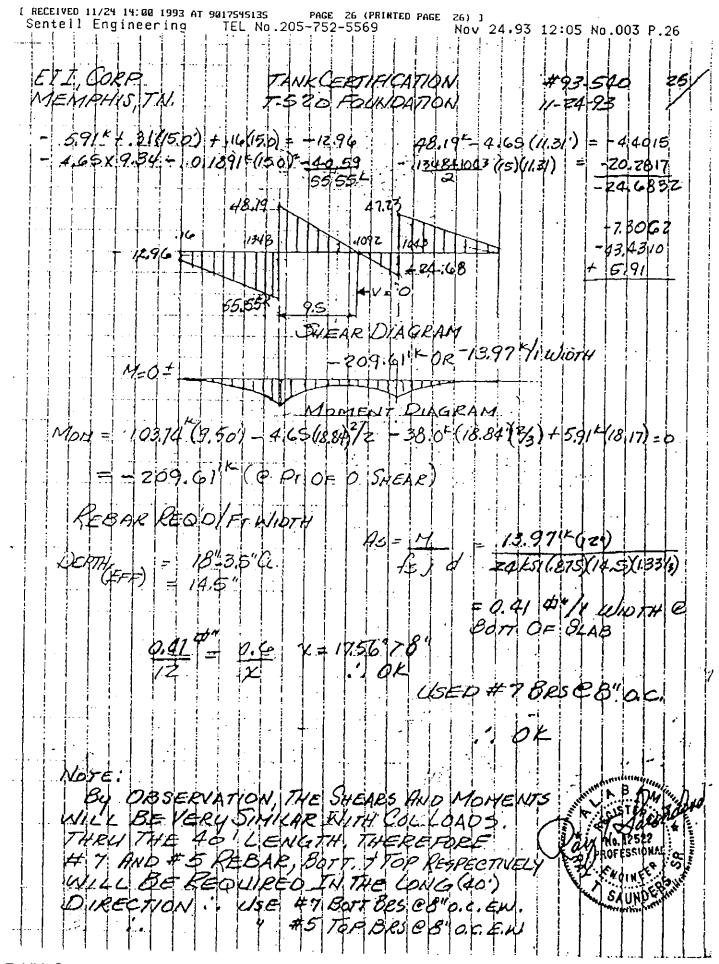


Exhibit C Page 3 of 4

RECEIVED 11/24 14:01 1993 AT 9017545135 PAGE 27 (PRINTED PAGE 27)] Sentell Engineering TEL No.205-752-5569 Nov 24,93 12:05 No.003 P.27 ETT CORP MEMPHIS, TN TANK CERTIFICATION 520 FOUNDATION #93-540 CANTILEVER MONS = -4.65 (9.34) 2/2+5,918(9.34) 20.6549, BAX 2/3 274.24 27/4, 21K = 18.41 Fr. WIDTH 151 AS 18.411 - (12) Ô. 5443 1×3×24-651×.815×14.5 0.5443 4" 12=13 214 $Q_i \phi_i$ 12 "b.¢. #7 Bes Useo @ B E:W. QĽ REEA STEEL REDURED VERLET, WIDTH 124 (14 51) (005) = 0.87 4 #7 BRS 0.8" X= b.9 中"/A-N/R 0.87 41 \geq USE OP. ORS-ORS e. В Q.O. SAUNDER Exhibit C

Page 4 of 4

EXHIBIT D

CALCULATIONS OF TANK VENTING REQUIREMENTS

EXHIBIT D TANK VENTING CALCULATIONS (PER API 2000) CHEMICAL WASTE MANAGEMENT, INC., EMELLE, ALABAMA FACILITY

		Length/	Depth/	Tank		Tank	Tank	Tank	Tank		With-		IN-B	REATHING	3			OUT-	BREATHIN	IG		EME	RGENC	Y
	Width/	Shell	Cone	Wetted	Tank	Rated	Relief	Rated	Relief	Fill	drawal	Normal	Thermal	Total Vent	Min.	Min.	Normal	Thermal	Total Vent	Min.	Min.	Vent	Min.	Min.
	Diameter	Height	Height	Surf. Area	Capacity	Press.	Press.	Vac.	Vac.	Rate	Rate	Venting	Venting	Capacity	Area	Size	Venting	Venting	Capacity	Area	Size	Capacity	Area	Size
Tank Nos.	(ft)	(ft)	(ft)	(sf)	(gal)	(in WG)	(in WG) ¹	(in WG)	(in WG) ¹	(gpm)	(gpm)	(cfh) ²	(cfh) ³	(cfh)	(sq in) ⁸	(in)	(cfh)⁴	(cfh)⁵	(cfh)	(sq in) ⁸	(in)	(cfh) ⁶	(sq in) ⁷	(in)
CONTAINER & TANK MANAGEMENT UNIT 520																								
T-520	16.00	14.00	8.00	988	25,066	28.00	14.00	14.00	7.00	300	300	2,400	597	2,997	2.68	2.00	5,143	597	5,740	3.63	3.00	520,730	136.3	14.00

NOTES:

- 1. Pressure and vacuum relief is assumed to be set to relieve at 50% of the design rated pressure or vacuum, unless noted. Emergency relief is assumed to be set at 75% of design pressure.
- 2. Normal in-breathing at 5.6 scfh per 42 gal barrel per hour of withdrawal, as specified in API 2000, 4th Edition.
- 3. Thermal in-breathing at 1 scfh per 42 gal barrel of tank volume, up to 20,000 barrel (840,000 gal) volume, as in API 2000.
- 4. Normal out-breathing at 12 scfh per 42 gal barrel per hour of fill for volatile liquids (flash point <100 deg F), as in API 2000. For non-volatile liquids 6 scfh per 42 gal barrel may be used.
- 5. Thermal out-breathing at 1 scfh per 42 gal barrel of tank volume for volatile liquids, up to 20,000 barrel volume, as in API 2000. For non-volatile liquids 0.6 scfh per 42 gal barrel may be used.
- 6. From API 2000 Appendix B on Emergency Venting, for four ranges of tank surface area, heat absorption, Q, is calculated. Vent capacity in SCFH is then calculated from the heat absorption according to the equation:
 - SCFH = 70.5 * Q / [L * sqrt(M)] assuming a conservative "L * sqrt(M)" value of 1,337, that of hexane.
- Formula for emergency vent area adapted from Protectoseal Technical Manual, on flow capacity of tank emergency venting devices for nozzles 8 in. and larger: CFH = 1,667 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank emergency relief setting and atmospheric conditions.
- 8. Formula for vent area for smaller nozzles such as normal breather vents, adapted from Crane Flow of Fluids, Eq. 2-24, very similar to, but more conservative, than Protectoseal equation: CFH = 845 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank relief setting and atmospheric conditions. The factor 845 was derived using unit conversion factors, a vapor density of 0.1875 lb/cf, and a conservative Y of 0.80 from charts on Crane p. A-21.

EXHIBIT E

TANK MATERIAL OF CONSTRUCTION COMPATIBLITY INFORMATION

Compatibility Information

Unit 520: T-520

Carbon Steel

CORROSION CHART (From Grinnell value catalog)

	VALVE MATERIAL	SEATS &			SEATS &
A = Excellent	Steel Steel Steel	SEALS	A ≃ Excellent		SEALS
B = Good			B = Good	Steel Steel Steel	
C = Poor	Bronze Bronze Carbon Steel 303 Stainless 316 Stainless Monet			Bronze Carbon Steel 303 Stainless 304 Stainless 316 Stainless Monel	
D = Do Not Use	stair Stair Stair	Z	C = Poor	Bronze Bronze Carbon Steel 303 Stainless 304 Stainless Monel	7
0 00 100 036	Bronze Bronze Carbon 303 Stai 304 Stai 316 Stai Monet	Buna N Delrin EPOM Tetlon	D ≖ Do Not Use	Bronze Bronze 303 Sta 304 Sta 316 Sta Monel	Buna N Delrin EPDM Teflon
Anninidation		1			Tet De
Acetaldehyde	ВСАААВ	DCBA	Ammonia, Alum	AA	ΒΑΑ
Acetamine	B B B B B B		Ammonia, Anhydrous		
Acetate Solvents	СВАААВ	DDDA	Liquid	CABBAB	В АА
Acetic Acid,			Ammonia, Aqueous	CABBAB	BAAA
aerated Acetic Acid.	DDAAAA	CDDA	Ammonia Gas, hot	DCAAAD	D BA
Aceac Acia, Air Free			Ammonia Liquor	AAA	A
Acetic Acid, crude	DDBBAA	CD A	Ammonia Solutions	DBAAAB	В ВА
Acetic Acid, crude Acetic Acid, glacial	ССВВАВ	DD A	Ammonium Acetate	D BBBB	DAA
Acetic Acid, graciar Acetic Acid, pure		C D A	Ammonium Bicar-		
Acetic Acid, 10%	CDBBAD	CD A	bonate	BCBBBB	ΒΑΑΑ
Acetic Acid, 10%	C C B A A B C C B B A B	BDBA	Ammonium		
Acetic Acid, 80 %	D DDDC	CDBA	Bromide 5%	D CBB	AA
Acetic Anhydride			Ammonium	_	
Acetone		DDCA	Carbonate	DBBBBB	DAAA
Other Ketones	AAAAAA	DAAA	Ammonium Chloride	CDDDDB	AAAA
Acetyl Chloride	DCCCBB		Ammonium		
Acetylene	DBAAAB		Hydroxide 28%	DBBBBD	BAA
Acid Furnes	DDBBB	ΑΑΑΑ	Ammonium		
Acrylonitrite	888888		Hydroxide		1
Air (Oil Free)	AAAAAA	DDDA	Concentrated	DBBBBD	DAAA
Alcohol, Amyl	BBBBAB	A A A A B A A A	Ammonium Nitrate	DDAAAD	AAAA
Alcohol, Butyl	ABAAAB	BBCA	Ammonium		
Alcohol, Diacetone	BBBBBB		Oxalate 5% Ammonium	DBBBB	A
Alcohol, Ethyl	888888	AAAA	Persulfate		
Alcohols, Fatty	BBAAA	B A	Ammonium	DDDDBD	DAA
Alcohol, Isopropyl	вввввв	ВААА	Phosphate	ррсвсс	
Alcohol, Methyl	вввввв	AAAA	Ammonium Phos-	DDCBCC	ABAA
Alcohol, Propyl	BBAAAB	A A A	phate Di-basic	СDСВСС	
Alumina	A	A AA	Ammonium Phos-		AAAA
Aluminum Acetate	D BBAC	C A A	phate Tri-basic	СDСВСС	
Aluminum	_		Ammonium Sulfate	СОООВВ	
Chloride dry	DDCCCD	ВААА	Ammonium Sulfide	DD BBB	
Aluminum Chloride			Ammonium Sulfite	СОССВС	BABAI
solution	DDDDDD	ΒΑΑ	Amyl Acetate	BCAAAA	DBBA
Aluminum Fluoride	DDDCC	A AA	Amyl Chloride	B BBBB	DDA
Aluminum			Aniline	BCAAAB	DACA
Hydroxide	BDAAAB	A AA	Aniline Dyes	CCAAAA	DACA
Aluminum Nitrate	DD CCC	A AA	Apple Juice	CDBBBA	AABA
Alum (Aluminum			Aqua Regia		
Potassium			Aromatic Solvents	ACAAAB	D DA
Sulfate)	CCDDCC	B AA	Arsenic Acid	BDBBBD	
Aluminum Sulfate	CDBCBB	AAAA	Asphalt Emulsion	ABAAAA	DADA
Amines	СОВВВВ	DACA	Asphalt Liquid	ABAAAA	CADA

į

CORROSION CHART

· · DE Rudar A

.

Ņ

		SEATS & SEALS			SEATS &
A = Excellent	Steel Steel Steel		A = Excellent		SEALS
8 = Good	SS SS SS		8 = Good	Steel Steel Steel	
C = Poor	- rbon Steel Stainless (Stainless (Stainless (Stainless (ļ	C = Poor	Bronze Bronze Carbon Steel 303 Staintess 316 Staintess Vonel	
D = Do Not Use	Bronze Bronze 303 Stair 304 Stair 316 Stair Monel	Buna N Detrin EPDM Tetton	D = Do Not Use	te bn S tain tain	z
	Bronze Bronze 303 St 304 St Monel	Buna h Detrin EPDM Tefton		Bronze Carbon 303 Stai 304 Stai 316 Stai Monel	Buna N Detrin EPDM Teflon
Barium Carbonate	888888	BAAA	Cane Sugar Liquors	1	
Barium Chloride	ССDDВВ	AAAA	Carbolic Acid	ABABAB	A A A
Barium Cyanide	C BBBD	BBA	(phenol)	DDBBBB	DDBA
Barium Hydroxide	DCBBBB	AAAA	Carbonate Beverages	BDBBBC	
Barium Nitrate	ВВВ	A A	Carbonated Water	B D B B B C B B A A A B	BBA
Barium Sulfate	ВСВВВВ	AABA	Carbon Bisulfide	BBBBBC	
Barium Sulfide	DCBBBC	AAAA	Carbone Dioxide, dry	BBBBAA	DADA
Beer-Alcohol	ВСАААА	AAAA	Carbonic Acid	CCBBBC	AABA
Industry]	Carbon Monoxide		BABA
Beer-Beverage	BCAAAA	BAAA	Carbon Tetra-	BBBBBA	B AA CADA
Industry		[chloride, dry	C C C C C C A	
Beet Sugar Liquors	ABAAAA	AABA	Carbon Tetra-	ррссвв	CADA
Benzaldehyde	ADABAB	DAAA	chloride, wet		CADA
Benzene (Benzol)	886888	DADA	Casein	С СВС	В ВА
Benzoic Acid	BDBBBB	DDA	Castor Oil	ABBBBA	AABA
Berryllium Sulfate	B B B B B B	BBA	Caustic Potash	CD BB	B A
Blood (Meat Juices)	В ВВВВ	B CA	Caustic Soda	CB AAA	СВА
Borax (Sodium	CCAAAA	BAAA	Cellulose Acetate	в ввв	D B A
Borate) Bordeaux Mixture			China Wood Oil	CCAAAA	AADA
Borax Liquors	DCAAAA	ВААА	(Tung)		
Boric Acid	CCBBBA	ΒΑΑΑ	Chlorinated Solvents	ССВВВВ	DADA
Brake Fluid (Non Pet)	CDBBBB B BBB	ΑΑΑΑ	Chlorinated Water	DDDCD	BAAA
Brines, saturated	B 888 CD8888	DAA	Chlorine Gas, dry	ВВВВВА	DADA
Bromine, dry	BDDDDA	AAAA	Chlorobenzene, dry	СВАВВВ	DADA
Bunker Oils (Fuel)	888888	DDA	Chloroform, dry	BDAABA	DADA
Butadiene	ССВВВВ	AADA	Chlorophyll, dry	B BBB	B B A
Butane	BABBBB	CADD	Chlorosulfonic	CCDDDC	DDA
Butter	A	A A D A B A	Acid, dry		
Buttermilk	DDAAAD		Chrome Alum	СВВВВВ	A A A
Butyl Acetate	всссвв	AABA D DA	Chromic Acid<50%	DDCCBB	DDBA
Butylene	BBBBAA	C DA	Chromic Acid≥50%	DDCDCD	DCCA
Butyric Acid	DDCCBC	DACA	Chromium Sulfate Cider	С ВВВ	B B A
Calcium Bisulfite	DDDDCD	AADA		AAAA	A
Calcium Carbonate	BBBABB	AAAA	Citric Acid Citrus Juíces	DDCCAB	A A A
Calcium Chlorate	DDBBBB	A A	Coca-Cola Syrup	BDBBBA	AA A
Calcium Chloride	ССВВВВ	AAAA	Coconut Oil	A A A	B A
Calcium Hydroxide	СВВВВВ	AAAA	Cod Liver Oil		AACA
alcium Nitrate	СВ	BBA	Coffee	1	A A A
alcium Phosphate	ССВ	BBA	Coffee Extracts, hot		A AB
alcium Silicate	С СВ	BBA	Coke Oven Gas	BCAAAA CBBBBB	A
alcium Sulfate	CDBBBC	AABA	Cooking Oil		D D A
aliche Liquor	B AAB	BAA	Copper Acetate		AADA
amphor	c ccc	BBA	Copper Carbonate		C BA D AI

Exhibit E Page 3 of 9

	VALVE MATERIAL	SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steet Steel Steel	JEALS	A = Excellent	Steel Steel Steel	SEALS
B = Good			B = Good		
C = Poor	Bronze Carbon Steel 303 Staintess 316 Staintess Monet		C = Poor	ize Son Steel Stainless Stainless Stainless el	
D = Do Not Use	Stai Stai	Z	D ≠ Do Not Use	and Stair Stair Stair	Z
	Bronze Carbon 303 Sta 304 Sta 316 Sta Monel	Buna N Deltrin EPDM Tetton		Bronze Carbon (303 Stai 304 Stai 316 Stai Monel	Buna N Delrin EPDM Teflon
Copper Cyanide	D BBBD		Ethylene Oxide		4
Copper Nitrate	DDBAAD	AABA	Ethyl Ether		DADA
Copper Sulfate	DDBBBC	AAAA	Ethyl Silicate	B BBB	D DA B BA
Corn Oil	вввввв	BADA	Ethyl Sulfate	B BBB	CACA
Cottonseed Oil	ВВССВВ	AACA	Fatty Acids	CDBBAB	BADA
Creosol	СВВ	DDA	Ferric Hydroxide		B A
Creosote Oil	BBBBBB	BDDA	Ferric Nitrate	DDCBBD	
Cresylic Acid	DCBBBC	DDDA	Ferric Sulfate	DDCCBD	AAAA
Crude Oil, sour	СВАААВ	B DA	Ferrous Chloride	CDDDDD	AAAA
Crude Oil, sweet	BBAAAA	A DA	Ferrous Sulfate	СDСВВВ	AAAA
Cutting Oils,	ABAAA	AADA	Ferrous Sulfate,	ССАВАВ	СВА
Water Emulsions		-	Saturated		0 0 1
Cyanide Plating	D BBD	B B A	Fertilizer Solutions	СВВВВВ	BDBA
Solution			Fish Oils	ВВАААА	ABDA
Cyclohexane	ABABAB	BADA	Flue Gases	B BAB	CCDA
Cyclohexanone	BDBBBB	DBA	Fluoboric Acid	ввв	A AA
Detergents,	B BAB	B BA	Fluorosilicic Acid	BDDDBA	В СА
synthetic Dextrin		_	Food Fluids	BCAAAB	В ВА
Dichloroethane	B BBC	B B A	& Pastes		
Dichloroethyl Ether	DC BBA B BB	D DA	Formaldehyde, cold	AAAAAA	ВАВА
Diesel Oil Fuels	B BB ABAAAA	D DA	Formaldehyde, hot	BDCCCB	BABA
Diethylamine	DDBBAB	AADA	Formic Acid, cold	СDССВВ	DD A
Diethylene Glycol	B AAB	C CA	Formic Acid, hot	СDССВВ	DD A
Diethyl Sulfate	в ввв	CACA	Freon Gas, dry	ВВАААА	СВСА
Dimethyl Formamide	B AAB	B D A	Freon 11, MF,	BDBBAB	BBD
Dipentane (Pinene)	A AA	B DA	112, BF		
Disodium Phosphate	Сввввс	B A	Freon 12, 13, 32,	ADBBAB	BBC
Dowtherm	ABAAAA	DADA	114,115 Freon 21, 31		
Drilling Mud	BBABAB	AAAA	Freon 22	B A B	
Dry Cleaning Fluids	СВАААВ	DADA	Freon 113, TF	ADBBAB	
Drying Oil	ССВВВВ	AADA	Freon, wet	B AB D BCCB	B D
Enamel	A AA	B D A	Fruit Juices	CDBBAB	BBA
Epsom Salts	всвввв	AAA	Fuel Oil	BBBBBB	AAAA
Ethane	всвввв	AADA	Fumaric Acid		- 1
Ethers	BBAAAB	DCCA	Furfural	всвввв	DACA
Ethyl Acetate	вввввв	DACA	Gallic Acid 5%	BDBBBB	BABA
Ethyl Acrylate	всвввв	DCA	Gas, Manufactured	BBBBBA	AAA
Ethyl Bromide	А ВВВВ	B D A	Gas, Natural	BBBBBB	AABA
Ethyl Chloride, dry	BBAAAB	BABB	Gas, Odorizers	ABBBBB	BAA
Ethyl Chloride, wet	CDBCBB	BBA	Gasoline, Aviation	A A A A A A A	CA A
Ethylene Chloride	вввв	DDA	Gasoline, Leaded	AAAAAB	
Ethylene Dichloride	DBBBBA	DDDA	Gasoline, Motor	AAAAAA	CADA
Ethylene Glycol	BBBBBB	ACAA	Gasoline, Refined	BBBBBB	C DA

÷

CORROSION CHART

		SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel Steel	JUNES	A = Excellent	<u>e</u> e	SEALS
B = Good	5 S S G	1	B = Good	Steel Steel	
C = Poor	ize Jon Steel Stainless Stainless Stainless Stainless		C = Poor	teel less less less	
D = Do Not Use	Bronze Carbon Steel 303 Stainless (304 Stainless (316 Stainless (Monel	Buna N Delrin EPDM Tetlon	D ≈ Do Not Use	Carbon Steel Carbon Steel 303 Stainless 316 Stainless (Vonet	z
	Bronze Carbor 303 Sti 304 Sti 316 Sti Monel	Buna h Delrin EPDM Tetlon		Bronze Carbon 303 Stai 304 Stai 316 Stai Monet	Buna N Delrin EPDM Teflon
Gasoline, Sour	Вввввс	CADA	Lacquer (and	an Sevenz	ዲጧይወ
Gasoline, Unleaded	BBBBBB		Solvent)		
Gelatin	BDAAAB	AAAA	Lactic Acid	АСАААА	DADA
Glucose	BBBBAB	AAAA	Concentrated cold	DDBBAD	
Glue	ввввв	ABA	Lactic Acid	UUBBAU	BDBA
Glycerine (Glycerol)	ВСАААА	ACAA	Concentrated hot	DDCCBD	
Glycols	ВСВВВВ	BCAA	Lactic Acid	DDCCBD	DDDA
Graphite	в ввв	BBA	Dilute cold	CDBBAC	
Grease	СААААВ	A DA	Lactic Acid	CUBBAC	BDBA
Helium Gas	В ВВВ	BBA	Dilute hot		
Heptane	ABAAAB	AADA	Lactose	DDBBBD B BBB	DDDA
Hexane	BBBAAB	AADA	Lard		B B A
Hexanol, Tertiary	BBBBAB	A DA	Lard Oil		B C A
Hydraulic Oil,			Lead Acetate	1	AABA
Petroleum Base	BAAAAA	AADA	Lead Sulfate	1	BABA
Hydrazine	DB BBD	СВА	Lecithin	1 1	B B A
Hydrocyanic Acid	DCBBBC	BDBA	Linoleic Acid		D D A
Hydrofluosilicic		U D U M	Linseed Oil		BADA
Acid	DDCDCB	ΒΑΑ	Lithium Chloride		AADA
Hydrogen Gas, cold	АААААА	A A A	LPG	D BBB ABBBBB	B B A
Hydrogen Gas, hot	ВВ	A AA	Lubricating Oil		AADA
Hydrogen Peroxide,			Petroleum Base	ВААААВ	
Concentrated	СDВВВС	D BA	Ludox		AADA
Hydrogen Peroxide,			Magnesium		BBA
Dilute	СDВВВВ	вваа	Carbonate	B ABAB	
Hydrogen Sulfide,			Magnesium Chloride	всссвв	BBA
Dry	СВВВАВ	CAAA	Magnesium		AAAA
Hydrogen Sulfide,			Hydroxide	ВВВААВ	
Wet	DBCCBD	DABA	Magnesium	DODAAD	BAAA
Hypo (Sodium			Hydroxide, Hot	DBBAAB	
Thiosulfate)	CDAAAB	AAAA	Magnesium Nitrate	BBBBAB	BAAA
Illuminating Gas	AAAAAA	C DA	Magnesium Sulfate	BBBBAA	B A A A A A A A A A A A A A A A A A A A
Ink - Newsprint	BDBAAB	AABA	Maleic Acid	СОВВВВ	
lodoform	BDAAAC	AAA	Maleic Anhydride	С ВВВ	DADA D DA
Iso-Butane	в	B DA	Malic Acid	DDBBAB	_
Iso-Octane	AAAAAA	AADA	Manganese Car-	DDDDAB	AADA
Isopropyl Acetate	в	DAA	bonate		
Isopropyl Ether	ввввв	C DA	Manganese Sulfate		B A
J P-4 Fuel	ABBBAB	AADA	Marganese Sullate		B BA
J P-5 Fuel	ABBBAB	BADA	Meat Juices		
J P-6 Fuel	ABBBAB	AADA	Melamine Resins		B DA
Kerosene	ABAAAB	AADA	Menthol		B A
Ketchup	DDAAAB	AAAI	Mercuric Chloride		B DA
Ketones	BBBBBB	DADA	Mercuric Cyanide		A ' A A

Exhibit E Page 5 of 9

CORROSION CHART

	VALVE MATERIAL	SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel Steel	JEALS	A = Excellent	Steel Steel Steel	SEALS
B = Good	 ഗഗു		B = Good	- ទីទីទីទីទីទី	
C ≠ Poor	Stee nles nles		C = Poor	Stee nies nies nies	
D = Do Not Use	Bronze Carbon Steel 303 Stainless S 316 Stainless S 316 Stainless S Monel	Z m⊆∑ç	D = Do Not Use	Bronze Bronze Carbon Steel 303 Stainless 304 Stainless 316 Stainless Monel	ZESE
	Bronze Carbon 303 Sta 304 Sta 316 Sta Monel	Buna N Delrin EPDM Tefton		Bronze Bronze 303 Sta 304 Sta 316 Sta Monel	Buna N Delrin EPDM Tefton
Mercurous Nitrate	D BBAD	BBA	Nitrous Gases	DBCCBD	
Mercury	DBAAAA	AAAA	Nitrous Oxide	DBBBBD	A
Methane	BBBBBB	AADA	Oils & Fats	BBB	BA A B DA
Methyl Acetate	BBABAB	DBA	Oils, Animal	BBBBAB	B DA A BA
Methyl Acetone		DAA	Oils, Petroleum	BBBBAB	
Methylamine	DBAAAC	DBA	Refined	ВААААА	AADA
Methyl Cellosolve	BCBBAB	DBA	Oils, Petroleum		
Methyl Chloride	BDBAAB	DADA	Sour	СВАААА	B DA
Methyl Ethyl			Oils, Water Mixture	ABAAA	AAA
Ketone	AAAAAA	DABA	Oleic Acid	ВСВВВВ	BABA
Methylene Chloride	ABABAB	D DA	Oleum	DBBBBD	DDDA
Methyl Formate	ACBBBB	DBA	Oleum Spirits	D BBBD	C D A
Methyl Isobutyl	1		Olive Oil	CBAAAA	AABA
Ketone	ABBBAB	DA	Olalic Acid	BDDDBB	DCBA
Milk & Milk			Oxygen	ABBBAB	BDAA
Products	CBAAAC	AAAA	Ozone, Dry	ACAAAA	DAA
Mineral Oils	BBBBBB	AADA	Ozone, Wet	BCBAAA	DBA
Mineral Spirits	BCBAAB	AADA	Paints & Solvents	AAAAAA	D D A
Mine Water (Acid)	DDBBBC	ААВА	Palmitic Acid	BCBBBB	ВАВА
Mixed Acids (cold)	DDBBBD	DDDA	Palm Oil	BCBBBA	BADA
Molasses, crude	ABAAAB	AAAA	Paper Pulp	B 88B	ВВ
Molasses, Edible Monochloro Ben-	АВАААВ	АААА	Paraffin	ABAAAA	AADA
			Paraformaldehyde	BBBBBB	BADA
zene, Dry Morpholine	В	D A	Paraldehyde		B DA
Mustard	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	D DA	Pentane	ABAAAB	AADA
Naptha	ABBBBB		Perchlorethylene,		
Napthalene	888888	B A D A D A D A	dry Detroletum (Massiling	вввввв	DDA
Natural Gas, Sour	B DDD	A DD	Petrolatum (Vaseline		
Nickel Ammonium	0 000		Petroleum Jelly) Phenol	BCBBBB	AADA
Sulfate	DDBBBC	АВА	Phosphate Ester 10%	8 D A 8 A A D 8 A A A A	
Nickel Chloride	СОВВВВ	AABA	Phosphoric Acid		DAA
Nickel Nitrate	DCBAAB	AAAA	10%	росвво	DDBA
Nickel Sulfate	СОВВВВ	AABA	Phosphoric Acid	0000000	
Nicotinic Acid	BBBBAB	DBA	50% Cold	DDBBBC	DDBA
Nitric Acid 10%	DDAAAD		Phosphoric Acid	000000	
Nitric Acid 30%	DDAAAD	CDBA	50% Hot		DDBA
Nitric Acid 80%	DDBBBD	DDBA	Phosphoric Acid		0001
Nitric Acid 100%	DDBBBD	DDCA	85% Cold	DDBBBC	DDBA
Nitric Acid		-	Phosphoric Acid		
Anhydrous	DDCCBD	D C A	85% Hot	DDCBBC	DD A
Nitrobenzene	888888	DDA	Phosphoric		
Nitrogen	ΑΑΑΑΑΑ	AABA	Anhydriede	DBB	DB A
Nitrous Acid 10%	DDCCBD	C A	-	_	

i

	VALVE MATERIAL	SEATS & SEALS		VALVE MATERIAL	SEATS & SEALS
A = Excellent	Steel Steel Steel		A = Excellent	Steel Steel Steel	SCALS
B = Good		1	B = Good		
C = Poor	Bronze Bronze Carbon Steel 303 Stainless 304 Stainless 316 Stainless Monel		C ≖ Poor	Bronze Bronze Carbon Stainless 304 Stainless 316 Stainless Monel	
D = Do Not Use	on Stair Stair Stair	Z	D = Do Not Use	te on S stain stain	z
	Bronze Bronze Carbon 303 Stai 304 Stai 316 Stai	Buna N Delrin EPDM Tetton		Bronze Carbon 303 Sta 304 Sta 316 Sta Monel	Buna N Defrin E P D M T cfion
Phosphorous	0000002		Potassium	⊡ ల ద ద ద ద ర Σ	۳ O O F
Trichloride	ВААА	DAA	Phosphate	с ввв	^ ^ ^
Phthalic Acid	ВСВВАВ	CAA	Potassium Phosphate		А АА
Phthalic Anhydride	BBBAAA	CABA	Di-basic	ВААААВ	
Picric Acid				BAAAAB	ААВА
			Potassiuum Phosphate		
Pineapple Juice	CCAAAA	A A A	Tri-basic	A BB	BBA
Pine Oil Bitch (Bitumon)	BBAAAB	AADA	Potassium Sulfate	BBBAAB	
Pitch (Bitumen)	ABAAAA	C DA	Potassium Sulfide	DDBBBD	A BA
Polysulfide Liquor	D BBB	B B A	Potassium Sulfite	BBBBAC	BAA
Polyvinyl Acetate	B AAB	C A A	Producer Gas	BBBBBA	AADA
Polyvinyl Chloride	B BBB	BA	Propane Gas	ABBBBB	AADA
Potassium Bicar-			Propylene Glycol	BBBBBB	ACAA
bonate Determiner Di	АААВ	ВАА	Pyridine	BCBBBB	D B A
Potassium Bi-			Pyrogallic Acid	ССССВС	A A A
sulfate	AB	ВА А	Pyrolignous Acid	BBB	DBA
Potassium Bi-		1	Quench Oil	BBAAA	AADA
sulfite	CDBBBD	ААВА	Quinine Bisulfate,		
Potassium Bromide	СОВВВВ	A A A A	dry	AAAB	A
Potassium			Quinine Sulfate		
Carbonate	DBBAAB		dry	ΑΑΑΒ	A
Potassium Chlorate	DCBBAC	A A A A A	Resins & Rosins	АСВВВА	C D A
Potassium Chloride	D С С С В В		Road Tar	АААААА	BADA
Potassium Chromate	С ВВВ	B BA	Roof Pitch	AAAAAA	BA A
Potassium Cyanide	DBBBBB		Rosin Emulsion	ВСАААА	D A
Potassium			Rubber Latex		
Dichromate	BBBAAB	AAAA	Emulsions	ABAAA	A A
Potassium			Rubber Solvents	A A A A A A	DCDA
Ferricyanide	СОВВВВ		Salad Oil	ВСВВВВ	AADA
Potassium			Salicylic Acid	СDBBBC	BAAA
Ferrocyanide	всвбвв	AA A	Salt (naCl)	ВСВВВА	ΑΑΑΑ
Potassium Hydroxide			Salt Brine	BD AAB	A BA
Dilute Cold	СВВВВА	A BA	Sea Water	CDBBAA	AAAA
Potassium Hydroxide			Sewage	ССВВВВ	A BA
To 70%, Cold	D C B B B A	B BA	Shellac-bleached	ААААА	A A
Potassium Hydroxide			Shellac-orange		A A
Dilute Hot	DBBBBA	B BA'	Silicone Fluids	в ввв	B B A
Potassium Hydroxide			Silver Bromide	BBAB	A
To 70%, Hot	DCDDBB	C AA.	Silver Cyanide	D ABAB	BBA
Potassium Iodide	CDBBBC	AAAA	Silver Nitrate	DDBBAD	CAAA
Potassium Nitrate	ввввв	AAAA	Silver Plating Sol.	AAA	B B A
Potassium Oxalate	вввв	D A	Soap Solutions		/
Potassium	_		(Stearates)	АААААА	Α ΑΑ
Permanganate	ССВВВВ	CAAA	Sodium Acetate	BDBBBC	BAAA
-			Sodium Aluminate	всвввв	AABA

CORROSION CHART

į

 $\varphi^{(i)}(\cdot)_{i}$

	VALVE MATERIAL	SEATS &		VALVE MATERIAL	SEATS &
A = Excellent	Steet Steet Steel	SEALS	A = Excellent		SEALS
B = Good	55 S5 S		B = Good	s Steel Steel	
C = Poor	Steel inless inless inless inless		C = Poor	Steel Intess Intess Intess	
D = Do Not Use	n ze bon Sta Sta	z ⊆ ∑ c	D = Do Not Use	nze bon Steel Stainless Stainless Stainless el	z_
	Bronze Garbon Steel 303 Stamless 9 304 Stainless 9 316 Stainless 9 Monel	Buna N Detrin EPOM Teflon	0 00 101 032	Bronze Carbon Steel 303 Staintess 304 Staintess 316 Staintess Monel	Buna N Delrin EPOM Tetton
Sodium Bicarbonate	ВСАААА	AAAA	Sodium Dhosehous	Z n Ř ň U 20	a q m h
Sodium Bichromate	DBBB	DA	Sodium Phosphate Di-basic	000000	
Sodium Bisulfate			Sodium Phosphate	ССВВВВ	AAAA
10%	ССАААВ		Tri-basic	ССВВВВ	
Sodium Bisulfite			Sodium	L C C B B B B	ВААА
10%	DDBBBB	AAAA	Polyphosphate		
Sodium Borate	ВСВВВВ	AAAA	Sodium Salicylate	В	BAA
Sodium Bromide 10%	всвввв	AAAA	Sodium Silicate	ВВВВВВ	A
Sodium Carbonate			Sodium Silicate, hot	ССВВВВ	A A A A B A
(Soda Ash)	BBBBBA	AAAA	Sodium Sulfate	BBBAAB	
Sodium Chlorate	ВСВВВВ	AAAA	Sodium Sulfide	DCBBBB	
Sodium Chloride	BCBBBA	AAAA	Sodium Sulfite	DCAAAB	A A A A
Sodium Chromate	Сввввв	AAAA	Sodium Tetraborate	A	A BA
Sodium Citrate	888	A	Sodium Thiosulfate	DDCCBB	BACA
Sodium Cyanide	DCAAAD	AAAA	Soybean Oil	ВСАААА	AABA
Sodium Ferricyanide	СВВ	A A	Starch	BCBBBA	AACA
Sodium Fluoride	DDCCBA	АААА	Steam (212°F.)	ABAAAB	DDBB
Sodium Hydroxide			Stearic Acid	BCBBAC	BABA
20% Cold	ВВАААА	B AA'	Styrene	AAAAAB	DDA
Sodium Hydroxide			Succinic Acid	C DCBB	A
20% Hot	вваааа	B AA'	Sugar Liquids	ABAAAA	AABA
Sodium Hydroxide			Sugar, Syrups		_
50% Cold	ССАААА	B AA	& Jam	B BAA	Α Α Α
Sodium Hydroxide 50% Hot		_	Sulfate, Black		
Sodium Hydroxide	ССВВАА	B AA'	Liquor	DDBBBB	СВВА
70% Cold	00000		Sulfate, Green		
Sodium Hydroxide	ССВВВА	B A A	Liquor	DDBBBB	CA A
70% Hot	ррсссв		Sulfate, White		
Sodium Hypo-	DUCCCB	DBA	Liquor	DDBBBC	CA A
sulfite	АААВ		Sulfonic Acid	B BBB	D DA
Sodium Lactate	AAAB	A	Sulfur	DDBAAB	DAAA
Sodium Meta-		A	Sulfur Chlorides, Dry	DDDCCC	DADA
phosphate	СДВВВВ	AAA	Sulphur Dioxide,		
odium Meta-			dry Cutture Dire di l	BABBBB	DAAA
silicate Cold	BCAAAA	B A	Sulfur Dioxide,		_
odium Meta-		BA	wet Sulfur	DDDDBD	DAA
silicate Hot	BDAAAA	A			
odium Nitrate	DBBAAB	BAAA	Hexafluoride Sulfur, Molten	B AAA	A A A
odium Nitrite	BBBC	CBAA	Sulfur Trioxide		D DA
odium Perborate	СВВВВВ	CAAA	Sulfur Trioxide,	DB BB	D BA
odium Peroxide	DCBBBB	CAAA	dry		D 4 D 4
odium Phosphate	ССВВВВ	BBAA	Sulfuric acid	DBBBBB	DABA
		, .	0 to 77%	4	

CORROSION CHART

Ņ

۰.

A = Excellent B = Good C ≈ Poor	VALVE MATERIAL Diess Steel Diess Steel Diess Steel Diess Steel	SEATS & SEALS	A = Excellent B = Good	VALVE MATERIAL EFFE Solo Color Solor	SEATS & SEALS
D = Do Not Use	Bronze Bronze Carbon Steel 303 Stainiess 304 Stainiess 316 Stainiess Monei	Buna N Defrin EPDM Teflon	C = Poor D = Do Not Use	Bronze Bronze Carbon Steel 303 Stainless 304 Stainless Monel	Buna N Detrin EPDM Tetton
Sulfuric Acid 100% Sulfurous Acid Tall Oil Tannic Acid (Tannin) Tanning Liquors Tar & Tar Oils Tartaric Acid Tetraethyl Lead Toluol (Toluene) Tomato Juice Transformer Oil Tributyl Phosphate Trichlorethylene Trichloroacetic Acid Triethanolamine Triethylamine	D C C C B D D D D B B B B B B B B B B B B B A A A A A A A	D D C A B C B A B A D A B A A A B A A A B A C A B A D A D A D A A A D A D A D A D A D A C C A D B A B A B A	Trisodium Phosphate Tung Oil Turpentine Urea Uric Acid Varnish Vegetable Oils Vinegar Vinyl Acetate Water, Distilled Water, Fresh Water, Acid Mine Waxes Whiskey & Wines Xylene (Xylol), Dry Zinc Bromide Zinc Hydrosulfite Zinc Sulfate	B B B A A C B B A A A A B C B <td>A B A A A D A B A D A B A B A A A D A D B A D A A B A A A B A A A B A A A B A A A A A A A</td>	A B A A A D A B A D A B A B A A A D A D B A D A A B A A A B A A A B A A A B A A A A A A A

ATTACHMENT D-2-4-2 APPENDIX D-2-4 SECTION D-2

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 600

Revision No. 5.0

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 600 TANKS T-634, T-635, AND T-636

TABLE OF CONTENTS

I.	Introduction	1
II.	Tank Design	1
III.	Tank Foundation Design	2
IV.	Ancillary Equipment Design	2
V.	Secondary Containment System Design	3
VI.	Tank Venting Requirements	3
VI	. Hazardous Characteristics of the Waste Managed	4
VI	I. Certification of Tank System Design Assessment	5

LIST OF EXHIBITS

- Exhibit A Tank Data Sheets
- Exhibit B Tank Design Calculations
- Exhibit C Tank Foundation Design Calculations
- Exhibit D Calculations of Tank Venting Requirements
- Exhibit E Tank Material of Construction Compatibility Information

LIST OF REFERENCED DRAWINGS

0600-010-001	Container & Tank Management Unit 600 - P&ID
0600-020-001	Container & Tank Management Unit 600 - Plan View
0600-030-002	Container & Tank Management Unit 600 - Sections
0600-040-001	Container & Tank Management Unit 600 – Details
0600-080-034	Tank Data Sheet - T-634
0600-080-035	Tank Data Sheet - T-635
0600-080-036	Tank Data Sheet - T-636

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 600 TANKS T-634, T-635, AND T-636

I. Introduction

This document provides the assessment and certification for the design of the hazardous waste storage tank system(s) at Tank Management Unit 600 at the Chemical Waste Management, Inc. Facility in Emelle, Sumter County, Alabama. The assessment was performed to address the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), regarding the design of the system within Tank Management Unit 600
 which is comprised of the tanks (i.e., Tanks T-634, T-635, and T-636), the tank foundation, the associated ancillary equipment and the secondary containment system.

Tank Management Unit 600 is located north of Unit 520 and adjoins the west side of Unit 604 as shown on Drawing No. 0100-020-001 in Appendix D-1 to Section D of the RCRA Part B Permit
Application. The primary function of the tank systems within Unit 600 is to enable the accumulation, storage and bulking of PCB contaminated solvents (e.g., diesel fuel, mineral oil, etc.) resulting from the flushing of transformers, and mixed RCRA/TSCA wastes decanted from containers within Unit 604.

The following drawings were used in the preparation of this Assessment and Certification and are provided either in Exhibit A (Tank Data Sheets) or in Appendix D-1 to Section D of the RCRA Part B Permit Application:

	Drawing No.	Drawing Title
25	0600-010-001	Container & Tank Management Unit 600 - P&ID
	0600-020-001	Container & Tank Management Unit 600 - Plan View
	0600-030-002	Container & Tank Management Unit 600 - Sections
	0600-040-001	Container & Tank Management Unit 600 - Details
	0600-080-034	Tank Data Sheet - T-634
30	0600-080-035	Tank Data Sheet - T-635
	0600-080-036	Tank Data Sheet - T-636

II. Tank Design

Tanks T-634, T-635, and T-636 have been designed in accordance with the design codes and standards indicated within the DESIGN DATA section of the Tank Data Sheets (i.e., Drawing Nos. 0600-080-034, -035 and -036) provided in Exhibit A to this tank system design

assessment. The criteria utilized in the assessment of the design of the shell, structural support, and anchorage for Tanks T-634, T-635, and T-636 are also provided within the DESIGN DATA section of the Tank Data Sheets, as well as within the tank design calculations provided in Exhibit B to this tank system design assessment.

5

The calculations provided in Exhibit B to this tank system design assessment demonstrate that the tank shell, structural supports and anchorages are, as designed, adequate to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as

10

III. Tank Foundation Design

The design of the reinforced concrete foundation for Tanks T-634, T-635, and T-636 are indicated in Detail 8 on Drawing No. 0600-040-001 which is provided in Appendix D-1 to Section
D of the RCRA Part B Permit Application. The criteria utilized in the assessment of the design of the foundation for Tanks T-634, T-635, and T-636 are provided within the tank foundation design calculations provided in Exhibit C to this tank system design assessment.

applicable, at the design conditions indicated on the tank data sheets.

20

The tank foundation design calculations provided in Exhibit C demonstrate that the tank foundation is, as designed, adequate to support the load of the full tanks and to withstand associated environmental stresses at the design conditions indicated on the tanks data sheets and provided within foundation design calculations.

IV. Ancillary Equipment Design

25

All tank system ancillary piping systems shall be designed, installed and tested in accordance with the American Society of Mechanical Engineers (ASME) Standard B31.3, "Chemical Plant and Petroleum Refinery Piping", or an equivalent nationally recognized standard, and in accordance with recognized good engineering practices to ensure that they are supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

30

All other ancillary equipment for the tank system shall be designed, installed and tested in accordance with appropriate recognized standards, if any, and in accordance with recognized good engineering practices to ensure that it is supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

35

In order for this tank design assessment and associated certification to be maintained, and prior to the tank system being placed in use, the Facility shall ensure that the tank system ancillary

equipment is properly installed and that all required inspections, tests and repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f). Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative

Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested.

V. Secondary Containment System Design

The design features of the secondary containment system for the tank systems within Unit 600 are indicated on Drawing Nos. 0600-020-001, 0600-030-002 and 0600-040-001 which is located in Appendix D-1 to Section D of the RCRA Part B Permit Application. As shown on these drawings and in accordance with the applicable requirements of 40 CFR 264.193 and ADEM Administrative Code Rule 335-14-5-.10(4), the secondary containment system design is comprised of a reinforced concrete base, with all joints sealed with chemical-resistant waterstops, and all concrete surfaces sealed with chemical resistant concrete coating system. Information on the concrete coatings available for use on the secondary containment system is provided within Appendix D-1-3 to Section D-1 of the RCRA Part B Permit Application.

20

30

15

5

Calculations demonstrating that the design secondary containment capacity meets or exceeds the applicable requirements 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e) are provided in Appendix D-2-2 to Section D-2 of the RCRA Part B Permit Application.

25 VI. Tank Venting Requirements

As indicated on the P&ID for Unit 600 (i.e., Drawing No. 0600-010-001 which is located in Appendix D-1 to Section D of the RCRA Part B Permit Application), Tanks T-634, T-635, and T-636 are designed as closed top tanks that passively vent through a closed system to an activated carbon absorber. Drawing No. 0600-010-001 also indicates that the designed tank vent system includes a pressure/vacuum relief valve (i.e., conservation vent) and an emergency relief vent on each of the tanks. The Tank Data Sheets (i.e., Drawing Nos. 0600-080-001, -002 and -003) provided in Exhibit A to this tank system design assessment specify the diameter of the pressure/vacuum relief valve nozzle and the emergency vent nozzle on each of the tanks.

The requirements for normal (i.e., liquid displacement and thermal effects) and emergency (i.e., fire exposure) venting capacities for the Unit 600 tanks were evaluated in accordance with American Petroleum Institute Standard 2000, Venting Atmospheric and Low-Pressure Storage Tanks (i.e., API 2000). As shown in the venting calculations provided in Exhibit D to this tank system design assessment, the size of the conservation vent nozzle on each of the tanks is adequate to allow the tank under normal conditions to be maintained within the design limitations for pressure and vacuum as specified on the Tank Data Sheets provided in Exhibit A and within the tank design calculations provided in Exhibit B to this tank system design assessment. The venting calculations provided in Exhibit D also demonstrate that the size of the emergency vent nozzle on each of the tanks is adequate to allow the tank to be maintained within the design limitations for pressure in the event of exposure to fire. The venting calculations provided in Exhibit D to this tank system design assessment also indicate the design pressure and vacuum settings for the conservation vent, the design pressure setting for the emergency relief vent, and the design maximum tank fill and withdrawal rates which were used in the evaluation of the tank venting requirements.

VII. Hazardous Characteristics of the Waste Managed

- In accordance with the requirements of 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., this section presents an evaluation of the compatibility of the wastes managed within the Unit 600 tank system with the materials of construction of Tanks T-634, T-635, and T-636 and the ancillary equipment (i.e., pumps and piping) to determine their suitability for service in this unit.
- The types of wastes managed within Tanks T-634, T-635, and T-636 will primarily be mixed RCRA/TSCA organic wastes (such as halogenated and non-halogenated spent solvents) which may meet the RCRA definition of ignitability, and PCB contaminated flush agents such as diesel fuel and mineral oil. Tanks T-634, T-635, and T-636 and the ancillary equipment that contact wastes within this system are primarily constructed of carbon steel without internal corrosion protection.
 - Exhibit E to this tank system design assessment presents information which provides an indication of the relative compatibility of carbon steel with a wide variety of chemical compounds and other substances. The table in Exhibit E provides corrosion/compatibility information for carbon steel exposed to pure chemical compounds which, in general, tend to have a more severe corrosive effect than wastes which contain mixtures and complexes of these compounds. Although this table may not provide corrosion data and service recommendations for all of the potential constituents of the wastes or waste mixtures which may be managed within the tank system in Unit 600, the table does demonstrate that carbon steel is generally compatible with and, under normal conditions, should not experience an accelerated rate of corrosion or deterioration when exposed to a majority of the types and classes of wastes which are managed within the Unit 600 tank system. In addition to the compatibility/corrosion data provided in Exhibit E, the compatibility of carbon steel with the types of organic and PCB contaminated wastes managed within Unit 600 is further validated by the empirical data

AttachD-2-4-2Text.docx

5

10

30

provided by many years of comparable service applications within a variety of units at the Facility.

Based on the information provided in Exhibit E of this tank system design assessment and the
empirical data compiled at the Facility for comparable service applications, it is the conclusion of
this evaluation that the carbon steel tank system components are generally compatible with the
types of waste managed within the Unit 600 tank system. It is further concluded that these
materials of construction are suitable for this service if the tank system is operated within the
design limitations set forth within this assessment, and that, if the tank system is managed in
accordance with the following minimum practices, these materials of construction should not
experience an accelerated rate of corrosion or deterioration which may result in a catastrophic
failure of the tank system, throughout its useful life:

- Prior to placement of a waste into the tank system the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. References other than Exhibit E of this document, such as publications by the National Association of Corrosion Engineers (NACE) or other recognized sources of corrosion data, may also be used to evaluate compatibilities. The Facility shall prohibit the placement into the Unit 600 tank systems any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components, including hazardous wastes that exhibit the characteristic of corrosivity as defined in 40 CFR 261.22 and ADEM Administrative Code Rule 335-14-2-.03(3); and
 - The Facility shall perform an annual inspection of the tank shells to ensure that minimum code thicknesses are maintained and that adequate corrosion allowance is available for continued service.

VIII. Certification of Tank System Design Assessment

In accordance with the requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), this section provides a certification by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), that an assessment of the design of the following tank system(s) demonstrates that the tank system foundation, structural supports, seams, connections, and pressure controls are adequate, and that the tanks have sufficient structural strength, compatibility with the wastes to be managed and/or protection from corrosion so that they will not collapse, rupture or fail, if properly installed, operated within the design limits, and properly inspected and maintained:

```
AttachD-2-4-2Text.docx
```

15

20

Tank System Location:	Chemical Waste Management, Inc.
	Emelle, Alabama
Tank System Identification:	Tank Management Unit 600
Applicable Tanks:	T-634, T-635, and T-636

At a minimum, the assessment of the tank system design, which is incorporated herein by reference, addresses and considers the following factors with respect to the intended use of the tank system:

10

15

20

25

30

35

- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tank designs have been evaluated for structural integrity with regards to the ability of the designed tank shell, structural supports and anchorages to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as applicable;
- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tanks have been evaluated with regards to the adequacy of the designed tank to provide the necessary capacity for normal and emergency venting;
- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which piping and other ancillary equipment shall be designed and constructed to maintain this certification;
 - In accordance with 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., the assessment of the tank system design considers the compatibility of the tank's materials of construction and/or internal coatings with the types of hazardous wastes to be managed;
 - In accordance with the applicable requirements of 40 CFR 264.192(a)(5) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)5., the assessment of the tank system design considers the ability of the designed tank system foundation to support the load of the full tanks and to withstand associated environmental stresses; and
 - The assessment of the tank system design considers the adequacy of the capacity of the designed tank secondary containment system as required by the applicable

requirements of 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e).

In order for this certification to be maintained, the Facility shall comply with the applicable requirements of 40 CFR 264 Subpart J and ADEM Administrative Code Rule 335-14-5-.10, and shall perform all routine management procedures, periodic inspections and reviews, and tank system functionality and integrity tests as required by the permit including, but not limited to, the following:

10

25

30

35

• The Facility shall ensure that the tank system is properly installed and that, prior to placing the tank system in use, all required inspections, tests and necessary repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f);

- Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested;
 - Prior to placement of a waste into the tank system, the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the Unit 600 tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components, including hazardous wastes that exhibit the characteristic of corrosivity as defined in 40 CFR 261.22 and ADEM Administrative Code Rule 335-14-2-.03(3);
 - Prior to placement of a waste into the tank system, the Facility shall verify the specific gravity of the waste in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the tank system of any waste that has a specific gravity that exceeds the design maximum value specified within the tank system design assessment;
 - Prior to placement of a waste into the tank system, the Facility shall verify in accordance with the procedures and requirements of the Waste Analysis Plan

provided in Section C of the RCRA Part B Permit Application, that the treatment of the waste will not cause temperatures within the tank system to exceed the design maximum value specified within the tank system design assessment;

- The Facility shall perform a daily inspection of the visible aboveground portions of the tank exterior to detect excessive corrosion or deterioration;
- The Facility shall perform a daily inspection of the visible aboveground portions of the tank secondary containment system to detect leakable cracks or gaps, or excessive deterioration of the concrete base and/or chemical resistant concrete coatings,
- The Facility shall perform an annual inspection of the tank shells, as described in Subsection F-2-6 of Section F-2 of the RCRA Part B Permit Application, to ensure that minimum code thicknesses are maintained and that adequate corrosion allowance is available for continued service;
 - The Facility shall perform an annual inspection of the tank structural supports and anchorages to ensure that their integrity is maintained;
 - The Facility shall perform a periodic inspection of the tank venting and emergency relief devices to ensure that they are in good working order with the appropriate vent or relief settings to maintain the tanks within the design limits for pressure as specified within the tank system design assessment. The frequencies and procedures for inspection of all tank venting devices shall be as recommended by the manufacturer;
 - The Facility shall perform a periodic inspection of the tank level sensing, overfill control devices and associated interlocks to ensure that they are in good working order with the appropriate settings to prevent overfilling of the tanks. The frequencies and procedures for inspection of all tank level sensing and overfill control devices shall be as recommended by the manufacturer;
 - The Facility shall perform a periodic inspection of any other operational controls for the tank system to ensure that they are in good working order with the appropriate settings to maintain the tanks within their design limits as specified within the tank system design assessment. The frequencies and procedures for inspection of other tank system operational controls shall be as recommended by the manufacturer;
 - The Facility shall perform periodic inspections of the integrity of any tank system grounding and lightning protection systems; and
- The Facility shall perform periodic inspections of the integrity of any tank system fire protection systems.

20

5

10

15

25

30

Based on the information provided within the tank system design assessment and supporting documentation, the design of Tanks T-634, T-635, and T-636 within Tank Management Unit 600 meets the current RCRA requirements relative to the design of new hazardous waste tank systems. The design assessment addresses only the applicable requirements of 40 CFR

- ⁵ 264.192 and 40 CFR 264.193, and ADEM Administrative Code Rules 335-14-5-.10(3) and (4), and does not consider compliance with other codes or regulations, including, but not limited to, the requirements of the Occupational Safety and Health Act (OSHA).
- With regards to the assessment and certification of the design of hazardous waste tank systems in accordance with the applicable requirements of 40 CFR 264.192(a) and (g), and ADEM Administrative Code Rules 335-14-5-.10(3)(a) and (g), I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system,
- or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.
- 20

25

William O. Hagerman, P.E. Alabama P.E. No.: 14014 President ETI Corporation 6799 Great Oaks Road, Suite 100 Memphis, Tennessee 38138-2500

2-1-95 er. ONA

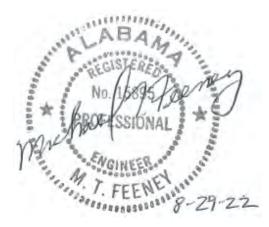
This certification was originally submitted in 1995. As part of the 2002 Part B Application Renewal, revisions were made to the text in this attachment. These revisions consisted primarily of renaming the section for the Waste Analysis Plan to Section C to maintain consistency with the other Sections contained within this Part B Permit Application. No revisions were made to this attachment during this Part B Permit Application renewal process (Revision 5.0).

35

40

With regards to the revisions noted above, I certify under penalty of law that these modifications were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my

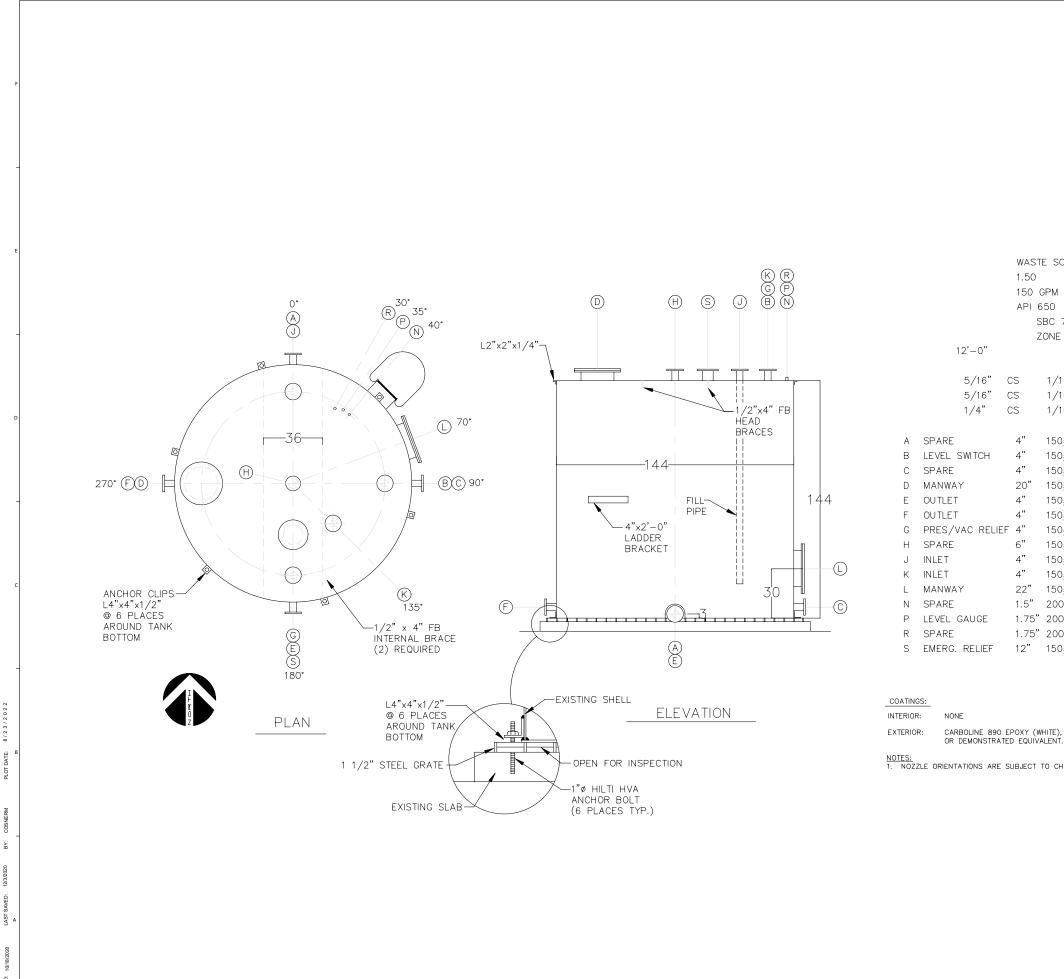
AttachD-2-4-2Text.docx


knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

5

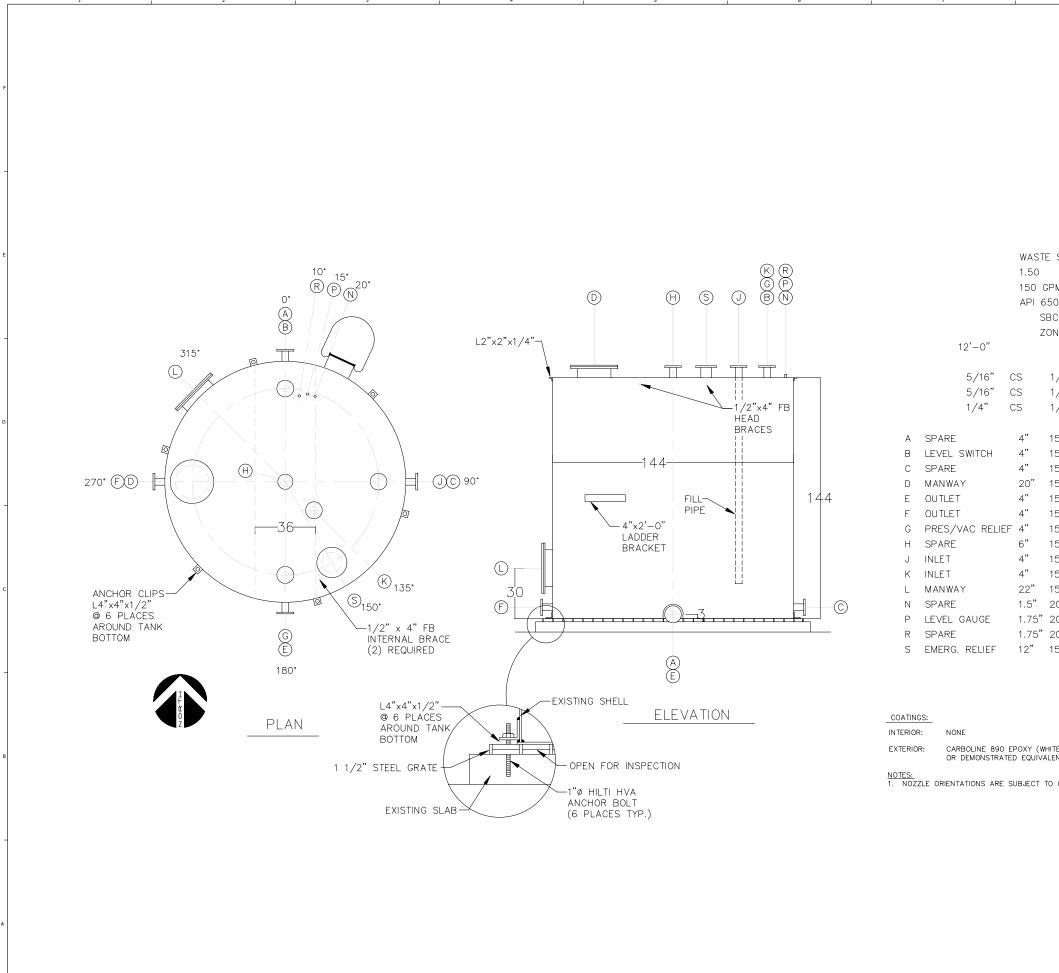
15

Michael T. Feeney, P.E. Alabama P.E. No.: 15895 Jacobs Engineering Group Inc. Ten 10th Street NW

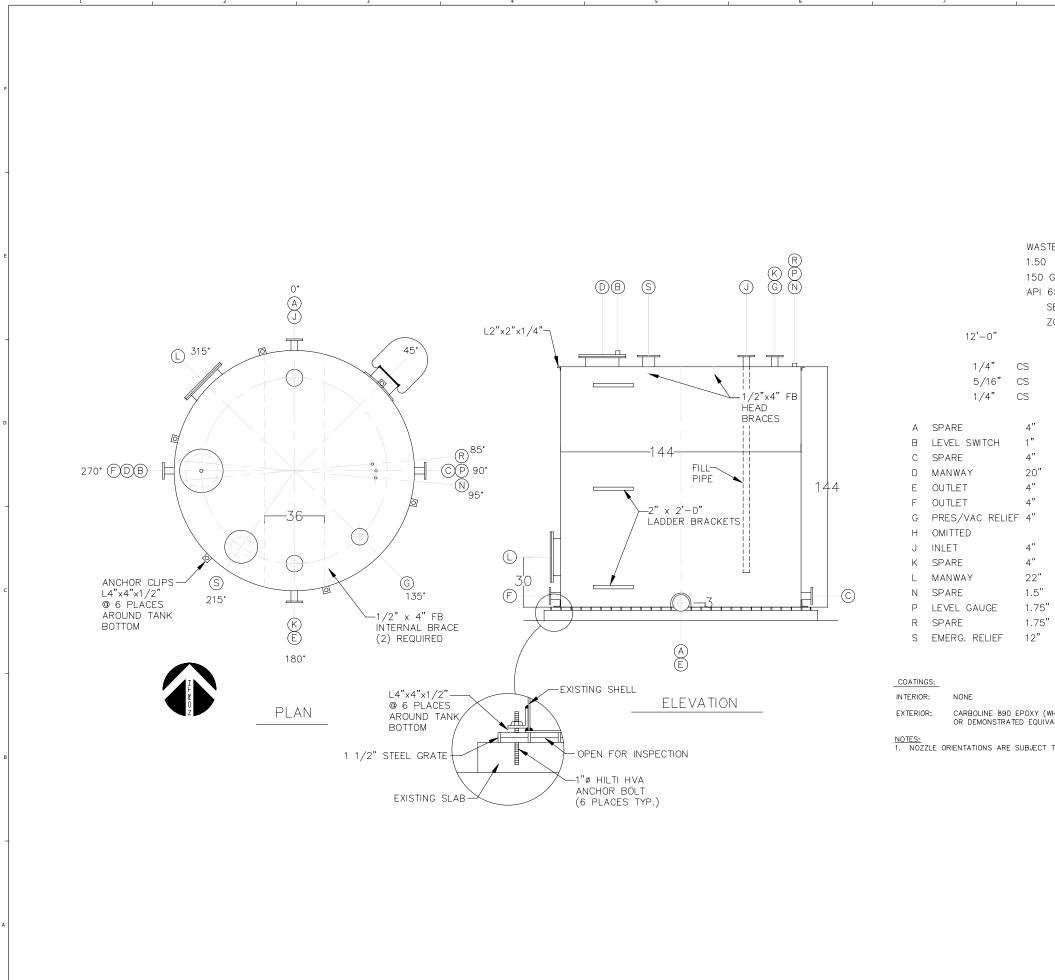

10 Atlanta, Georgia 30309

[End of Attachment D-2-4-2 Text]

EXHIBIT A


TANK DATA SHEETS

8	9			
			Jacobs	10 Tenth Street Sulte 14.00 Alarria, GA 303/30]; 404.373.7600
10,152 gal. 				NOT RELEASED FOR CONSTRUCTION
SOLVENTS 1 70 mph E 1 / API 650, App. E	10 oz. 150° F 12" 150 GPM 0.70		MASTE MANAGEMENT	
12'-0" 16" VERTICAL 16" FLAT 16" FLAT 16" FLAT 50# RF SIDE 0* H2.5" 50# RF SIDE 90* H2.5" 50# RF SIDE 90* H2.5" 50# RF SIDE 180* H2.5" 50# RF SIDE 270* H2.5" 50# RF SIDE 270* H2.5" 50# RF TOP 180* 50# RF TOP 180* 50# RF TOP 135* 50# RF SIDE 70* H30" 50# RF SIDE 70*	12'-0" - BOLTED BLIND FLG W/ FILL PIPE CAPPED CAPPED	RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAWA TRATIMENT FACILITY	SUMTER COUNTY, AL
C), IT. CHANGE BY OWNER.		THIS DRAWIN	ST 2022	ONTUNCTION


SHEET 0600-080-034

TANK DATA SHEET - T-634

8/23/2022

8 1	9	
		JacobS.
	. / +16 oz.	NOT RELEASED FOR CONSTRUCTION
0' F STE SOLVENTS 0) GPM 650 SBC 70 mph ZONE 1 / API 650, App. 12'-		
1/16" VER 1/16" FLA 150# RF SIDE 0° H2. 150# RF TOP 0° 150# RF SIDE 90° H2. 150# RF SIDE 90° H2. 150# RF SIDE 90° H2. 150# RF SIDE 270° H3. 150# RF SIDE 180° H 150# RF TOP 180° 150# RF TOP 00° 150# RF TOP 00° 150# RF TOP 135° 150# RF SIDE 70° H35° 2000#CPLG TOP 10° 5" 2000#CPLG TOP 15° 2000#CPLG TOP 20° 150# RF TOP 20° 150# RF TOP 150°	T – 5" 2.5" BOLTED 12.5" 12.5" R BLIND FLG W/ FILL PIPE	RCRA PART B PERMIT APPLICATION CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY SUMTER COUNTY AL
(WHITE), JIVALENT. 2T TO CHANGE BY OWNER.		Image: Solution of the control of the contr

8/23/2022

8	1	9		
				UTTAT STATE
	10,152 gal. -2" w.c. / + 0° F	-16 oz. 150° F		NOT RELEASED FOR CONSTRUCTION
ASTE SOLVENTS .50 50 GPM PI 650 SBC 70 mph ZONE 1 / AF		12" 150 GPM 0.70		WASTE MANAGEMENT
1/16" 1/16" 1/16" " 150# RF " CPLG. " 150# RF 0" 150# RF " 150# RF " 150# RF " 150# RF	VERTICAL FLAT FLAT SIDE 0° H2.5" TOP 270° SIDE 90° H2.5" TOP 270° SIDE 180° H2.5" SIDE 270° H2.5" TOP 135°	- 12'-0" - - MANWAY D BOLTED	RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY SUMTER COUNTY, AL
" 150# RF " 150# RF 2" 150# RF 5" 2000#CPLG 75" 2000#CPLG 75" 2000#CPLG 2" 150# RF	. TOP 90°	W/ FILL PIPE CAPPED CAPPED CAPPED		-
(Y (WHITE), QUIVALENT. JECT TO CHANGE BY	OWNER.			RCA MAT REMTREMANA.
			THIS DRAWING MUST	22 GNER: CHECKER:
			CHEET	SHEET - T-636 -080-036

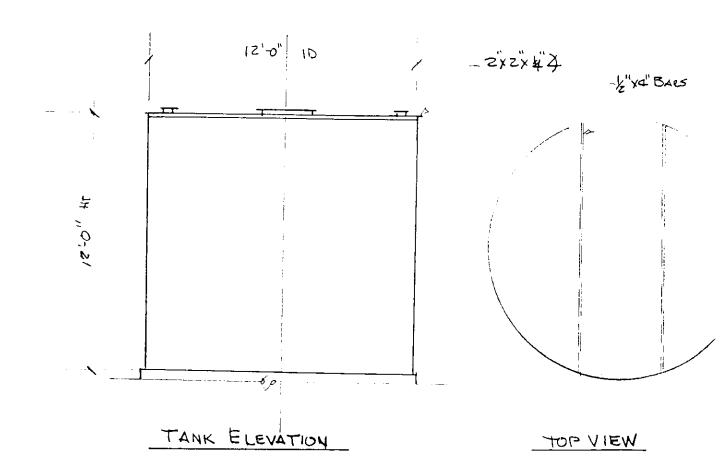
EXHIBIT B

TANK DESIGN CALCULATIONS

CHEMICAL WASTE MANAGEMENT CO.					
EMELLE, ALABAMA FACILITY					
- - -	CALCULATION COVER SHEET				
UNIT:	600				
TANK NO.:	T-634 T-635 & T-636				
DECRIPTION:	T-634, T-635 & T-636 12'0 BY 12' CS TANK, FLAT BOTTOM				
VESSEL CALCULATIONS PREPARED BY: <u>LANZ</u> DATE: <u>9/29/94</u>					
REV. DATE NO.	BY CHK APPVD. PAGES REMARKS				
ATTACHMENTS: PRIOR CALCULATIONS HAVE BEEN INCLUDED TO SUPPLEMENT THE DATA USED IN THE CALCULATIONS.					

....

Exhibit B Page 1 of 8


UNIT 600

DESIGN CALCULATIONS

•

Design Code	API 650
Service Status	Existing
Diameter/Length	······································
Shell/Heigth	
Bottom/Width	
Heads/Ends Top	• • • • • • • • • • • • • • • • • • • •
·	••••••••••••••••••••••••••••••••••••••
BOLTOM	••••••••••••••••••••••••••••••••••••••
Leys	Nono
operating Capacity	Y • • • • • • • • • • • • • • • • • • •
material of Consti	Luction Carbon Steel
COLLOSION VITOMUCE	= 1/16 inch
Joint Efficiency	
Design Spec. Grav.	
Design Pressure	1.5 16 oz\sq in Max 2 inches H20 Min
Design Temperature	10 02/sq in max 2 inches H20 Min
Roof Live Load not	e 150 deg F Max 0 deg F. Min
Wind Load	40 psf
	NA NA
Seismic Zone	
Agitator	NO
Location	Indoors

<u>i</u> 2	ROSSER BOVAY		·····
SE	ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET OF
ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER		CHECKER 9 11:29194	

に に	ROSSER BOVAY		
SS	ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET OF
S S	ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER	DESIGNED LANZ	CHECKED & 11129194

Exhibit B Page 3 of 8

TANK UNIT 600 Page 3 of 7 Tanks T-634, T-635, T-636 Rev 1 10/24/94 Rev 2 11/18/94 TANK DESIGN Diameter 12 feet Height 12 feet Weight of Contents Volume = Pi*H*D*D/4 = 1357.2 Cubic Feet Weight = Volume*Unit Wt*SG = 127031 Pounds (12 ft. Depth) Tank Wall Thickness The 12 foot high tank will be constructed of 12 foot rolled sheet Minimum thicknesses of plate are determined using Section 3.6 of steel. API standard 650. Min. Values are Bottom Course 3/16" + Corrosion Allowance Thickness of the steel using the 1 foot method and Appendix F. t = 2.6*D*(H-1+P/.433)*G/E/21,000 + Corr Allow $= 2.6 \times 12 \times (12 - 1 + 1 / .433) \times 1.5 / 0.7 / 21000 + 1 / 16 =$ 0.042 + 0.0630.105 inches USE 3/16 INCH PLATE Tank Floor Thickness USE 5/16 INCH PLATE PER API 650 (1/4" + CA) Tank Roof Thickness Assume a 1/4 inch plate Roof (t + c, 3/16" + 1/16") supported at 40 inch centers. Roark, 6th Ed, Table 26, Case 1 Rect Plate, Edges simply supported a/b = 12/4 = 3Sigma =Beta*q*b*b/t/t = Beta = 0.7134= 0.7134*.421*40*40/.1875/.1875 = Alpha = 0.133513669 psi q = (40+10.4+10.2)/144 =0.421 psi Defl= Alpha*q*b*b*b*b/E/t/t/t= = 0.1335*0.421*40*40*40*40/30000000/0.1875/0.1875/0.1875 = 0.728 inches USE 1/4 INCH PLATE FOR ROOF

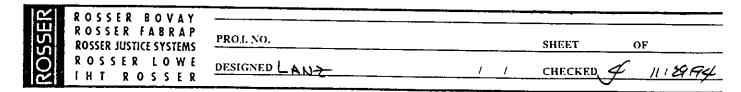
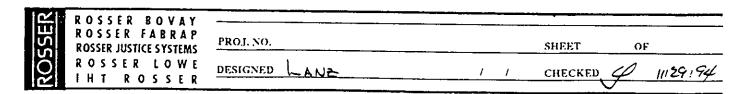
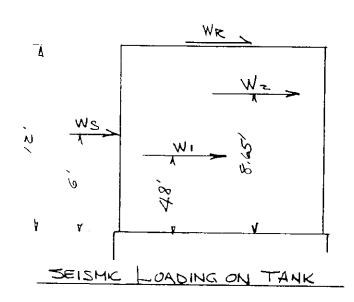



Exhibit B Page 4 of 8

TANK UNIT 600 Page 4 of 7 Tanks T-634, T-635, T-636 Rev 1 10/24/94 Rev 2 11/18/94 Roof Support Members. The weight of roof to support with each member is 3.33*(40+10.2+10.4) Wt = 202 pounds per foot Roof member eff. length = 11' Load = 202*11 = 2220 pounds Mom =w*1*1/8 = 202*11*11*12/8 = 36626 inch pounds Section Modulus = Mom/Allow Stress = 36626/18000 = 2.03 inches cubed Moment of Inertia The roof is suported with 1/2" by 4 " flat bars. Use 6 inches of roof plate to form a composite beam. $\mathbf{x} = (6*(3/16)*(\bar{1}/8) + 4*(1/2)*(-2))/(6*(3/16) + 4*(1/2))$ = (0.1406 - 4)/3.125 = 1.235 inches I = 1.125*1.36*1.36 + 2*0.765*0..765 + 4*4*4/2/12 = 5.918in4 in man 1.485 1.36 235 NA. 0.765 2,765 **2**.00 S = 5.918/2.7652.14 in3 = S = 5.918/1.485 =3.99 in3 2.14 > 2.03ROOF SUPPORT IS OK Top Angle Attachment Per API 650 Section 3.1.5.9, USE 2" X 2" X 1/4" ANGLE Allowable internal pressure Pa = Roof load*Allow Stress/ Actual Stress = = 60.6/144*18000/13669 = 0.55 psi INTERNAL PRESSURE CHECKS



TANK UNIT 600

```
Weight of Tank
    Weight of Floor
        Wt. = Area times unit weight = Pi*R*R*12.75
= Pi*6*6*12.75 = 1442 pounds
    Weight of Wall
        Wt. = Area times unit weight = Pi*D*h*7.65
= Pi*12*12*7.65 = 3461 pounds
    Weight of Roof
        Wt = Area times unit weight = Pi*R*R*12.75
        = PI * 6 * 6 * 10.2 = 1154 pounds
Wt of beams = Wt/ft*Len*2 = 6.8*11*2
= 150 pounds
    Weight of Nozzles and Attachemnts = 1000 pounds
    Weight of Tank
        Wt = Floor + Wall + Roof + Att = 7206 Pounds
Force on Tank Roof
        Force = Pressure times Area = P*Pi*R*R
             = 1*Pi*6*12*6*12 = 16286 Pounds
        This force is greater that the weight of the empty tank by
            9080 pounds. An anchor system is required to hold the tank
```

SER	ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE I H T ROSSER	PROL NO.	
	ROSSER JUSTICE SYSTEMS		SHEET OF
Ŏ.	ROSSER LOWE IHT ROSSER	DESIGNED ANE	CHECKED 4 1129 194

Exhibit B Page 6 of 8 down.

Earthquake Forces The Site is in Zone 1. Z= 0.075

The overturning moment due to seizmic forces applied to the bottom of the shell are (API 650, App. E)

M = 2*I*(C1*Ws*Xs+C1*Wr*Ht+C1*W1*X1+C2*W2*X2)

Where

M is the overturning moment Z is the seizmic zone factor $Z = 0.075$ I is the importance factor $I = 1.0$ C1, C2 are earthquake force coefficients, E3.3: C1 = 0.6, C2 = 0.37 Ws is the weight of the tank shell $Ws = 3,461$ Lb Xs is the distance up to the shell center of gravity $Xs = 6$ ft Wr is the weight of the tank roof $Wr = 1,154$ LB Ht is the height of the tank shell $Ht = 12$ ft W1 is the effective mass of the tank contents that move with the tank W1 = 101625 X1 is the height to the centroid of seizmic force W1 X1 = 4.8 ft W2 is the effective mass of the contents that move in the first
sloshing mode W2 = 30487 X2 is the height to the centroid of seizmic force W2 X2 = 8.65 ft Then W = 07541 ot(closet to be a set of the set of th
M = .075*1.0*(.6*3461*6+.6*1154*12+.6*101625*4.8+.37*30487*8.65) = 30827 foot-pounds
ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE I H T ROSSER UESIGNED LANZ I CHECKED 4 112194

Exhibit B Page 7 of 8

I.

TANK UNIT 600

Resistance to Overturning

Not considered for anchored tanks.

Shell Compresion

The maximum longitudinal compressive stress at the bottom of the shell is determined by the expression

b = wt + 1.273*M/D/D = 6083/Pi/12+1.273*31097/12/12 = 434 pounds/foot in shell

The maximum longitudinal compressive stress in the shell b/12/t shall not exceed the following Fa = 1,000,000*t/D when G*H*D*D/t/t > 1,000,000 or Fa = 1,000,000*t/2.5/D + 600SQRT(G*H) when less than 1,000,000.

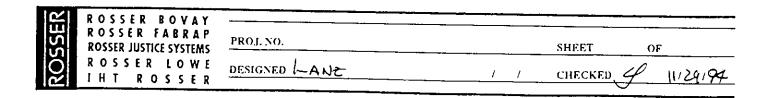
G*H*D*D/t/t = 168585.3 < 1,000,000

Maximum Stress = 1000000*.042/2.5/12+600*SQRT(1.5*12) = 3946 psi

Minimum Anchorage

The force per foot of circumference = $1.273 \times M/D/D - wt$ = $1.273 \times 31097/12/12 - 6083/Pi/D$ = 114 pounds

6 - 1 INCH DIAMETER ANCHOR BOLTS ARE REQUIRED FOR TIE DOWN



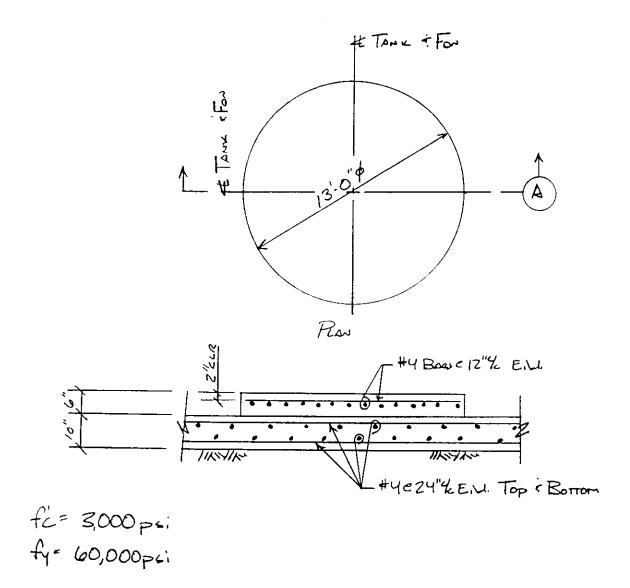
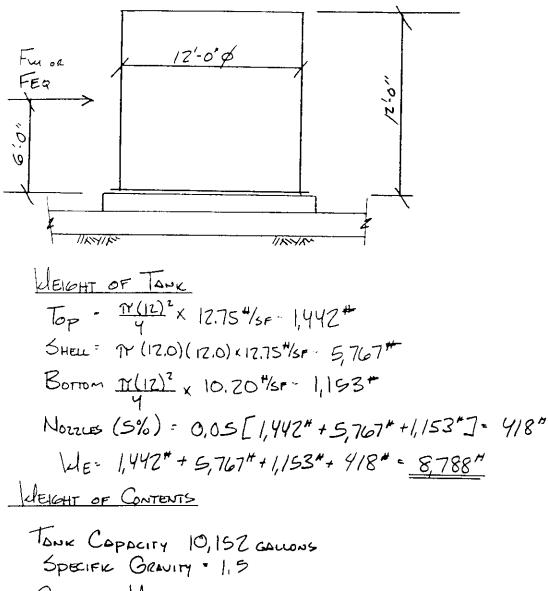

Exhibit B Page 8 of 8

EXHIBIT C

TANK FOUNDATION DESIGN CALCULATIONS


J						
	CHEMICAL WASTE MANAGEMENT CO.					
	EMELLE, ALABAMA FACILITY					
			CAL	CULATION	COVER S	HEET
UNIT:		600				
TANK NC	D.:	T- 63	<u>ч, Т-с</u>	635,	T-630	0
DECRIPT	ION:	PCB	FLUSH	AGONT	-5 TAN	×
PREPARE	ED BY:	5.5	MITH		DATE:	9-8-94
REV. NO.	DATE	BY	СНК	APPVD.	PAGES	REMARKS
		<u>+</u>				
АТТАСНМ		PRIOR CA	LCULATIC	ONS HAVE DATA USE		LUDED TO CALCULATIONS.
						STATE OF TELE
						SCOTVR SMITH
						60612 0.5
						SJIONAL
						10-3-94

FOUNDATIONS FOR TANKS T-634; T-635; T-636

Ē	ROSSER BOVAY ROSSER FABRAP	PROJECT CHEM WOSTE MANAGEMENT	PROJ. NO.	
	ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER	EMELLE, ALS	SHEET SK-1 OF	_
	IHT ROSSER	DESIGNED 4.5mith 918194	CHECKED / /	

Exhibit C Page 2 of 7 EQUIDOFTIONS FOR TANKE T-634; T-635; T-636 REF. VESSEL Duice 600-1, 600-2, 600-3

CONTENTS KLEIGHT WC= 10,152 GOL × 1.5× 8.34 4/602 = 127,001 #

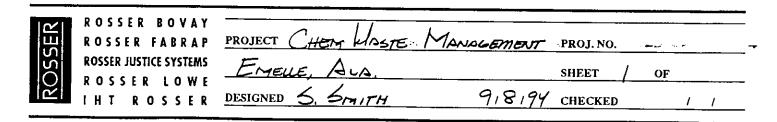


Exhibit C Page 3 of 7

FOUNDATIONS FOR TANKS T-634; T-635; T-636

WIND LOSP (3, B.C (1994)) (ASCE 7-88) LIND SPEED ! 70 MPH EXPOSURE : C EXPOSURE COEFF: (e Z= 30): K,= 0.98 Gusr Factor: (eZ: 30) : Gh-1.26 SHAPE COEFF: Cf=0.8 IMPORTANCE FACTOR I=1.00 F- q2 Gh Cf A q2= 0.00256 K2 (IV)2= 0.00256 (0.98×1.26) (1.0×70)2= 12.3pst A. 120 × 12.0' 1444F Fu= 12.3psf(1.26)(0.8)(1445F)- 1.785# EARTHQUAKE LOAD (S.B.C. 1994) FED: AV * Cc * P · Qc × L/r Torac Wr. = We+Wc= 8,788 + 127,001 = 135,789 + FEQ= 0.06 (2.0)(0.5)(1.0) × 135,789# - 8,147# CHECK STABILITY FON DIMONSIONS: 12.0 x 12.0 x 1.16 FuerFea A= 120'x120'= 144.0FT2 1/7 5= 120'x(12,0)2 - 288 FT3 PrA UFF 120x12.0x1.16x150*/cF- 25,056" 12.0 ROSSER BOVAY PROJECT CHEM LASTE MANAGEMENT ROSSER FABRAP PROJ. NO. **ROSSER JUSTICE SYSTEMS** EMELLE, 2 SHEET OF SSER LOWE DESIGNED 5. SMITH

918194 CHECKED

Exhibit C Page 4 of 7 ROSSER

FOUNDATIONS FOR TANKS T-634; T-635; T-636 CHECK STABILITY (CONT) <u>COSE I (</u> DL+LL+EQ) Ut= 135,789# UF= 25,056" 160,845 MR= 160,845#x(12%)= 965,070- FT-165 FEQ = 8,147 Mo= 8,147 × 7.33'= 59,717 Fr-16s S.R. = MR = 965,070 FT-165 = 16.16 =1.5 .. OK CASE II (DL+K/L) $U_{F} = \frac{8,788}{25,050^{\circ}} \qquad M_{R} = \frac{33,844}{33,844^{\circ}} \times (\frac{12.9}{2}) = \frac{203,064}{33,844^{\circ}} F^{-165}$ Fu- 1,785# Mo- 1,785#x 7.33'= 13,084 Fr- 16-5.R.= MR 203,064 Tr-16 = 16.51 =1.5 .. OK . STABLITY OF TANK FON IS OK CHECK SOIL BEARING Auau. BEARING PRESSURE = 3,000 pst Temp 11 = 1.33×3,000 psf = 3,990 pst = 4,000 pst CASE I (DI HL) Wr = 160,845" 5.B = P = 160,845" 1,116 pst = 3,000 pst 1. OK

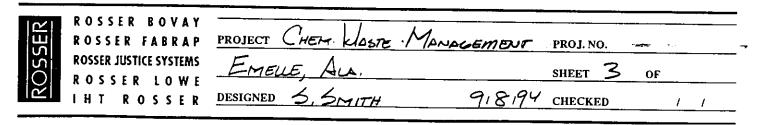
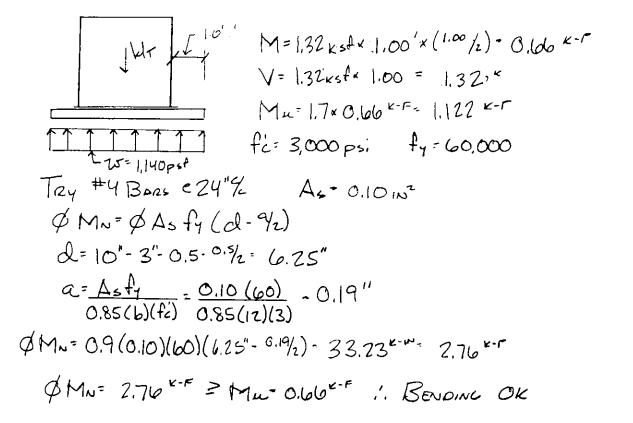


Exhibit C Page 5 of 7 FOUNDATIONS FOR TANKS T-634; T-635; T-636


$$\frac{C_{HECK} \text{ Son BEARNO (CONT)}}{C_{ASE} IT (DL+LL+EQ)}$$

$$M = 8,147 \text{ * } 7.33^{2} = 59,717 \text{ Fribs}$$

$$S.B. = \frac{P}{A} + \frac{M}{5} = \frac{160,845^{\#}}{144} + \frac{59,717 \text{ Fribs}}{286 \text{ Fr}^{2}} = 3.8 - 1,110 + 207 = 1,323 \text{ ps} \text{ f } = 4,000 \text{ ps} \text{ f } 1.0 \text{ K}$$

$$\frac{1}{2} \text{ Son BEARNO 15 OK}$$

CHECK MAR BENDING (| FT DESKN STRIP)

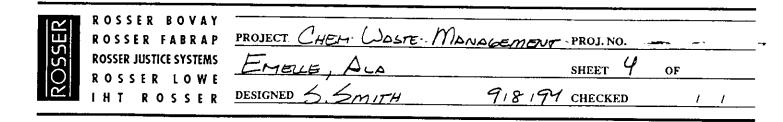


Exhibit C Page 6 of 7

FOUNDATIONS FOR TANKS T-634; T-635; T-636 CHECK BM SHEAR (/ FT WIDE DESIGN STRIP) Vu= 1.7×V= 1.7× 1.32 = 2.244 × $\phi V_c \cdot \phi z \sqrt{F_c} b d = 0.85(z) \sqrt{3,000} (1z) (6.25') = 6.983*$ Ø Vc= 6,983 ≥ Vu= 2,244 # .! BEDM SHEDR OK CHECK PUNCHING SHEAR \J-= 135.789" PL= 1.7 × 135,789 - 230,841 # TANK BASE 13-0"\$... b. = N(13.0+d)= d Vc - 0.85(4) √3,000 (509)(6.25) = 592,430 # Ø Vc= 597,430 = Pu= 230,841 . PUNCHING SHEAR OK CHECK ANCHOR BOLTS COEFF. OF FRICTION ! STEEL TO CONCRETE 0,3

M=0,3

<u>CASE I</u> (DL+LL+EQ) RESIST FORCE = M × Ur = 0.30 × 135,789 * = 40,736 * RESIST = 40,736 * = Feq · 8,147 * .: OK <u>COSE TI</u> (DL+WL) RESIST FORCE · M × Ue = 0.30 × 8,788 * · 7636 * RESIST = 2636 * = FW = 1,785 * .: No Anchon Bours REQD

SER	ROSSER BOVAY ROSSER FABRAP	PROJECT. CHEM LOSTE	MANGGEMENT . PROJ. NO.	
05	ROSSER JUSTICE SYSTEMS ROSSER LOWE	EMELLE, ALS DESIGNED S. SMITH	SHEET 5 OF	
	IHT ROSSER	DESIGNED 5. SMITH	9 18 194 снескер 1 1	

Exhibit C Page 7 of 7

EXHIBIT D

CALCULATIONS OF TANK VENTING REQUIREMENTS

EXHIBIT D TANK VENTING CALCULATIONS (PER API 2000) CHEMICAL WASTE MANAGEMENT, INC., EMELLE, ALABAMA FACILITY

		Length/	Depth/	Tank		Tank	Tank	Tank	Tank		With-		IN-B	REATHING	3			OUT-	BREATHIN	IG		EME	RGENC	Υ
	Width/	Shell	Cone	Wetted	Tank	Rated	Relief	Rated	Relief	Fill	drawal	Normal	Thermal	Total Vent	Min.	Min.	Normal	Thermal	Total Vent	Min.	Min.	Vent	Min.	Min.
	Diameter	Height	Height	Surf. Area	Capacity	Press.	Press.	Vac.	Vac.	Rate	Rate	Venting	Venting	Capacity	Area	Size	Venting	Venting	Capacity	Area	Size	Capacity	Area	Size
Tank Nos.	(ft)	(ft)	(ft)	(sf)	(gal)	(in WG)	(in WG) ¹	(in WG)	(in WG) ¹	(gpm)	(gpm)	(cfh) ²	(cfh) ³	(cfh)	(sq in) ⁸	(in)	(cfh)⁴	(cfh)⁵	(cfh)	(sq in) ⁸	(in)	(cfh) ⁶	(sq in) ⁷	(in)
CONTAINER &	CONTAINER & TANK MANAGEMENT UNIT 600																							
T-634 thru																								
T-636	12.00	12.00		452	10,152	28.00	14.00	2.00	1.00	150	150	1,200	242	1,442	3.41	3.00	2,571	242	2,813	1.78	2.00	334,646	87.6	11.00

NOTES:

1. Pressure and vacuum relief is assumed to be set to relieve at 50% of the design rated pressure or vacuum, unless noted. Emergency relief is assumed to be set at 75% of design pressure.

2. Normal in-breathing at 5.6 scfh per 42 gal barrel per hour of withdrawal, as specified in API 2000, 4th Edition.

3. Thermal in-breathing at 1 scfh per 42 gal barrel of tank volume, up to 20,000 barrel (840,000 gal) volume, as in API 2000.

4. Normal out-breathing at 12 scfh per 42 gal barrel per hour of fill for volatile liquids (flash point <100 deg F), as in API 2000. For non-volatile liquids 6 scfh per 42 gal barrel may be used.

5. Thermal out-breathing at 1 scfh per 42 gal barrel of tank volume for volatile liquids, up to 20,000 barrel volume, as in API 2000. For non-volatile liquids 0.6 scfh per 42 gal barrel may be used.

6. From API 2000 Appendix B on Emergency Venting, for four ranges of tank surface area, heat absorption, Q, is calculated. Vent capacity in SCFH is then calculated from the heat absorption according to the equation:

SCFH = 70.5 * Q / [L * sqrt(M)] assuming a conservative "L * sqrt(M)" value of 1,337, that of hexane.

7. Formula for emergency vent area adapted from Protectoseal Technical Manual, on flow capacity of tank emergency venting devices for nozzles 8 in. and larger: CFH = 1,667 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank emergency relief setting and atmospheric conditions.

8. Formula for vent area for smaller nozzles such as normal breather vents, adapted from Crane Flow of Fluids, Eq. 2-24, very similar to, but more conservative, than Protectoseal equation: CFH = 845 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank relief setting and atmospheric conditions. The factor 845 was derived using unit conversion factors, a vapor density of 0.1875 lb/cf, and a conservative Y of 0.80 from charts on Crane p. A-21.

EXHIBIT E

TANK MATERIAL OF CONSTRUCTION COMPATIBILITY INFORMATION

Compatibility Information

Unit 600: T-634 to T-636

Carbon Steel

CORROSION CHART (From Grinnell value catalog)

		SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel Steel	JEALS	A = Excellent	Steel Steel Steel	SEALS
B = Good	19 S S S S		B = Good	_ ខ្លុំស្ដី ស្ដីស្ដី	
C = Poor	Ste inte inte		C = Poor	les: les: les:	
D = Do Not Use	Bronze Bronze Carbon Steeł 303 Stainless 316 Stainless 316 Stainless Monel	a E S S	D ≠ Do Not Use	nze bon Steel Stainless Stainless Stainless	Z
	Bronze Bronze Carbon Steel 303 Stainless 5 304 Stainless 5 316 Stainless 5	Buna N Delrin EPDM Tefton		Bronze Bronze Carbon Steel 303 Stainless 304 Stainless 316 Stainless Monel	Buna N Delrín EPDM Teflon
Acetaldehyde	ВСАААВ	DCBA	Ammonia, Alum		
Acetamine	B BBBB	A A A	Ammonia, Anhydrous	A A	BAA
Acetate Solvents	CBAAAB	DDDA	Liquid	САВВАВ	ВАА
Acetic Acid,			Ammonia, Aqueous	CABBAB	BAAA
aerated	DDAAAA	CDDA	Ammonia Gas, hot	DCAAAD	DBA
Acetic Acid,			Ammonia Liquor	AAA	
Air Free	DDBBAA	CD A	Ammonia Solutions	DBAAAB	B B A
Acetic Acid, crude	ССВВАВ	DD A	Ammonium Acetate	D BBBB	
Acetic Acid, glacial		C DA	Ammonium Bicar-		
Acetic Acid, pure	CDBBAD	CD A	bonate	ВСВВВВ	ВААА
Acetic Acid, 10%	ССВААВ	BDBA	Ammonium		,.
Acetic Acid, 80%	ССВВАВ	CDBA	Bromide 5%	D СВВ	
Acetic Acid Vapors	D D D D C	D A	Ammonium		
Acetic Anhydride	CCCCCC	DDCA	Carbonate	DBBBBB	DAAA
Acetone	AAAAAA	DAAA	Ammonium Chloride	CDDDDB	AAAA
Other Ketones	AAAAA	DADA	Ammonium		ĺ
Acetyl Chloride	DCCCBB	D DA	Hydroxide 28%	DBBBBD	ΒΑΑ
Acetylene Acid Fumes	DBAAAB	AAAA	Ammonium		
Acrylonitrite	DDBBB	C A	Hydroxide		
Air (Oil Free)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	DDDA	Concentrated	DBBBBD	DAAA
Alcohol, Amyl	BBBBAB	A A A A	Ammonium Nitrate	DDAAAD	A A A A
Alcohol, Butyl	ABAAAB	BAAA	Ammonium	ſ	
Alcohol, Diacetone	BBBBBB	BBCA	Oxalate 5%	DBBBB	A
Alcohol, Ethyl	888888	DAA	Ammonium		
Alcohols, Fatty	BBAAA	A A A A B A	Persulfate	DDDDBD	DAA
Alcohol, Isopropyl	ввввв	B A A	Ammonium		
Alcohol, Methyl	888888	AAAA	Phosphate	DDCBCC	ABAA
Alcohol, Propyl	BBAAAB	A A A	Ammonium Phos-		
Alumina	A		phate Di-basic	СDСВСС	A A A A
Aluminum Acetate	D BBAC		Ammonium Phos- phate Tri-basic	0.0.0.0.0	
Aluminum		~ ^ ^	Ammonium Sulfate	CDCBCC	A A A A
Chloride dry	DDCCCD	BAAA	Ammonium Sulfide	C D D D B B	AAAA
Aluminum Chloride			Ammonium Sulfite	DD BBB	A A A
solution	DDDDDD	8 A A	Amyl Acetate	C D C C B C B C A A A A	BABA
Aluminum Fluoride	DDDCC	A A A	Amyl Chloride	B BBBB	
Aluminum	_		Aniline	BCAAAB	D DA DACA
Hydroxide	BDAAAB	A AA	Aniline Dyes	CCAAAA	DACA
Aluminum Nitrate	DD CCC	A A A	Apple Juice	CDBBBA	AABA
Alum (Alu m inum			Aqua Regia		
Potassium		ļ	Aromatic Solvents	ACAAAB	D DA
Sulfate)	CCDDCC	B A A	Arsenic Acid	BDBBBD	
Aluminum Sulfate	CDBCBB	AAAA	Asphalt Emulsion	ABAAAA	
Amines	СDВВВВ	DACA	Asphalt Liquid	ABAAAA	

Ì

¥

		SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel Steel		A = Excellent	Steel Steel Steel	SEALS
B = Good	5 S S 6		B = Good	Ste Ste	
C = Poor	Bronze Bronze Carbon Steel 303 Staintess 304 Staintess 316 Staintess Monel		C = Poor	nze bon Steef Staintess Staintess Staintess eel	
D = Do Not Use	Bronze Bronze Carbon (303 Stair 304 Stair Monel	Z 	D = Do Not Use	ze on S Stair Stair	Z
	Bror Bror 304 316 Mon	Buna h Detrin EPDM Tetton		Bronze Bronze Carbon 303 Stai 304 Stai 316 Stai	Buna N Delrin EPDM Teflon
Barium Carbonate	ВВВВВВ	ВААА	Cane Sugar Liquors		1
Barium Chloride	CCDDBB	AAAA	Carbolic Acid	A B A B A B D D B B B B	A A A
Barium Cyanide	C BBBD	ВВА	(phenol)		DDBA
Barium Hydroxide	DCBBBB	AAAA	Carbonate Beverages	BDBBBC	ВВА
Barium Nitrate	ВВВ	A A	Carbonated Water	BBAAAB	B BA
Barium Sulfate	ВСВВВВ	AABA	Carbon Bisulfide	BBBBBC	
Barium Sulfide	DCBBBC	AAAA	Carbone Dioxide, dry	BBBBAA	
Beer-Alcohol	BCAAAA	AAAA	Carbonic Acid	ССВВВС	BABA
Industry			Carbon Monoxide		B A A
Beer-Beverage	BCAAAA	BAAA	Carbon Tetra-	ВВВВА	CADA
Industry		[chloride, dry		CAUA
Beet Sugar Liquors	ABAAAA	AABA	Carbon Tetra-	ррссвв	CADA
Benzaldehyde	ADABAB	DAAA	chloride, wet		CADA
Benzene (Benzol)	вввввв	DADA	Casein	С СВС	В ВА
Benzoic Acid	BDBBBB	D DA	Castor Oil	ABBBBA	AABA
Berryllium Sulfate	B B B B B B	B BA	Caustic Potash	CD BB	B A
Blood (Meat Juices)	B B B B B B	B CA	Caustic Soda	CB AAA	СВА
Borax (Sodium	CCAAAA	BAAA	Cellulose Acetate	в ввв	DBA
Borate)			China Wood Oil	ССАААА	AADA
Bordeaux Mixture	DCAAAA	ΒΑΑΑ	(Tung)		
Borax Liquors	ССВВВА	BAAA	Chlorinated Solvents	ССВВВВ	DADA
Boric Acid	СDВВВВ	AAAA	Chlorinated Water	DDDCD	BAAA
Brake Fluid (Non Pet)	B BBB	DAA	Chlorine Gas, dry	BBBBBA	DADA
Brines, saturated	CDBBBB	AAAA	Chlorobenzene, dry	СВАВВВ	DADA
Bromine, dry	BDDDDA	D DA	Chloroform, dry	BDAABA	DADA
Bunker Oils (Fuel)	BBBBBB	AADA	Chlorophyll, dry	в ввв	B B A
Butadiene	ССВВВВ	CADD	Chlorosulfonic	CCDDDC	D DA
Butane	BABBBB	AADA	Acid, dry		
Butter Buttermilk	A	B A	Chrome Alum	СВВВВВ	A AA
Butyl Acetate	DDAAAD	AABA	Chromic Acid<50%	DDCCBB	DDBA
Butylene	ВСССВВ	D D A	Chromic Acid≥50%	DDCDCD	DCCA
Butyric Acid	BBBBAA	C D A	Chromium Sulfate	C BBB	BBA
Calcium Bisulfite	D D C C B C D D D D C D	DACA	Cider	AAAA	A (
Calcium Carbonate		AADA	Citric Acid	DDCCAB	A AA
Calcium Chlorate	BBBABB	AAAA	Citrus Juices	BDBBBA	AA A
Calcium Chloride	D D B B B B C C B B B B	A A	Coca-Cola Syrup	AAA	B A
Calcium Hydroxide		AAAA	Coconut Oil	BCBBBB	AACA
Calcium Nitrate	CBBBBB	AAAA	Cod Liver Oil		A A A
Calcium Phosphate	СВ	B B A	Coffee	A AAAB	A A B
Calcium Filicate	C CB C CB	BBA	Coffee Extracts, hot	BCAAAA	A
Calcium Sulfate		BBA	Coke Oven Gas	CBBBBB	D D A
Caliche Liquor		AABA	Cooking Oil	BBAAAA	AADA
Camphor	B AAB C CCC	BAA	Copper Acetate	DDBBBC	C B A
	0000	BBA	Copper Carbonate	BBBD	D A

Exhibit E Page 3 of 9 ----

	VALVE MATERIAL	SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel	ULL ICO	A = Excellent	Steel Steel Steel	SEALS
B = Good			8 = Good	<u>ू</u> स् स	
C = Poor	Bronze Bronze Carbon Steel 303 Staintess 316 Staintess 316 Staintess Monel		C = Poor	nze bon Steel Stainless Stainless Stainless	
D = Do Not Use	Bronze Carbon 303 Stai 304 Stai 316 Stai Monel	Buna N Delrin EPDM Tetton	D = Do Not Use	stair Stair Stair	ZESE
	Bronze Bronze 303 Str 304 Str 316 Str Monel	Buna h Delrin EPDM Tetton		Bronze Carbon 303 Stai 304 Stai 316 Stai Monel	Buna N Delrin EPDM Teflon
Copper Cyanide	D BBBD	AAA	Ethylene Oxide		
Copper Nitrate	DDBAAD	AABA	Ethyl Ether		DADA D DA
Copper Sulfate	DDBBBC	AAAA	Ethyl Silicate	B BBB	
Corn Oil	ввввв	BADA	Ethyl Sulfate	B B B B B	B BA CACA
Cottonseed Oil	ВВССВВ	AACA	Fatty Acids	CDBBAB	
Creosol	СВВ	DDA	Ferric Hydroxide		BADA
Creosote Oil	ввввв	BDDA	Ferric Nitrate	DDCBBD	B A
Cresylic Acid	DCBBBC	DDDA	Ferric Sulfate	DDCCBD	
Crude Oil, sour	СВАААВ	B D A	Ferrous Chloride		ł
Crude Oil, sweet	BBAAAA	A DA	Ferrous Sulfate	СОСВВВ	AAAA
Cutting Oils,	ABAAA	AADA	Ferrous Sulfate,	ССАВАВ	AAAA
Water Emulsions			Saturated		С ВА
Cyanide Plating	D BBD	ВВА	Fertilizer Solutions	Сввввв	BDBA
Solution			Fish Oils	BBAAAA	ABDA
Cyclohexane	ABABAB	BADA	Flue Gases	В ВАВ	CCDA
Cyclohexanone	BDBBBB	D BA	Fluoboric Acid	ВВВ	A A A
Detergents,	B BAB	B BA	Fluorosilicic Acid	BDDDBA	B C A
synthetic			Food Fluids	BCAAAB	B B A
Dextrin	B BBC	B BA	& Pastes		
Dichloroethane	DC BBA	D DA	Formaldehyde, cold		ВАВА
Dichloroethyl Ether	B B B	D DA	Formaldehyde, hot	BDCCCB	BABA
Diesel Oil Fuels	ABAAAA	AADA	Formic Acid, cold	СОССВВ	DD A
Diethylamine	DDBBAB	C CA	Formic Acid, hot	CDCCBB	DD A
Diethylene Glycol	B AAB	A A A	Freon Gas, dry	BBAAAA	CBCA
Diethyl Sulfate	в ввв	CACA	Freon 11, MF,	BDBBAB	BBD
Dimethyl Formamide	B AAB	B DA	112, BF		000
Dipentane (Pinene)	A AA	B DA	Freon 12, 13, 32,	ADBBAB	B
Disodium Phosphate	СВВВВС	B A	114,115		
Dowtherm	ΑΒΑΑΑΑ	DADA	Freon 21, 31	B AB	DBD
Drilling Mud	BBABAB	AAAA	Freon 22	ADBBAB	DBD
Dry Cleaning Fluids	СВАААВ	DADA	Freon 113, TF	B AB	B D
Drying Oil	ССВВВВ	AADA	Freon, wet	D BCCB	B BA
Enamel	A AA	B DA	Fruit Juices	CDBBAB	ΑΑΑΑ
Epsom Salts	BCBBBB	AA A	Fuel Oil	BBBBBB	AADA
Ethane	BCBBBB	AADA	Fumaric Acid		B A
Ethers	BBAAAB	DCCA	Furfural	ВСВВВВ	DACA
Ethyl Acetate	BBBBBB	DACA	Gallic Acid 5%	BDBBBB	BABA
Ethyl Acrylate	BCBBBB	DCA	Gas, Manufactured	BBBBBA	A A A
Ethyl Bromide	A BBBB	BDA	Gas, Natural	ВВВВВВ	AABA
Ethyl Chloride, dry	BBAAAB	BABB	Gas, Odorizers	ABBBBB	BA A
Ethyl Chloride, wet	CDBCBB	BBA	Gasoline, Aviation		CA A
Ethylene Chloride	BBBBB	D D A	Gasoline, Leaded		CA A
Ethylene Dichloride	DBBBBA	DDDA	Gasoline, Motor		CADA
Ethylene Glycol	BBBBBB	ACAA	Gasoline, Refined	ВВВВВВ	C DA

÷

. . . .

		SEATS &			SEATS &
A = Excellent	Steet Steet Steel	SEALS	A = Excellent		SEALS
B ≠ Good			B = Good	Steef Steel Steel	
C = Poor	Stee Jles Jles		C = Poor		
D = Do Not Use	Carbon Steel Carbon Steel 303 Stainless 316 Stainless Monel	Z		Bronze Bronze Carbon Steet 303 Stainless 316 Stainless Monet	
	Bronze Bronze Carbon 303 Stai 304 Stai 316 Stai Monel	Buna N Delrin EPDM Toflon	D = Do Not Use	Bronze Carbon 303 Stai 304 Stai 316 Stai Monel	Buna N Delrin EPDM Teflon
Gasoline, Sour				Bror Cart 303 304 Mon	Buna / Delrin EPDM Teflon
Gasoline, Unleaded		CADA	Lacquer (and		
Gelatin	BBBBBB BDAAAB	CA A	Solvent)	ACAAAA	DADA
Glucose		AAAA	Lactic Acid		1
Glue	1	AAAA	Concentrated cold	DDBBAD	BDBA
Glycerine (Glycerol)		ABA	Lactic Acid		
Glycols		ACAA	Concentrated hot	DDCCBD	DDDA
Graphite	ВСВВВВ	BCAA	Lactic Acid		
Grease	B BBB	B BA	Dilute cold	CDBBAC	BDBA
Helium Gas	СААААВ	A DA	Lactic Acid		
	В ВВВ	B BA	Dilute hot	DDBBBD	DDDA
Heptane Hexane	ABAAAB	AADA	Lactose	B BBB	B BA
Hexanol, Tertiary	BBBAAB	AADA	Lard	ВСВВВВ	В СА
Hydraulic Oil,	BBBBAB	A DA	Lard Oil	BCABBB	ААВА
Petroleum Base			Lead Acetate	DDBBBB	ВАВА
Hydrazine	BAAAAA	AADA	Lead Sulfate	CD BBB	B BA
	DB BBD	С ВА	Lecithin	С ВВВ	D D A
Hydrocyanic Acid Hydrofluosilicic	DCBBBC	BDBA	Linoleic Acid	CDABAB	BADA
Acid		_	Linseed Oil	AABBBB	AADA
	DDCDCB	ΒΑΑ	Lithium Chloride	D BBB	B BA
Hydrogen Gas, cold	AAAAAA	A AA	LPG ·	ABBBBB	AADA
Hydrogen Gas, hot	ВВ	A AA	Lubricating Oil		
Hydrogen Peroxide,			Petroleum Base	BAAAAB	AADA
Concentrated	CDBBBC	D BA	Ludox	D BBB	ВВА
Hydrogen Peroxide, Dilute		_	Magnesium		
	CDBBBB	ВВАА	Carbonate	B ABAB	B BA
Hydrogen Sulfide,		_	Magnesium Chloride	ВСССВВ	AAAA
Dry Hudrogoo Sulfida	СВВВАВ	CAAA	Magnesium		
Hydrogen Sulfide, Wet		_	Hydroxide	BBBAAB	BAAA
Hypo (Sodium	DBCCBD	DABA	Magnesium		
			Hydroxide, Hot	DBBAAB	BAAA
Thiosulfate)	CDAAAB	AAAA	Magnesium Nitrate	BBBBAB	B A A
Illuminating Gas	AAAAA	C DA	Magnesium Sulfate	BBBBAA	AAAA
nk - Newsprint	BDBAAB	AABA	Maleic Acid	CDBBBB	DADA
odoform	BDAAAC	AAA	Maleic Anhydride	С ВВВ	DDA
so-Butane	В	B DA	Malic Acid	DDBBAB	AADA
so-Octane	AAAAAA	AADA	Manganese Car-		1
sopropyl Acetate	В	DAA	bonate	ВВ	B A
sopropyl Ether	BBBBBB	C DA	Manganese Sulfate	B BBBB	B BA
P-4 Fuel	ABBBAB	AADA	Mayonnaise	DDAAAB	AAA
P-5 Fuel	ABBBAB	BADA	Meat Juices	D BBBB	BDA
P-6 Fuel	ABBBAB	AADA	Melamine Resins	C	BA
Kerosene	ABAAAB	AADA	Menthol	в ввв	B DA
Ketchup	DDAAAB	AA A	Mercuric Chloride		A A A
Ketones	8 8 8 8 8 B	DADA	Mercuric Cyanide		A AA

Exhibit E Page 5 of 9

•

	VALVE MATERIAL	SEATS &		VALVE MATERIAL	SEATS &
A = Excellent	Bronze Carbon Steel 303 Stainless Steel 304 Stainless Steel 316 Stainless Steet Monel	SEALS	A = Excellent		SEALS
8 = Good	د د د در در در	Í	B = Good	Steel Steel	
C = Poor	Steel inless inless inless		C = Poor	teel less less less	
D = Do Not Use	ze On Stair Stair	ZCSC	D = Do Not Use	tain S	z _
	Bronze Carbon (303 Stair 304 Stair 316 Stair Monel	Buna N Delrin EPDM Teflon	D - DO NOLOSE	Bronze Carbon Steel 303 Stainless 5 304 Stainless 5 316 Stainless 5 Monel	Buna 1 Detrin EPDM Tefton
Mercurous Nitrate	D BBAD	B BA			ቘዿ፟ዀ
Mercury	DBAAAA		Nitrous Gases	DBCCBD	A
Methane	вввевв	AADA	Nitrous Oxide	DBBBBD	BA A
Methyl Acetate	BBABAB	D BA	Oils & Fats	BBB	B D A
Methyl Acetone	AAAAAA		Oils, Animal	BBBBAB	A BA
Methylamine	DBAAAC	D BA	Oils, Petroleum		
Methyl Cellosolve	BCBBAB	D BA	Refined	ВААААА	AADA
Methyl Chloride	BDBAAB	DADA	Oils, Petroleum		
Methyl Ethyl		UAUA	Sour Oile Mater Misture	СВАААА	BDA
Ketone		DABA	Oils, Water Mixture Oleic Acid	ABAAA	A A A
Methylene Chloride	ABABAB	D DA	Oleum	ВСВВВВ	ВАВА
Methyl Formate	ACBBBB	D BA		DBBBBD	DDDA
Methyl Isobutyl		U UA	Oleum Spirits Olive Oil	D B B B D	C D A
Ketone	АВВВАВ	D A	Olalic Acid	CBAAAA	AABA
Milk & Milk			Oxygen	BDDDBB	DCBA
Products	CBAAAC	АААА	Ozone, Dry	ABBBAB	BDAA
Mineral Oils	BBBBBB	AADA	Ozone, Wet	ACAAAA	DAA
Mineral Spirits	BCBAAB	AADA	Paints & Solvents	BCBAAA	D B A
Mine Water (Acid)	DDBBBC	AABA	Palmitic Acid		DDA
Mixed Acids (cold)	DDBBBD	DDDA	Palm Oil	BCBBBB	BABA
Molasses, crude	ABAÁAB	AAAA	Paper Pulp	BCBBBA B BBB	BADA
Molasses, Edible	ABAAAB	AAAA	Paraffin	B BBB ABAAAA	BB
Monochloro Ben-			Paraformaldehyde	B B B B B B B	AADA
zene, Dry	В	DA	Paraldehyde		BADA B DA
Morpholine	ввввв	D DA	Pentane		B DA AADA
Mustard	ABAAAA	AAA	Perchlorethylene,		AAUA
Naptha	АВВВВВ	BADA	dry	вввввв	DDA
Napthalene	вввввв	DADA	Petrolatum (Vaseline	0000000	
Natural Gas, Sour	B DDD	A D D	Petroleum Jelly)	всвввв	AADA
Nickel Ammonium			Phenol	BDABAA	DDDA
Sulfate	DDBBBC	A BA	Phosphate Ester 10%	DBAAAA	DAA
Nickel Chloride	CDBBBB	AABA	Phosphoric Acid		
Nickel Nitrate	DCBAAB	AAAA	10%	DDCBBD	DDBA
Nickel Sulfate	СДВВВВ	AABA	Phosphoric Acid		
Nicotinic Acid	BBBBAB	D BA	50% Cold	DDBBBC	DDBA
Nitric Acid 10%	DDAAAD	CD A	Phosphoric Acid		0001
Nitric Acid 30%	DDAAAD	CDBA	50% Hot		DDBA
Nitric Acid 80%	DDBBBD	DDBA	Phosphoric Acid		0001
Nitric Acid 100%	DDBBBD	DDCA	85% Cold	DDBBBC	DDBA
Nitric Acid			Phosphoric Acid		
Anhydrous	DDCCBD	D CA	85% Hot	DDCBBC	
Nitrobenzene	ввввв	D D A	Phosphoric		
Nitrogen	AAAAAA	AABA	Anhydriede	D B B	DB A
Nitrous Acid 10%	DDCCBD	C A			

i

1

	VALVE MATERIAL	SEATS & SEALS		VALVE MATERIAL	SEATS & SEALS
A = Excellent	Steel Steel Steel	JLACS	A = Excellent	Steel Steel Steel	JEAC3
B = Good	ស៊ីស៊ីស៊ី - « » «		B = Good	ភូស្ត្ សូស្ត្	
C = Poor	Steel intess intess intess intess		C = Poor	rze Son Steel Stainless Stainless Stainless	
D = Do Not Use	te Dn S Stain Stain	Zese	D = Do Not Use	te Stain Stain Stain	z
	Bronze Carbon Steel 303 Stainless 304 Stainless 5 316 Stainless 5 Monel	Buna N Delrin EPDM Tefton		Bronze Carbon 5 303 Staii 304 Staii 316 Staii Monel	Buna N Detrin E PDM Teflon
Phoephorous	ธิยุตุษุตุรุ	c O W F	Potassium	ພັບຕິຕິຕ≥	αΟωμ
Phosphorous Trichloride	ВААА	DAA		с ввв	ΑΑΑ
	BCBBAB	1 - 1	Phosphate Potassium Phosphate		
Phthalic Acid		CA A CABA		ВААААВ	ААВА
Phthalic Anhydride			Di-basic Detectivum Rhaephate	БААААБ	
Picric Acid	DDBBBD	СВА	Potassiuum Phosphate		
Pineapple Juice	ССАААА	A A A	Tri-basic	A BB	BBA
Pine Oil	BBAAAB	AADA	Potassium Sulfate	BBBAAB	
Pitch (Bitumen)	ABAAAA	C DA	Potassium Sulfide	DDBBBD	A BA
Polysulfide Liquor	D BBB	B BA	Potassium Sulfite	BBBBAC	B A A
Polyvinyl Acetate	B AAB	C A A	Producer Gas	BBBBBA	
Polyvinyl Chloride	B BBB	ВА	Propane Gas	ABBBBB	
Potassium Bicar-			Propylene Glycol	BBBBBB	ACAA D BA
bonate	ΑΑΑΒ	ВАА	Pyridine	BCBBBB	
Potassium Bi-			Pyrogallic Acid	ссссвс	
sulfate	A B	BA A	Pyrolignous Acid	BBB	D BA
Potassium Bi-			Quench Oil	ВВААА	AADA
sulfite	CDBBBD	AABA	Quinine Bisulfate,		
Potassium Bromide	СОВВВВ	АААА	dry	АААВ	A 1
Potassium			Quinine Sulfate		
Carbonate	DBBAAB	A A A A	dry	AAAB	_ A
Potassium Chlorate	DCBBAC	AAAA	Resins & Rosins	АСВВВА	C DA
Potassium Chloride	D С С С В В	ΑΑΑΑ	Road Tar	AAAAA	BADA
Potassium Chromate	С ВВВ	В ВА	Roof Pitch		BA A
Potassium Cyanide	DBBBBB	A A A A	Rosin Emulsion	ВСАААА	D A
Potassium			Rubber Latex		
Dichromate	BBBAAB	AAAA	Emulsions	АВААА	A A
Potassium			Rubber Solvents	АААААА	DCDA
Ferricyanide	СОВВВВ		Salad Oil	всвввв	AADA
Potassium			Salicylic Acid	CDBBBC	ΒΑΑΑ
Ferrocyanide	ВСВБВВ	AA A	Salt (naCl)	ВСВВВА	
Potassium Hydroxide			Salt Brine	BD AAB	A BA
Dilute Cold	СВВВВА	A BA'	Sea Water	CDBBAA	
Potassium Hydroxide			Sewage	ССВВВВ	A 84
To 70%, Cold	DCBBBA	B BA'	Shellac-bleached		A A
Potassium Hydroxide		1 1	Shellac-orange		A A
Dilute Hot	DBBBBA	B BA'	Silicone Fluids	в ввв	в в А
Potassium Hydroxide			Silver Bromide	ВВАВ	/
To 70%, Hot	DCDDBB	С АА.	Silver Cyanide	D ABAB	в ви
Potassium Iodide	СОВВВС	AAAA	Silver Nitrate	DDBBAD	CAAA
Potassium Nitrate	BBBBBB		Silver Plating Sol.	AAA	ВВИ
Potassium Oxalate	вввв	D A	Soap Solutions		1
Potassium			(Stearates)		
Permanganate	ССВВВВ		Sodium Acetate	BDBBBC	BAAA
. ennengenere			Sodium Aluminate	всвввв	AABA

÷ •.

	VALVE MATERIAL	SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel Steel	JEALS	A = Excellent	Steel Steel Steel	SEALS
B = Good			B = Good	ى تە تە تە مە س	
C = Poor	Bronze Bronze Carbon Steel 303 Stainless 316 Stainless 316 Stainless Monel		C = Poor	Bronze Bronze Carbon Steel 303 Staintess 304 Staintess 316 Staintess Monel	
D = Do Not Use	Bronze Bronze 303 Starr 304 Starr 316 Starr Monel	Z	D = Do Not Use	ze on S Stair Stair	Z
	Bronze Carboi 303 St 316 St Monel	Buna N Delrin EPDM Teflon		Bronze Carbon 303 Sta 304 Sta 316 Sta Monel	Buna N Detrin EPDM Tetton
Sodium Bicarbonate	ВСАААА	AAAA	Codium Dharakar	000 ~ ~ ~ ∑	۳ <u>۳</u> ۵ ۵
Sodium Bichromate	D B B B		Sodium Phosphate Di-basic		
Sodium Bisulfate	0 000		Sodium Phosphate	ССВВВВ	AAAA
10%	ССАААВ		Tri-basic		
Sodium Bisulfite			Sodium	ССВВВВ	ВААА
10%	DDBBBB		Polyphosphate		
Sodium Borate	ВСВВВВ	AAAA	Sodium Saticylate	В	BAA
Sodium Bromide 10%	ВСВВВВ	AAAA	Sodium Salicylate		A
Sodium Carbonate			Sodium Silicate, hot	8 8 8 8 8 8 6 6 8 8 8 8 8 8 8 8 8 8 8 8	
(Soda Ash)	BBBBBA		Sodium Sulfate		BA
Sodium Chlorate	ВСВВВВ	AAAA	Sodium Sulfide	B B B A A B D C B B B B	
Sodium Chloride	BCBBBA		Sodium Sulfite	DCAAAB	AAAA
Sodium Chromate	СВВВВВ	AAAA	Sodium Tetraborate		
Sodium Citrate	ввв	A	Sodium Thiosulfate	A DDCCBB	A BA BACA
Sodium Cyanide	DCAAAD		Soybean Oil	ВСАААА	
Sodium Ferricyanide	СВВ	AA	Starch	всяяяя	AABA
Sodium Fluoride	DDCCBA	AAAA	Steam (212°E)		AACA
Sodium Hydroxide	_		Sleanc Acid	BCBBAC	
20% Cold	ВВАААА	в аа.	Styrene	AAAAAB	BABA D DA
Sodium Hydroxide		-	Succinic Acid	C DCBB	
20% Hot	ВВАААА	в АА.	Sugar Liquids	ABAAAA	A A S A A
Sodium Hydroxide			Sugar, Syrups		ААСА
50% Cold	ССАААА	Β ΑΑ	& Jam	B BAA	A A A
Sodium Hydroxide			Sulfate, Black		
50% Hot	ССВВАА	B AA	Liquor	DDBBBB	СВВА
Sodium Hydroxide			Sulfate, Green		
70% Cold	CCBBBA	Β ΑΑ'	Liquor	DDBBBB	CAA
Sodium Hydroxide			Sulfate, White		
70% Hot	DDCCCB	D BA'	Liquor	DDBBBC	CAA
Sodium Hypo-		i i	Sulfonic Acid	В ВВВ	DDA
sulfite	AAAB	А	Sulfur	DDBAAB	DAAA
Sodium Lactate	AAAB	А	Sulfur Chlorides, Dry	DDDCCC	DADA
Sodium Meta-			Sulphur Dioxide,		U N U N
phosphate	CDBBBB	A A A	dry	ВАВВВВ	DAAA
Sodium Meta-			Sulfur Dioxide,		
silicate Cold	BCAAAA	B A	wet		DAA
Sodium Meta-			Sulfur		2
silicate Hot	BDAAAA	A	Hexafluoride	ВААА	A AA
Sodium Nitrate	DBBAAB	BAAA	Sulfur, Molten		D D A
Sodium Nitrite	вввс	CBAA	Sulfur Trioxide	DB BB	D BA
Sodium Perborate	СВВВВВ	CAAA	Sulfur Trioxide,		
Sodium Peroxide	DCBBBB	CAAA	dry	D B B B B B	DABA
Sodium Phosphate	ССВВВВ	BBAA	Sulfuric acid		2 U /
			0 to 77%	DDDDDB	DCBA

_

Ŋ

۰.

A = F = - H		SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel Steel		A = Excellent	Bronze Bronze Carbon Steel 303 Staintess Steel AATAA 304 Staintess Steel HW Monel Monel	SEALS
B ≂ Good			B = Good	***** 2020	
C = Poor	nze bon Steel Stainless Stainless Stainless t		C = Poor	Stee nles nles	
D = Do Not Use	Bronze Bronze Carbon Steel 303 Stainless 304 Stainless 316 Stainless Monel	N L N L	D = Do Not Use	2e On 3 Stair Stair	Z
	Bronze Carbor 303 St 304 St 316 St Monel	Buna N Detrin EPDM Tetton		Bronze Bronze Carbon Steel 303 Stainless 304 Stainless Monel	Buna N Detrin EPDM Tefton
Sulfuric Acid 100%	ОСССВО	DDCA	Trisodium		© O w Ĕ
Sulfurous Acid	DDDDBD	ВСВА	Phosphate		
Tall Oil	вввввв	BADA	Tung Oil	BBBB	A BA
Tannic Acid			Turpentine	B B A A A C B B A A A A	AADA
(Tannin)	DDBBBB	ВААА	Urea	BCBBBB	BADA
Tanning Liquors	ВВВ	В А	Uric Acid	BBB	ВАВА
Tar & Tar Oils	AAAAAA	C DA	Varnish	ACAAAA	A
Tartaric Acid	BDBAAB	ВАСА	Vegetable Oils	BBAAAA	CADA
Tetraethyl Lead	ВСВВВВ	BADA	Vinegar	ССВВВВ	AADA
Toluol (Toluene)	AAAAAA	DADA	Vinyl Acetate		D BA
Tomato Juice	ССВВВВ	AA A	Water, Distilled	ADAAAA	D AA BAAA
Transformer Oil	вввввв	AADA	Water, Fresh	ACAAAA	
Fributyl Phosphate	BBBBBB	DAA	Water, Acid Mine	DDBAAD	BAAA
Frichlorethylene	BBBBBA	DADA	Waxes	AAAAAA	B A A
Frichloroacetic			Whiskey & Wines	BCAAAA	AACA
Acid	DDDDDB	C CA	Xylene (Xylol), Dry	BBBBBB	AAAA
riethanolamine	ВС ВВВ	DBA	Zinc Bromide	B B B B B	DADA B BA
riethylamine	в ввв	B A	Zinc Hydrosulfite	СААААВ	
			Zinc Sulfate	CDBAAB	AAAA
	i i i i i i i i i i i i i i i i i i i	ļ		00000000	
	· [1			
]				-
		}			
		[
			:	()	
ĺ		[
		1			ļ
		ļ			
	1	1			

ATTACHMENT D-2-4-3 APPENDIX D-2-4 SECTION D-2

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 708

Revision No. 5.0

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 708 TANK T-725

TABLE OF CONTENTS

I.	Introduction	1
II.	Tank Design	1
.	Tank Anchorage Design	2
IV.	Ancillary Equipment Design	2
V.	Secondary Containment System Design	3
VI.	Tank Venting Requirements	3
VI	. Hazardous Characteristics of the Waste Managed	4
VI	I. Certification of Tank System Design Assessment	5

LIST OF EXHIBITS

- Exhibit A Tank Data Sheets
- Exhibit B Tank Design Information sti-P₃ and UL 58 Specifications
- Exhibit C Tank Manufacturer Certification
- Exhibit D Calculations of Tank Venting Requirements
- Exhibit E Tank Material of Construction Compatibility Information

LIST OF REFERENCED DRAWINGS

0708-010-001	Laboratory Tank Storage Unit 708 - P & ID
0708-020-001	Laboratory Tank Storage Unit 708 - Piping Layout and Tank Details
0708-080-025	Tank Data Sheet - T-725 - Sheet 1 of 2
0708-080-025A	Tank Data Sheet - T-725 - Sheet 2 of 2

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 708

TANK T-725

I. Introduction

This document provides the assessment and certification for the design of the hazardous waste storage tank system at Tank Management Unit 708 at the Chemical Waste Management, Inc. Facility in Emelle, Sumter County, Alabama. The assessment was performed to address the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), regarding the design of the system within Tank Management Unit 708 which is comprised of the tank (i.e., Tank T-725), the tank foundation, the associated ancillary equipment and the secondary containment system.

Tank Management Unit 708 is located just east of Unit 707/708 as shown on Drawing No. 0100-020-001 in Appendix D-1 to Section D of the RCRA Part B Permit Application. The
primary function of the T-725 tank system within Unit 708 is to collect and store miscellaneous diluted organic and acidic washwater wastes generated during the operation of the laboratory. After storage in Tank T-725 these wastes are transferred to Tank T-726 or directly into tanker trucks for transfer to other units on-site.

The following drawings were used in the preparation of this Assessment and Certification and are provided either in Exhibit A (Tank Data Sheets) or in Appendix D-1 to Section D of the RCRA Part B Permit Application:

	Drawing No.	Drawing Title
25	0708-010-001	Laboratory Tank Storage Unit 708 - P&ID
	0708-020-001	Laboratory Tank Storage Unit 708 - Piping Layout and Tank Details
	0708-080-025	Tank Data Sheet - T-725 - Sheet 1 of 2
	0708-080-025A	Tank Data Sheet - T-725 - Sheet 2 of 2

II. Tank Design

- Tank T-725, which is a cathodically protected, double-wall, Underground Storage Tank, has been designed in accordance with the design codes and standards indicated within the DESIGN DATA section of the Tank Data Sheets (i.e., Drawing Nos. 0708-080-025 and -025A) provided in Exhibit A to this tank system design assessment. The criteria utilized in the assessment of the design of the shell and anchorage for Tank T-725 are also provided within the DESIGN DATA section of the Tank Data Sheets.
 - AttachD-2-4-3Text.docx

To address the requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a) regarding tank systems in contact with the soil, the integrity of Tank T-725 has been addressed with the selection of a "sti-P₃"® pre-engineered tank as designed by the Steel Tank Institute, incorporating a corrosion resistant exterior coating, cathodic protection, and electrical isolation devices at piping joints. Additionally, the tank is not likely to be affected by vehicular traffic above it, although adequate soil coverage and a concrete slab at grade are included in the design. Tank T-725 receives only dilute, aqueous rinsate from laboratory operations via a sewer system that is constructed entirely of HDPE components which have operating temperature constraints that are less than those of Tank T-725. Therefore, it is highly unlikely that wastewaters which would result in any significant temperature rise, when mixed, could be introduced into the sewer system, and hence, a temperature monitoring device is not necessary for Tank T-725.

The information provided in Exhibits B and C to this tank system design assessment demonstrates that the tank is designed as a pre-engineered tank system in accordance with proven and widely recognized standards (i.e., sti-P₃ ® and UL 58), which confirms the adequacy of the design to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, wall loads, and associated environmental stresses such as seismic loads, as applicable, at the design conditions indicated on the tank data sheets.

III. Tank Anchorage Design

The design of the reinforced concrete anchorage (hold-down slab) for Tank T-725 is indicated on Tank Data Sheet 0708-080-025 and in Sections A & B on Drawing No. 0708-020-001, which are provided in Appendix D-1 to Section D of the RCRA Part B Permit Application. The criteria utilized in the design of the anchorage for Tank T-725 are based on the installation procedures for sti-P₃ ® tanks as recommended by the Steel Tank Institute.

30

25

5

10

The tank anchorage design, as recommended by the Steel Tank Institute and based on the experience of numerous similar installations, demonstrates by inspection that the tank anchorage is, as designed, adequate to support and anchor the load of a full (or empty) tank and adequate to withstand associated environmental stresses at the design conditions indicated on the Tank Data Sheets.

IV. Ancillary Equipment Design

³⁵ All tank system ancillary piping systems shall be designed, installed and tested in accordance with the American Society of Mechanical Engineers (ASME) Standard B31.3, "Chemical Plant and Petroleum Refinery Piping", or an equivalent nationally recognized standard, and in accordance with recognized good engineering practices to ensure that they are supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

- All other ancillary equipment for the tank system shall be designed, installed and tested in 5 accordance with appropriate recognized standards, if any, and in accordance with recognized good engineering practices to ensure that it is supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.
- In order for this tank design assessment and associated certification to be maintained, and prior 10 to the tank system being placed in use, the Facility shall ensure that the tank system ancillary equipment is properly installed and that all required inspections, tests and repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f). Prior to the tank system being placed
- in use, the Facility shall obtain and place within the Facility Operating Record in accordance 15 with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, gualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested. 20

V. Secondary Containment System Design

The dual-tank wall design of Tank T-725, as indicated on the Tank Data Sheets (i.e. Drawing Nos. 0708-080-025 and -025A), in accordance with the requirements of 40 CFR 264.193(e)(3) and ADEM Administrative Code Rule 335-14-5-.10(4)(e)3., provides for secondary containment of the primary tank, continuous leak detection of both the primary and the secondary tank systems, and corrosion protection of the exterior of the primary tank. The integrity of both the primary tank and the secondary tank is continuously monitored by a vacuum-sensing system. The void space between the primary tank and the secondary tank is maintained at a negative pressure such that on the failure of either tank system, this negative pressure would diminish to atmospheric conditions. At this point, the vacuum pressure switch would initiate an audible and visual alarm to a control panel that is located within the laboratory.

30

25

Tank Venting Requirements VI.

35

As indicated on the P&ID for Unit 708 (i.e., Drawing No. 0708-010-001 which is located in Appendix D-1 to Section D of the RCRA Part B Permit Application), Tank T-725 is designed as a closed top tank that passively vents to atmosphere. The P&ID and the Tank Data Sheets (i.e., Drawing Nos. 0708-080-025 through -025A) provided in Exhibit A to this tank system design assessment specify the diameter of the atmospheric vent nozzle on the tank.

5

The requirements for normal (i.e., liquid displacement) venting capacities for the Unit 708 tank were evaluated in accordance with American Petroleum Institute Standard 2000, Venting Atmospheric and Low-Pressure Storage Tank (i.e., API 2000). As shown in the venting calculations provided in Exhibit D to this tank system design assessment, the size of the atmospheric vent nozzle on the tank is adequate to allow the tank under normal conditions to be maintained within the design limitations for pressure and vacuum as specified on the Tank Data Sheets provided in Exhibit A to this tank system design assessment. The venting calculations provided in Exhibit D to this tank system design assessment.

10

15

tank fill and withdrawal rates which were used in the evaluation of the tank venting requirements.

VII. Hazardous Characteristics of the Waste Managed

In accordance with the requirements of 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., this section presents an evaluation of the compatibility of the wastes managed within the Unit 708 tank systems with the materials of construction of Tank T-725 to determine their suitability for service in this unit.

The types of wastes managed within Tank T-725, due to the nature of the operations conducted in the laboratory, will include virtually all types of hazardous wastes listed and identified in 40
 CFR Part 261 and ADEM Administrative Code Rule 335-14-2, except for ignitable wastes, as indicated in Appendix D-2-1 of this Application. Tank T-725 is a double-wall tank, constructed of carbon steel, with internal corrosion protection.

Exhibit E to this tank system design assessment presents information which provides an indication of the relative compatibility of vinyl ester coating, such as Tnemec Series 120 or 25 demonstrated equivalent, with a wide variety of chemical compounds and other substances. The table in Exhibit E provides corrosion/compatibility information for Tnemec Series 120 vinyl ester coating exposed to pure chemical compounds which, in general, tend to have a more severe corrosive effect than wastes which contain mixtures and complexes of these compounds. Although this table may not provide corrosion data and service recommendations 30 for all of the potential constituents of the wastes or waste mixtures which may be managed within the tank system in Unit 708, the table does demonstrate that Tnemec Series 120 is generally compatible with and, under normal conditions, should not experience an accelerated rate of corrosion or deterioration when exposed to a majority of the types and classes of wastes which are managed within the Unit 708 tank system. In addition to the compatibility/corrosion 35 data provided in Exhibit E, the compatibility of Tnemec Series 120 with the types of wastes managed within Unit 708 is further validated by the empirical data provided by many years of comparable service applications within a wide variety of chemical processing industries.

Based on the information provided in Exhibit E of this tank system design assessment and the empirical data compiled for comparable service applications within a wide variety of chemical processing industries, it is the conclusion of this evaluation that the Tnemec Series 120 coated carbon steel tank system components are generally compatible with the types of waste managed within the Unit 708 tank system. It is further concluded that these materials of construction are suitable for this service if the tank system is operated within the design limitations set forth within this assessment, and that, if the tank system is managed in accordance with the following minimum practice(s), these materials of construction should not experience an accelerated rate of corrosion or deterioration which may result in a catastrophic failure of the tank system, throughout its useful life:

Prior to placement of a waste into the tank system the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. References other than Exhibit E of this document, such as other recognized sources of corrosion data, may also be used to evaluate compatibilities. The Facility shall prohibit the placement into the Unit 708 tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components.

VIII. Certification of Tank System Design Assessment

In accordance with the requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), this section provides a certification by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), that an assessment of the design of the following tank system demonstrates that the tank system anchorage, seams, connections, and pressure controls are adequate, and that the tank has sufficient structural strength, compatibility with the wastes to be managed and/or protection from corrosion so that they will not collapse, rupture or fail, if properly installed, operated within the design limits, and properly inspected and maintained:

30

25

5

10

15

20

Tank System Location:	Chemical Waste Management, Inc.	
	Emelle, Alabama	
Tank System Identification:	Tank Management Unit 708	
Applicable Tank:	T-725	

35

At a minimum, the assessment of the tank system design, which is incorporated herein by reference, addresses and considers the following factors with respect to the intended use of the tank system:

AttachD-2-4-3Text.docx

- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tank design has been evaluated for structural integrity with regards to the ability of the designed tank shell and anchorages to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, wall loads, and associated environmental stresses such as seismic loads, as applicable;
- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tank has been evaluated with regards to the adequacy of the designed tank to provide the necessary capacity for normal venting;
- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which piping and other ancillary equipment shall be designed and constructed to maintain this certification;
- In accordance with 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., the assessment of the tank system design considers the compatibility of the tank's materials of construction and/or internal coatings with the types of hazardous wastes to be managed;
- In accordance with the applicable requirements of 40 CFR 264.192(a)(5) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)5., the assessment of the tank system design considers the ability of the designed tank system anchorage (hold-down slab) to support the load of the full (or empty) tank and to withstand associated environmental stresses; and
- The assessment of the tank system design considers the adequacy of the capacity of the designed tank secondary containment system (i.e. the double-wall tank) as required by the applicable requirements of 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e).

In order for this certification to be maintained, the Facility shall comply with the applicable requirements of 40 CFR 264 Subpart J and ADEM Administrative Code Rule 335-14-5-.10, and shall perform all routine management procedures, periodic inspections and reviews, and tank system functionality and integrity tests as required by the permit including, but not limited to, the following:

20

5

10

15

25

30

35

- The Facility shall ensure that the tank system is properly installed and that, prior to placing the tank system in use, all required inspections, tests and necessary repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f);
- Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested;
- Prior to placement of a waste into the tank system, the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the Unit 708 tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components;
- Prior to placement of a waste into the tank system, the Facility shall verify the specific gravity of the waste in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the tank system of any waste that has a specific gravity that exceeds the design maximum value specified within the tank system design assessment;
 - In accordance with the requirements of 40 CFR 264.195(c) and ADEM Administrative Code Rule 335-14-5-.10(6)(c), the Facility shall perform an inspection of the cathodic protection system within six months after installation and annually thereafter;
 - The Facility shall perform a periodic inspection of the tank venting devices to ensure that they are in good working order to maintain the tank within the design limits for pressure as specified within the tank system design assessment;
 - The Facility shall perform a periodic inspection of the tank level sensing, overfill control devices and associated interlocks to ensure that they are in good working order with the appropriate settings to prevent overfilling of the tank(s). The frequencies and procedures for inspection of all tank level sensing and overfill control devices shall be as recommended by the manufacturer; and

30

35

5

10

15

20

25

- 5
- The Facility shall perform a periodic inspection of any other operational controls for the tank system to ensure that they are in good working order with the appropriate settings to maintain the tank within its design limits as specified within the tank system design assessment. The frequencies and procedures for inspection of other tank system operational controls shall be as recommended by the manufacturer.

Based on the information provided within the tank system design assessment and supporting documentation, the design of Tank T-725 within Tank Management Unit 708 meets the current RCRA requirements relative to the design of new hazardous waste tank systems. The design assessment addresses only the applicable requirements of 40 CFR 264.192 and 40 CFR 264.193, and ADEM Administrative Code Rules 335-14-5-.10(3) and (4), and does not consider compliance with other codes or regulations, including, but not limited to, the requirements of the Occupational Safety and Health Act (OSHA).

15

20

10

With regards to the assessment and certification of the design of hazardous waste tank systems in accordance with the applicable requirements of 40 CFR 264.192(a) and (g), and ADEM Administrative Code Rules 335-14-5-.10(3)(a) and (g), I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and

25

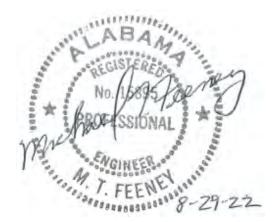
William O. Hagerman, P.E. 14014 Alabama P.E. No.: 14014 President ETI Corporation 6799 Great Oaks Road, Suite 100 Memphis, Tennessee 38138-2500

³⁰ This certification was originally submitted in 1995. As part of the 2002 Part B Application Renewal, revisions were made to the text in this attachment. These revisions consisted

imprisonment for knowing violations.

primarily of renaming the section for the Waste Analysis Plan to Section C to maintain consistency with the other Sections contained within this Part B Permit Application. No revisions were made to this attachment during this Part B Permit Application renewal process (Revision 5.0).

5

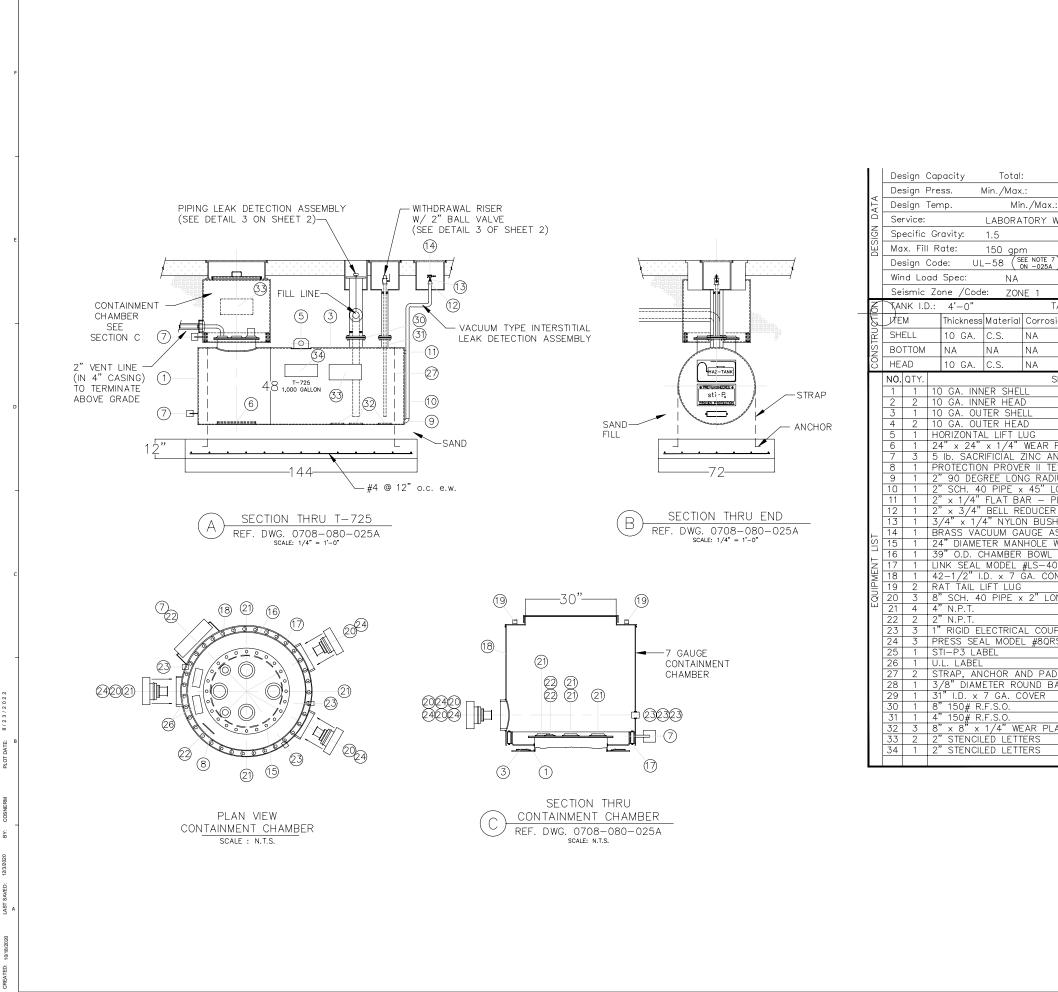

With regards to the revisions noted above, I certify under penalty of law that these modifications were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

15

20

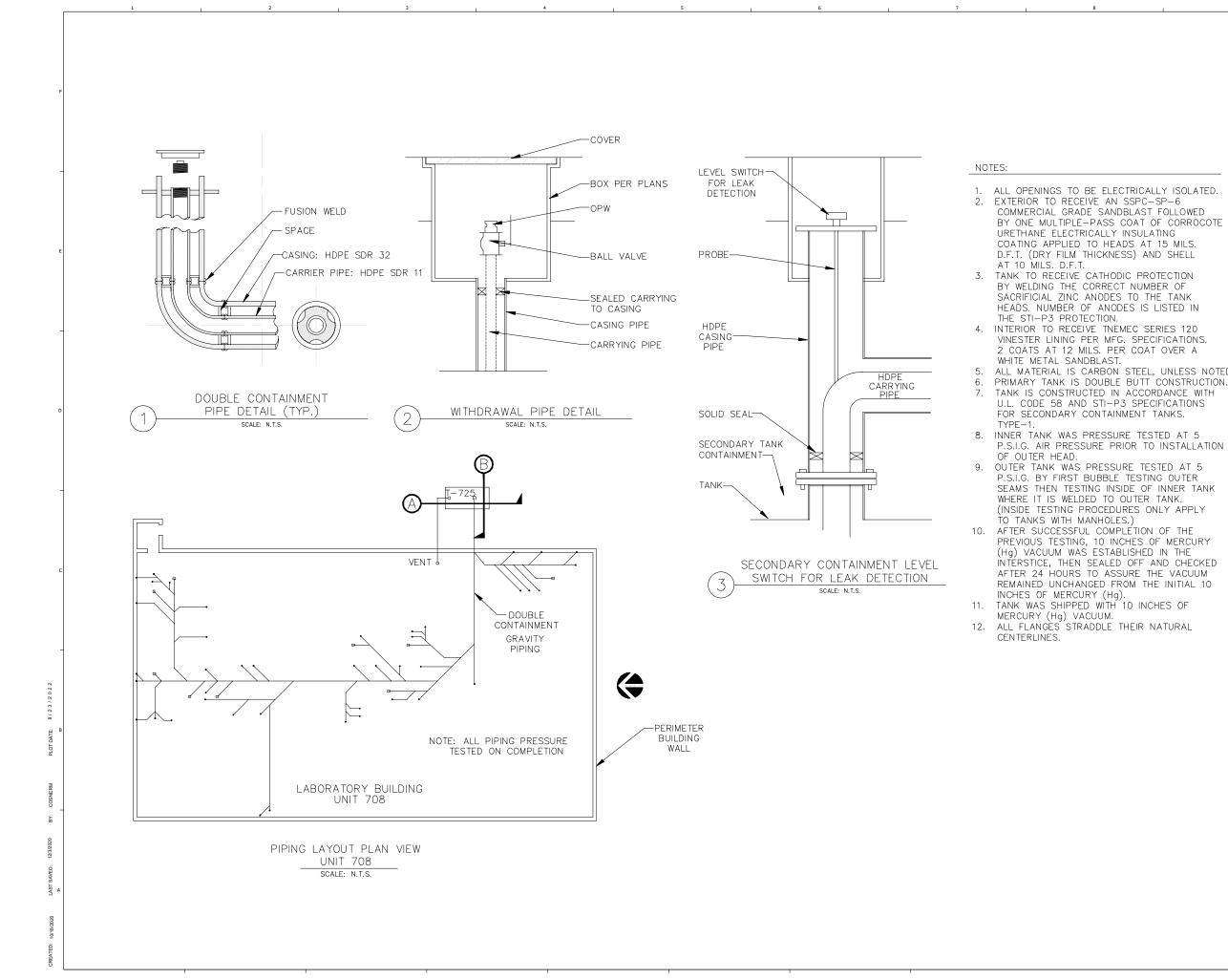
10

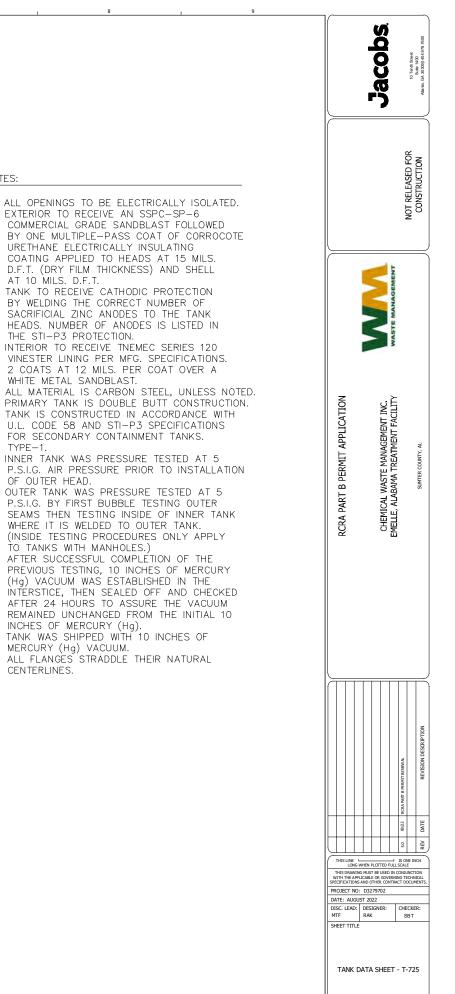
Michael T. Feeney, P.E. Alabama P.E. No.: 15895 Jacobs Engineering Group Inc. Ten 10th Street NW Atlanta, Georgia 30309



25

[End of Attachment D-2-4-3 Text]


EXHIBIT A


TANK DATA SHEETS

		/1,003	3 gal.			
	-2.5	psig / +5				
ax.:		NT / AMBII				
Y WA						
	Vapor Spac	ce (inch):	3"			
			150 gpm			
TE 7 25A	Joint Effici		NA			
204 /						
TAN	IK HEIGHT:	LENGTH 10'-	-8"			
	Allowance		Height			
		HORIZONTAL				
		NA	NA			
		FLAT	NA			
CEL	RVICE	ILAI				
SEP	(VICE					
RPL	ATE					
ANO	DE					
TEST	DE STATION WELD ELB					
ADIUS	S WELD ELB	OW				
	IG – T.O.E. E SUPPORT					
ER						
JSHIN	G					
		ISTALLED ON				
E WIT WL	H ISOLATIO	n kit and (JUVER			
	-0 (35 PIEC	CES PER CH.	AMBER)			
CONT	AINMENT CH	HAMBER	/			
LONG	2					
OUPL						
QRS-PSX						
PAD						
PAD BAR HANDLE						
र						
PLATE						

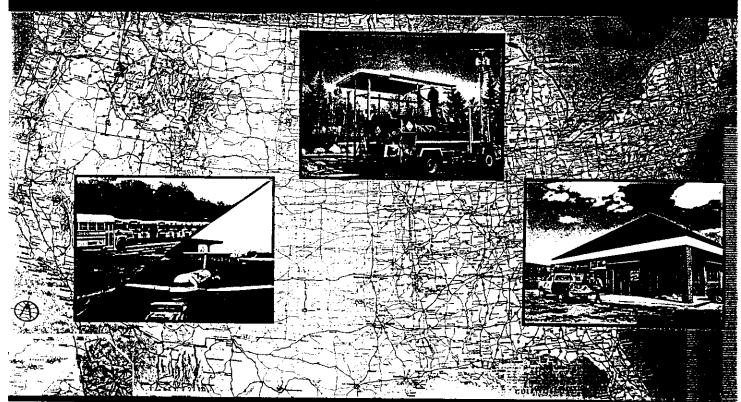
	Jacobs	10 Tenth Street Supe 1400 Allanta, GA 303091 404.978.7500			
		NOT RELEASED FOR CONSTRUCTION			
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	SIMTER COUNTY, AL			
THS LINE L LONG V THS SUPE L SPROJECT NO: DATE: AUGUS DISC. LEAD: MTF SHEET TITLE	VHEN PLOTTED FULLS WHEN PLOTTED FULLS STMUST BE USED IN CO ICABLE OR GOVERNING MAD OTHER CONTRACT D3279702 ST 2022	NOLLATOSER			
TANK DATA SHEET - T-725					

SHEET 0708-080-025A

EXHIBIT B

TANK DESIGN INFORMATION – STI-P₃ AND UL 58 SPECIFICATIONS

Tank Design Information - General Information on sti-P, Tanks


The Security of Secondary Containment A Variety of Models

sti-P₃®

Double Wall Steel Underground Storage Tanks

Exhibit B Page 2 of 42

Double wall lanks... The Extra Measure

f you want loss protection that meets or surpasses federal underground storage requirements, the sti-P₃* double wall tank options provide unrivaled long-term performance.

A steel tank within a tank combines with corrosion prevention to yield a system that will capture a leak—thereby protecting the environment and saving you money. Take a closer look at the advantages offered by double wall steel underground storage tank systems produced by sti-P₃* licensed manufacturers.

While many states, counties and municipalities have mandated the use of secondary containment for underground tank systems, users across the country are turning to $sti-P_3^*$ double wall steel tanks to get the extra measures of confidence in the difference between leak detection and leak prevention. They are investing to protect the environment and their businesses.

The Best Performance Record in the Industry

Double wall steel underground storage tanks manufactured by licensed $si_1P_3^+$ fabricators are found in thousands of locations nationwide. Users in all fields, private, industrial and governmental. . . are storing hazardous materials. . . from gasolines to alcohols to chemicals such as solvents. . . . in a wide variety of soil environments. Every one of these tanks is also compatible with anticipated fuels of the future.

And, every one has been manufactured to meet Underwriters Laboratories fabrication standards as well as corrosion-prevention specifications of the Steel Tank Institute. Those guidelines are embodied in the sti-P₃* Specification which has, since 1969, provided owners with proven protection in over 150,000 single and double wall tank installations. The federal government and major national code-developing agencies have also recognized the significance of the sti-P₃* standards and have referenced them in both EPA-UST regulations and other key national codes.

sti-P₃[•]... A Revolutionary Concept

All sti-P₃* double wall steel underground storage tanks combine the structural strength of steel with the most comprehensive measures against corrosion in the industry.

The inherent strength of steel allows these storage tanks to withstand such geotechnical stresses as high groundwater tables while continuing to deliver years of dependable, leak-free service. And the secondary containment afforded by the STI Standard for Double Wall Tank design provides an added measure of protection which can spell the difference between a clean environment and an ecological disaster.

The three forms of protection combined for use on all sti-P₃⁺ double wall tanks offer pre-engineered security against corrosive forces present in any underground storage situation.

Exhibit B Page 3 of 42

Dielectric Coating:

Every sti-P₃' double wall underground storage tank exterior surface is coated with one of four materials: coal tar epoxy, polyurethane, isophthalic polyester resin reinforced with fiberglass, or a urethane reinforced with fiberglass. This protective finish covers the entire exposed surface of the tank. Any of these environmentally inert coatings can be applied to a blast-cleaned steel surface to offer an effective electrical insulation and moisture barrier.

3 Electrical Isolation:

Equally important in the three-way protection system, isolating bushings prevent metalto-metal contact between the tank and piping system. Dielectric nylon bushings or flange isolation kits are used to electrically isolate the tank from a connected pipe system. The isolation appliances define the area to be protected by anodes.

Nylon Bushing

Sacrificial Anodes

2 Sacrificial Anodes:

erode in place of the tank.

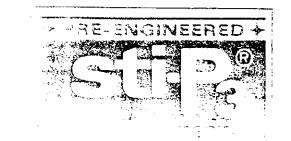
The second level of protection comes in

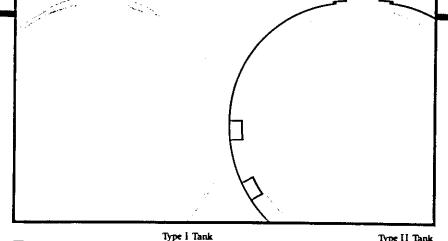
the form of sacrificial galvanic anodes. No

matter how many steps are taken to apply a high quality coating, small nicks or scratches in the finish may develop through carcless handling during transportation and installation. Such coating "holidays" could bring a premature end to a tank's useful life if supplemental measures are not taken. Anodes are an sti-P₃" safeguard against corrosion in line with the National Association of Corrosion Engineers standards.

Galvanic anodes made of either zinc or magnesium attached to the tank control the direction of electrical current flow and will

Surface Preparation


Double Wall Tanks... The Flexible Choice


o matter what your needs are, any of over 80 STI licensed fabricating locations around the country can provide the right underground storage system based upon decades of tank building know-how. Every double wall system fabricated by these experienced professionals conforms to the most stringent design and quality control criteria in the underground storage industry,

Several Types of Tank ... To Give You The Choice

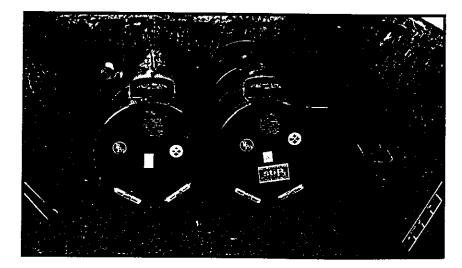
Some tank manufacturers offer users only one type of double wall construction . . . a 360° wrap that completely encases the inner tank in a second layer.

Because steel is fabricated differently from other tank materials, such as FRP, an STI manufacturer can provide options that will allow you to specify the storage solution that meets both environmental and economic concerns.

Type II... A Tank Within A Tank

Many fabricators who are licensed to apply the sti-P3® corrosion-protection system offer another 360° secondary containment option. designated by Underwriters Laboratory as Type II double wall construction.

A Type II double wall steel underground storage tank consists of an outer tank that is physically separated from the inner tank by standoffs. Type II construction meets-as does Type I-the most stringent underground storage circumstances for motor fuels and hazardous materials.


Type I... Wall to Wall Protection

An sti-P3[®] Type I tank is a primary tank wrapped by an exterior steel shell that is in direct contact with the inner vessel. This exterior shell may cover less than the full circumference of the tank. . . usually a 300° wrap. A 360° wrap Type I tank is required for use in the storage of chemical products and certain hazardous materials.

STI has developed a specification for the Type I tank because most underground storage system failures caused by corrosion occur on the lower portion of the tank. Thus, secondary containment may not be necessary for the top portion of the tank because 97% of an underground tank's capacity can be covered by a 300° wrap.

Type I construction affords the user a level of containment and leak detection capability that makes sense ecologically and economically.

Type II Tank

SIL

Quality Control Assures Dependability

"he sti-P₃* double wall tanks manufactured by STI-licensed fabricators are required to conform to practices established by Underwriters Laboratories and the Steel Tank Institute. Double wall construction has evolved from decades of tank manufacturing experience and a long history of safe usage in Europe. Tank preparation also is shaped by the STI quality control program which ensures that you are receiving the most dependable underground products available.

The four-tier quality control program includes multiple in-house inspections on every tank at all stages of fabrication. Critical tank components such as dielectric bushings, sacrificial anodes and coatings are tested for compliance to the standard. Visits by inspectors from UL or other agencies plus frequent, comounced inspections by STI personnel

keep track of tank construction practices.

And, if inspectors find a manufacturer not complying with the fabrication requirements, the company is cited and must document how any deficiencies were corrected. As a condition for maintaining an sti- P_3^* license, each manufacturer must send a representative to annual STI quality control meetings.

This dedication to maintaining the standards that go into the construction and installation of sti-P₃* double wall tanks assures you of consistent quality and dependability. It means that when you see the sti-P₃* label on the tank head, you can be confident in an underground storage system that is in compliance with the federal Underground Storage Tank (UST) regulations.

Monitoring . . . Providing Protection

Critical to the prevention of environmentally threatening leaks of toxic substances is the interstitial space found between the outer envelope and the inner UL-58 tank. If a leak develops in the primary containment vessel, the seepage will be restricted to this cavity, protecting the surrounding area. That is how a double wall sti- P_3° tank minimizes your operational costs, It's the difference between leak prevention and leak detection. In fact, many companies anticipate saving money on federally required leak detection systems hy purchasing double wall tanks and interstitial space monitors.

The user of an sti- P_3 " double wall tank can effectively detect the presence of product or water in the interstitial space by using the integral leak monitoring well provided for this purpose.

Manual Sticking of the Interstitial Space Electronic Monitoring Mechanical (float devices) Pressure or Vacuum Method

sti-P3' Quality Control Tests

Coating

Abrasion/impact resistance Adhesion Cathodic disbondment UV weathering & air exposure In Situ performance Infrared spectroscopy

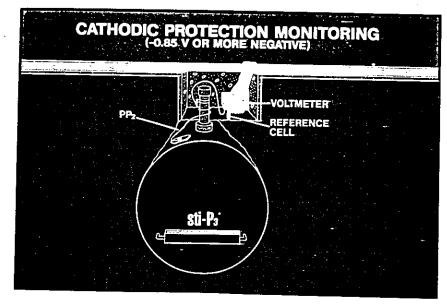

Anodes

Chemical composition exam by atomic absorb, photospectroscopy or wet chemical analy. Backfill composition & electrical resistivity Weight tolerance Packaging strength

Electrical Isolation

UL listing Electrical conductivity test Compatibility Sealant performance Dimensional quality examination

Double wair lanks... Protecting Your Business



very sti-P₃* double wall steel underground storage tank is backed by STI's 30 year limited warranty against structural failure, external corrosion and internal corrosion. STI fabricators provide such a warranty because tests show that a properly installed sti-P₃* tank system will perform for 30 years or more

without problem. But, STI is aware that financial responsibility has become an industry byword. In an age of rapidly changing regulations, with petroleum equipment vendors appearing and disappearing, it's good to know that STI provides comprehensive, long-term security for tank owners.

sti-Pa* Tank Monitor

Watchdog^s...^{STI Watchdog-} Another Layer of Protection

The sti-P₃* system of eathodic protection has proven itself over the years to be the most dependable technology against the corrosive forces inflicted on underground steel tanks. Now, the Steel Tank Institute offers another dependable form of protection to ensure that your steel tanks are being properly protected by their sti-P₃* systems Watchdog⁵⁰.

The Watchdog^m monitoring program provides owners of sti-P₃⁺ tanks shipped after October 4, 1988 with **30 years** of cathodic protection monitoring **at no charge**. Watchdog^m meets all requirements of the EPA regulations for monitoring the performance of cathodic protection systems, 40 CFR 280.31. Watchdog^m is available on all new regulated non-residential sti-P₃⁺ tanks.

Under Watchdog^{-m}, an STI-authorized technician will conduct the EPA-mandated tests in accordance with the federal schedule. He will verify that the cathodic protection system is functioning within nationally recognized limits.

Beyond Comparison

The sti- P_3^{*} underground storage system offers you unparalleled efficiency, strength, dependability, durability and choice of options. Add to that the commitment of the Steel Tank Institute to back all sti- P_3^{*} tanks with a 30 year limited warranty and the Watchdog^{**} Monitoring Program and you have a complete package—the best and safest underground tank value available.

Exhibit B Page 7 of 42 Tank Design Information - sti-P₃ Specifications

. **.**..

STEEL TANK INSTITUTE SPECIFICATION for sti-P₃® SYSTEM of EXTERNAL CORROSION PROTECTION of UNDERGROUND STEEL STORAGE TANKS

PREFACE

This specification covers an external corrosion control system (termed sti- P_3°) for underground steel storage tanks that was developed in 1969 for the Steel Tank Institute (STI) by leaders in the field of corrosion engineering. The system is a practical and economical means of extending the life of underground tanks from a minimum of thirty (30) years in corrosive soil conditions to an indefinite term in less severe environments. The design includes a safety factor that will allow for somewhat more than ordinary damage to the coating from shipping and handling and other accidental holidays.

Traditionally, steel tanks used for underground storage of petroleum products have been protected with an inexpensive coating to prevent corrosion of the tank during storage of the tank

Effective: 11-01-89, Supercedes, Previous

sti-P3® SPECIFICATIONS Page 1

aboveground and after installation underground. This practice has been adequate in some soils but has invariabily been unsatisfactory in corrosive soils. Previously, the known methods of applying stringent corrosion control to tanks were not feasible because they requied handling by experienced corrosion personnel.

The sti-P₃[®] method of corrosion protection overcomes these problems and still retains all the advantages of a steel tank with its structural strength and ability to take rough handling. The sti-P₃[®] system combines three basic methods of underground corrosion control, all installed on the tanks during manufacture: (1) Cathodic Protection, (2) Protective Coating, (3) Electrical Insulation of the tank from other underground metallic structures by use of non-conductive bushings or similar methods which isolate the tank electrically from the piping.

The salient feature of the design is that it is pre-engineered and provided by the tank fabricator as an integral part of the tank. This aspect eliminates costly on-site engineering, misunderstood installation requirements and concern over the effectiveness of the corrosion control used. Further, the sti-P₃[®] system turns itself on after the tank has been buried and provides cathodic protection for a minimum pre-determined length of time in a given soil.

Page 2 sti-P₃® SPECIFICATIONS

Effective: 11-01-89, Supercedes: Previous

Although the sti-P₃[®] system will be discussed in greater detail in later sections of this specification, several aspects related to the design concept warrant consideration in this section. Basically, the methods employed by the sti-P₃[®] system to prevent exterior corrosion were developed by corrosion engineers and have been successfully used on pipelines and other underground structures for more than fifty years. Although the basic methods are quite different in their way of protecting steel underground, they are related and must be used in combination with each other to achieve complete protection. For example, protective coating should not be used alone, because in practice no coating will be free of holidays. Some corrosion engineers submit that coating alone is about 75% effective against corrosion, whereas coating supplemented with cathodic protection results in an effectiveness of these combined methods approaching 100% corrosion control.

The only practical approach to a pre-engineered cathodic protection system for this application is using sacrificial anodes attached to the tank in a manner similar to that employed for ship hull protection. The protective coating serves to reduce the amount of protective current needed for cathodic protection. Electrical isolation bushings or flange isolators are installed in each tank opening. By preventing contact between the tank and other nearby metal structures through the piping system,

Effective: 11-01-89, Supercedes: Previous

str-P₃^s SPECIFICATIONS

Page 3

the chance of stray current corrosion is minimized, and the current demand such contact would add is eliminated.

Galvanic anodes develop their own protective current because of the natural potential difference between the anode metal and the metal being protected. This means that the anode system is self-activated after the tank is buried and that the cathodic protection current will continue to provide corrosion control until the anode is consumed by corrosion. Based on the estimate of the average current produced by the anodes in a given soil, useful life of the anode system can be readily calculated.

Page 4 sti-P3® SPECIFICATIONS

SPECIFICATION for sti-P3® SYSTEM of EXTERNAL CORROSION PROTECTION of UNDERGROUND STEEL STORAGE TANKS

1. SCOPE

- 1.1. This specification covers a method of underground exterior corrosion control for steel tanks. The method, termed sti-P₃[®] combines three basic corrosion control approaches.
 - 1.1.1. PROTECTIVE COATING to minimize metal exposure to the soil.
 - 1.1.2. CATHODIC PROTECTION using galvanic anodes to protect any exposed metal.
 - 1.1.3. ELECTRICAL ISOLATION to protect the tank from stray current corrosion and to limit and define the area to be cathodically protected.
- 1.2. sti-P₃[®] pre-engineered system utilizes a balance of each of the three corrosion control methods to achieve protection at minimum cost.

Effective: 11-01-89, Supercedes: Previous

sti-P3* SPECIFICATIONS Page 5

EFINITIONS

- ANODE: An electrode of a corrosion cell at which corrosion occurs and metalions enter into solution. Antonym: CATHODE.
- CATHODIC PROTECTION: A technicque to prevent the corrosion of a metal surface by making that surface the cathode of a corrosion cell.

CORROSION: The deterioration of a material, usually metal, because of a reaction with its environment.

DI-ELECTRIC: A substance or medium which does not conduct an electrical current.

ELECTRICAL CONTINUITY: The condition of being capable of maintaining the flow of electrons in an electrical current.

ELECTRICAL INSULATION/ELECTRICAL ISOLATION: The condition of being electrically separated from other metallic structures or the environment.

ELECTROLYTE: Non-metallic electrical conductor in which current is carried by the movement of ions.

Page 6 sti-P3® SPECIFICATIONS

Effective: 11-01-89, Supercedes: Previous

Exhibit B Page 11 of 42 GALVANIC ANODE: A metal which, because of its relative position in the galvanic series, provides protection to a metal that is more noble in the series, when they are coupled in an electrolyte. Galvanic anodes are the current source on one type of cathodic protection.

HOLIDAY: A discontinuity in the coating system that exposes metal surface to the environment.

MONITORING DEVICE: A piece of equipment designed to check an operation.

- PACKAGED ANODE: An anode that is supplied completely surrounded by a prepared backfill of selected conductive material. (See 6.1, 6.2 and 6.3)
- SACRIFICIAL PROTECTION: Reduction or prevention of corrosion of metal in an electrolyte by galvanically coupling it to a more anodic metal.

SEAL WELD: A continous weld eliminating crevices.

STRAY CURRENT: Current flowing through paths other than the intended circuit.

STRAY CURRENT CORROSION: Corrosion resulting from direct current flow through paths other than the intended circuit.

Effective: 11-01-89, Supercedes: Previous

sti-P3® SPECIFICATIONS

Page 7

J. LICENSE

- 3.1. All tanks manufactured by an sti-P₃[®] Licensee in strict conformance with these sti-P₃[®] Specifiations are covered by a limited warranty. This limited warranty is issued by the Steel Tank Institute (STI), not by the individual licensee company.
- 3.2. In order to control quality, STI employs a staff of Quality Control Inspectors making unannounced visits to Licensee plants. This inspection service is manadatory for all Licensees. These inspections services assure that tanks are fabricated in strict accordance with sti-P₃[®] Specifications, latest edition. Any tank determined not to conform to specifications must be immediately corrected and reinspected. STI may inform the Licensee that reinspection by STI staff inspector will be required prior to shipment. The sti-P₃[®] Board of Directors may apply penalties for non-compliance with the specification requirements in accordance with the sti-P₃[®] By-Laws.
 - 3.2.1. Licensees are required to follow specified inspection and reporting procedures that are monitored and recorded by STI.
- 3.3. The Steel Tank Institute conducts regular quality assurance seminars on sti-P₃[®] Technical procedures. Licensee attendance at these seminars is mandatory.

Page 8 sti-P3® SPECIFICATIONS

Effective: 11-01-89, Supercedes: Previous

3.4. sti-P₃[®] Licensees who build similarly engineered, factory fabricated steel tanks which appear similar to an sti-P₃[®] Tank are subject to removal of their License.

4. GENERAL REQUIREMENTS

- 4.1. The responsibility for supplying a tank in strict compliance with these sti-P₃[®] Specifications, including all current Appendices, Tables, Supplements, Addenda, etc. is the sti-P₃[®] Licensee's. Also careful inspection in accordance with current sti-P₃[®] directives to assure compliance with sti-P₃[®] is the Licensee's responsibility. Under no circumstances may any part of these responsibilities be delegated or assigned to a coater, buyer, installer, hauler or any other second party.
- 4.2. Underground tanks must meet the fabrication and performance requirements of the latest issue of Underwriters Laboratories, Inc. UL-58 Steel Underground Storage Tanks for Flammable and Combustible Liquids or the current edition of the ASME Code, Section VIII, Division I for Pressure Vessels. Otherwise a detailed drawing must be submitted to STI for approval prior to fabrication. All tanks and fabrications must meet the requirements of any applicable specifications, standards, codes or regulations.

Effective: 11-01-89	Supercedes:	Previous
---------------------	-------------	----------

sti-P₃® SPECIFICATIONS

Page 9

- 4.2.1. UL-58 notwithsanding the minimum material thickness for any sti-P₃[®] Tank shall be #10 gauge.
- 4.2.2. If a tank that otherwise meets the requirement of UL-58 but has an opening or openings below the top axis they may be considered standard and not require submission to, and approval of STI. However, any openings extending from the tank horizontally, beyond 30° from the Top centerline, must be flanged with flange isolation kits and nylon bushings may not be used. See Appendix N.
- 4.2.3. Satisfactory design and fabrication of the tank (or structure) for the purpose to which it is to be applied is the responsibility of the Licensee. Drawings submitted to STI for approval will only be checked for the correct application of the sti-P₃® Corrosion Control System.
- 4.2.4. UL-58 describes weld joints without quality standards. STI has established weld quality standards for use on sti-P₃[®] Tanks. See Appendix J for weld profile requirements. If difficulty is experienced in achieving quality welds, licensees should consult their welding equipment and supplies dealer for guidance.
 - 4.2.4.1. Head joints numbered 19, 20, 21 and 22 in UL Standard 58, 8th Edition, are not considered good practice due to the difficulty of adequately coating the ends

'age 10 sti-P3® SPECIFICATIONS

Effective: 02-01-90, Supercedes: Previous

of the shell. These joints are not recommended and will be prohibited for use on sti-P₃ $^{\circ}$ Tanks after July 1, 1987.

- 4.2.5. On All UL listed tanks carbon steel striker plates shall be installed on the interior bottoms under each opening.
 - 4.2.5.1. The striker plates shall be 8" x 8" x ¼" minimum size. Striker plates may be flat or rolled to conform to the internal surface of the tank. The effect of a flat striker plate placed in the bottom of small diameter tanks must be considered. Striker plates must also be placed under manways with fittings. The diameter of the striker plate must be equal to or greater than the diameter of the manway opening. The thickness must be ¼" minimum.
- 4.2.6. Stainless steel tanks that are not completely contained within a carbon steel outer tank are not authorized by these sti-P₃[®] Specifications and may not bear the sti-P₃[®] Label.
- 4.2.7. Only tanks made in strict accordance with these specifications and manufactured by fabricators licensed by Steel Tank Institute may be labelled "sti-P₃[®]."
- 4.2.8. Variances from these specifications may not be made until such alterations or ammendments have been submitted in writing to STI headquarters and approved in writing.
- 4.2.9. Licensees should consult STI for interpretations or solutions to individual difficult or unusual problems which do not seem to be covered by these sti-P₃[®] Specifications. Assistance

Effective: 02-01-90, Supercedes: Previous

sti-Pa® SPECIFICATIONS Page 11

will be given on the specific problem but are not to be interpreted as setting precedents until, and if, revisions to the specifications are issued.

- 4.2.10. There are certain labelling requirements for sti-P_{3®} Tanks. (See Appendix I).
- 4.3. Attachments to the tank shall be so designed that the coating will readily cover all surfaces. Such attachments shall be seal welded to eliminate cracks or crevices into which the protective coating is not likely to penetrate.
 - 4.3.1.Lifting lugs shall be of the plate type, adequately designed for the load and seal welded as illustrated in Appendix R.
 - 4.3.2. Major Metallic attachments to the tank, either by the fabricator or the installer, are not recommended. However, if such attachments are necessary, they shall be either electrically insulated from the tank or shall conform to the specifications for coating the tank on all surfaces that may be exposed to the underground environment. The surface area of the grounded attachments shall be included in selecting the proper size and number of anodes. Arrangements must be made so that attachments that are grounded to the tank, will be electrically isolated from the piping and other foreign structures when installed in the field.

Page 12 sti-P3® SPECIFICATIONS

Effective: 11-01-89, Supercedes: Previous

4.4. A Protection Prover 2 (PP2), Protection Prover 1 (PP1) or equivalent custom design monitor, must be installed, as shown in Appendix H, and is required on each tank. (NOTE: The PP1 can not be used with weld-on anodes). Prior to painting, any connection shall be protected to prevent coating from later interfering with the integrity of the electrical connection. (See Appendix D for proper connection procedure).

5. ELECTRICAL ISOLATION

- 5.1. Tank Fabricator/Licensee must supply the tank with provision installed for electrically insulating the tank from the piping without requiring the installer to take any action except to preserve the integrity of the isolation system furnished. It is mandatory that all electrical isolation for openings be installed and tested with the tank and that the tank leave the fabricator's plant with the electrical isolation intact and installed. Every provision must be made at the plant, before shipping, to avoid the installer having to install, remove and restore or in any way require, permit or encourage any interference with the electrical isolation.
 - 5.1.1. Electrical isolation must be compatible with the materials to be stored in the tank. Such compatibility shall be checked and established by the Licensee/Fabricator.
 - 5.1.2. Electrical isolation of openings is required on any pipes attached for monitoring equipment. For example; the pipe used to monitor the interstitial space of double wall tanks.

Effective: 11-01-89, Supercedes: Previous

sti-P₃[©] SPECIFICATIONS

Page 13

- 5.2. DI-ELECTRIC BUSHINGS: General Requirements: Di-electric bushings are avialable for use in tanks containing gasoline, gasahol and hydrocarbons or such other products that are listed as satisfactory on the Chemical Resistance Chart for the particular bushing. (See Appendix A and B). Licensees shall be responsible for establishing compatibility of the bushing and the product to be stored. If there is any question as to the compatibility of the bushing with the product, flanged openings shall be used with isolation kits whose gaskets are both di-electric and compatible with the stored product.
 - 5.2.1. DO NOT use Nylon Bushings in pressure tanks nor in tanks where temperatures in the tank or in the piping connected to the bushing may exceed 130°F (54°C). Use flanged openings, see below.
 - 5.2.2. Bushings must be those tested and officially approved by the sti-P₃[®] Board of Directors. Bushings shall bear the sti-P₃[®] Mark and/or the UL Label.
 - 5.2.2.1. Three Low Profile, Nylon, di-electric bushings are available. 5" X 4", 3" X 2" and 2-1/2" X 2" and each bears the sti-P₃® Mark and/or the UL Label.
 - 5.2.2.2. Licensees may submit a request, accompanied by supporting data, to approve another material. The sti-P₃[®] Board of Directors shall be the sole judge of the adequacy of the data and at its sole discretion may reject, approve, approve

Page 14 sti-P3® SPECIFICATIONS

with restrictions or require specificed, additional tests to be made on the material and resubmitted for consideration.

- 5.3. Bushing installation procedure is described in Appendix B. Tank shall be tested with the bushings installed.
 - 5.3.1. If it is anticipated that a tank will be in storage for a considerable length of time prior to shipping, installation of the bushings may be done just prior to shipment, provided the tank is re-tested for leaks at outer bushing threads before shipment.
 - 5.3.1.1. If bushings have been installed and tank has been placed in storage long enough, and under conditions that their sealing properties may become affected then the openings must be re-tested prior to shipment and any leaks corrected.
 - 5.3.2. Bushings shall have pipe joint compound (recommended, Clemmer Sealant 3332, or John Crane Plastic Lead Sealer No. 2, or other non-hardening sealant compatible with the product to be stored) generously applied to fill the *female* steel threads of the tank flange.
 - 5.3.2.1. At the time of any job site air test the nylon bushings must be considered as "Threaded Insulating Gaskets". The bushings must be leak tight at the time of the test. Field installation instructions are provided and must accompany

Effective: 11-01-89, Supercedes: Previous

sti-P₃® SPECIFICATIONS Page 15

tank shipment.

- 5.3.2.1.1. Field installation of the piping requires that permanent piping or plugs be installed in similar manner as above and then be thoroughly tightened to the point where all leaks are eliminated. If it is necessary to remove plugs or piping after being thoroughly tightened the bushing must be carefully inspected for damage to threads and a new nylon bushing must be used unless no damage is found.
- 5.3.3. After a tank is tested, install either metal or plastic threaded plugs or thread protectors for storage or shipping. Only non-air pressure testable (with vent hole) plastic plugs may be installed.
- 5.4. FLANGED OPENINGS with Flange Isolation Kits (see suggested alternatives in Appendix N): Where bolted flanges isolation are required they must be electrically isolated by use of flange isolation kits which are commercially available. Precautions must be taken to assure that the gasket used is (1) Di-electric and (2) compatible with the product to be stored at the temperature and pressure it is to be stored. After the isolation kit is installed a continuity checker must be used to assure that there is no circuit (See Appendix E).

Page 16 sti-P3® SPECIFICATIONS

- 5.4.1. Dip pipes, coils, hot wells or any interior structure that can make an electrical path to the exterior piping must be electrically isolated. This includes any attachment to the bottom of the tank such as shipping braces, anchors, etc. Responsibility for solving these, as well as any other, design problems is the Licensee's. However, STI may be consulted (refer to paragraph 4.2.5) if difficulty interpreting these specifications for a specific problem is encountered.
 - 5.4.1.1. Make electrical continuity check (Appendix E) from tank metal to any final metal connection installed on the tank including metal threaded reducing, flange, spool piece, nipple, etc. Test must show no circuit exists.
- 5.4.2. It is mandatory that the tank have the electrical insulation installed before shipping from the Licensee's plant, therefore certain basic methods are generally used.
 - 5.4.2.1. For example; when a bolted flange is used (150 lb. weld neck or similar) with a spool piece or threaded companion flange, a flange isolation kit is installed between the flange of the tank and its' companion flange. (See Appendix N). The isolation kit consists of di-electric sleeves and washers and metal washers to isolate the bolts plus a di-electric gasket. Such electrical isolation must be installed at Licensee's plant. Electrical isolation must not be shipped loose for installation in the field (see 5.5 below as electrical isolation for hold-down straps is an exception).

sti-P3® SPECIFICATIONS Page 17

- 5.4.3. Flange Isolation Kits should be installed so the bolts are grounded to the tank and therefore will also be cathodically protected.
- 5.4.4. Flanged openings must be protected for storage or shipping by a cover of metal, plastic, wood or hardboard.
- 5.5. If hold-down straps are to be supplied for an sti-P₃[®] Tank, isolation material must be shipped to the site along with the straps to be installed between the straps and the tank to electrically isolate one from the other. (See Appendix S for isolation material specification).
 - 5.5.1. Licensee should ship with the tank, electrical isolation for any other attachments that are not already part of the tank and are to be installed in the field because of shipping clearances. Such attachments could include, but not limited to, access manways, work chambers, etc. (See Appendix S).

Page 18 sti-P3® SPECIFICATIONS

6. CATHODIC PROTECTION

- 6.1. Anodes for use with the sti-P₃[®] Corrosion Control System shall be one of the following tested and approved types complying with the specifications in Appendix C. If the installed tank will be heated to a temperature greater than 100°F (38°C) *DO NOT* use Zinc anodes, Magnesium anodes *MUST* be used to avoid current reversal. The number and/or size of anodes applied to a given tank is to be determined by reference to Tables in Appendix P indicating anodes for given square footage of tank surface exposed to the earth. Different types of anodes MUST NOT be mixed on the same tank. Any attachments, which are, or may be electrically grounded to the tank, such as extended manways, work or piping chambers, etc. must be included in the calculations for determining the anode size. See Appendix S.
 - 6.1.1. sti-P₃[®] Weld-on zinc or magnesium anodes
 - 6.1.2. Wire Connected zinc or magnesium anodes
- 6.2. WELD-ON ZINC or MAGNESIUM ANODES: Number of anodes required for given surface area in accordance with Tables in Appendix P. Steel bar shall be bent approximately 70° to 90°

Effective: 11-01-89, Supercedes: Previous

sti-P3® SPECIFICATIONS Page 19

at each end and ends seal welded to tank in locations shown in Appendix O prior to tank being sand blasted and coated. (See Appendix J).

- 6.2.1. Plastic wrap shall remain on anode during sand blasting and coating operations and it and the anode shall be protected from damage during blasting by covering with a metal cover, rubber blanket, split PVC pipe or similar means.
 - 6.2.1.1. Care must be taken in blasting behind the anodes to assure that the required quality of surface preparation is obtained without damage to the anode container.
- 6.2.2. The purpose of the plastic wrap is to prevent moisture from damaging the cardboard tube and contents during storage. Therefore, remove the wrap before shipping if the tank is to be installed upon delivery. Do not remove the plastic wrap before shipping if installation is to be delayed. If plastic wrap is not removed upon delivery, install warning label "Caution Remove Plastic Wrapping Before Backfilling" on each anode.
 - 6.2.2.1. When shipped, it is recommended that shipping papers indicate that the plastic wrap must be removed to validate the warranty.

- 6.2.2.2. Tanks to be stored require a small slit to be cut in bottom center of the plastic wrap on the anode to allow drainage of moisture from condensation. Store tank in normal position. DO NOT remove cloth bag.
- 6.3. WIRE CONNECTED MAGNESIUM ANODES: Tank that will have wire connected Magnezium anodes installed shall have support brackets seal welded to tank in accordance with Appendix O including the approved connectors attached and connected as shown in Appendix D and checked according to Appendix E.
 - 6.3.1. Prepare anodes by immersing completely in water in a horizontal position until thoroughly soaked (at least four (4) hours). Remove from the water and allow to drain and dry in a horizontal position to avoid deformation and damage to the cotton bag and subsequent loss of fill material.

HANDLE ANODE CAREFULLY DO NOT LIFT BY OR PULL ON ANODE LEAD WIRE DO NOT HANDLE USING END OF BAG. TO LIFT, CRADLE IN BOTH HANDS

Effective: 11-01-89, Supercedes: Previous

sti-P3® SPECIFICATIONS

Page 21

- 6.3.1.1. To avoid degradation of the cotton bag after wetting, soak and attach anodes as close before shipping date as possible.
- 6.3.1.2. To allow for accidents keep extra cotton bags and backfill in inventory to repair damage. *DO NOT* use a cloth bag made of synthetic material as such material will be di-electric, not deteriorate underground and prevent cathodic protection.
- 6.3.2. The integrity of the electrical connection of the anode to the tank metal is critical to the operation of the cathodic protection. Therefore, extreme care must be taken to assure that there is no contamination by the coating, etc. and that the connection is electrically clean and well protected. Instructions in Appendices D and E must be very carefully followed.
- 6.3.3. To attach anode to tank use No. 8 gauge solid or stranded insulated wire or 1/2" wide x .028" thick (13 x .71mm) nylon strap cable ties in accordance with Appendix O.
- 6.4. WIRE-CONNECTED ZINC ANODES: Shall be installed in the same manner as the Magnesium anodes described in Section 6.3, except the brackets holding the anodes shall be different, as shown in Appendix O.

² 2 sti-P₃® SPECIFICATIONS

6.4.1. These anodes must be used rather than weld-on anodes if zinc is specified and monitoring by PP1, or similar test station, is required.

7. COATING

- 7.1. Prior to sand blasting or coating tank shall be inspected (and precoating section of inspection form signed) to confirm that the following conditions exist:
 - 1. Tank, or structure, is complete and conforms to governing code (UL or ASME) or to drawing submitted to and approved by STI.
 - 2. All welding finished, weld spatter removed (maximum allowable is 2 weld spatters per any 6" x 6" (15.3 x 15.3 cm) square or 36 square inch [234 sq. cm.] area).
 - 3. Nylon bushings are installed in threaded openings and electrical isolation installed in flanged openings.
 - 4. Weld-on anodes attached (or anode support brackets if magnesium or packaged zinc anodes to be used).
 - 5. Air or hydrostatic tests complete.

Effective: 11-01-89, Supercedes: Previous

sti-P3® SPECIFICATIONS Page 23

- 6. Weld-on anodes protection from sandblasting installed.
- 7. Label holders, metal labels, Protection Prover 2 (PP2) connector installed and taped and all other attachments seal welded to tank.
- 8. Threaded openings covered with pipe plugs or plastic thread protectors and shipping covers installed on flanged openings. Mask the crack between pipe plugs and bushings or thread protectors if the protectors allow threads to be exposed but do not allow masking tape to cover tank metal.
- 9. Greasy or oily areas removed from surface with solvent.
- 10. Temperature and humidity are within coating manufacturer's recommendation.
- 7.2. Surface Preparation. Prior to coating, entire exterior surface must be prepared by abrasive blasting in accordance with Appendix M. (Appendix G for fiberglass reinforced plastic coated tanks).
 - 7.2.1. If weld-on anodes are installed it is especially important to assure that the required blast profile is obtained behind and near the anode.
 - 7.2.2. Shot or wet blasting is not permitted.

Page 24 sti-P₃® SPECIFICATIONS

Effective: 11-01-89, Supercedes: Previous

Exhibit B Page 20 of 42

- 7.2.3. After blasting carefully wipe with clean cloths or brushes to remove dust.
- 7.2.4. It is best to complete abrasive blasting without interruption and apply the coating immediately after, especially in conditions of high relative humidity. In normal conditions a period of up to 24 hours may elapse between start of blasting and completion of coating. Tank should be re-blasted if rust-back or more than 24 hours transpires.
- 7.2.5. Consult equipment suppliers, materials suppliers, Steel Structures Painting Council and/or specialists for proper blasting techniques, materials and safety procedures to conform to these specifications.
- 7.3. Coating. After blasting entire exterior of tank shall be coated with an approved coating as listed in Appendix F or subsequent official approval issued on STI stationary. Substitution of other coatings for these STI tested and approved coatings is not permitted. Coating manufacturer's recommendations shall be complied with in the absence of specific instructions in these specifications.
 - 7.3.1. Procedures for testing and possible approval of other coatings are available, upon request, from STI if a Licensee is interested in using a coating that is not on the approved list.

sti-P₃® SPECIFICATIONS Page 25

- 7.3.2. Approved fiberglass reinforced coatings shall be applied over the entire exterior surface of the tank and shall be applied in accordance with the detailed instructions in Appendix G.
- 7.3.3. Approved Coal tar epoxy and urethane based coatings shall be applied to accomplish a minimum dry film thickness (DFT) of 10 mils on the shell and 15 mils on the heads and 15 mils DFT within a radius of four (4) feet of any anodes installed on the shell (Note: coal tar epoxies will shrink in thickness from wet to dry proportionate to their percentage of solids and this reduction must be allowed for to achieve the required DFT). Frequent use of a wet film thickness gauge by the spray painter is highly recommended to assure required film thicknesses.
 - 7.3.3.1. For coal tar epoxy coatings airless spray is recommended as the most efficient method of application as well as the method producing the most aesthetically pleasing appearance. Other spray methods or roller or brush may be used.
 - 7.3.3.1.1. Minimum temperature of tank surface for applying coal tar epoxy coatings is 50°F (10°C), as checked by a magnetic surface thermometer, for proper curing. Heat may be introduced into tank to assure proper curing at low ambient temperatures.

°age 26 sti-P₃® SPECIFICATIONS

- 7.3.3.1.2. Moisture must not touch surface of coating until it is throughly cured. If coating turns brown and softnes it must be completely removed and the process of blasting and coating started over.
- 7.3.3.2. For urethane based coatings use special spray equipment and temperature and humidity parameters recommended by the coating manufacturer.
- 7.3.4. It is *Especially important* to assure that specified coating is applied on anode holders and in vicinity of anodes.
- 7.3.5. After coating has cured, inspection with DFT gauge shall be made as required by the sti-P₃[®] Inspection Form which shall be executed and signed. Reading shall be dispersed over entire surface including places that are hard to reach.
 - 7.3.5.1. Problems with poor spray patterns, thick and thin streamers, blisters, etc. should be solved by consultation with spray equipment or coating supplier.
- 7.3.6. Coating damage, or defects caused by handling, rolling or any other cause are to be avoided. Any areas detected to have less than the required coating thickness shall be touched up and brought up to requirements.

sti-P3® SPECIFICATIONS Page 27

- 7.3.6.1. Before touching up, abrasion blast the area to assure a bond. Coal tar epoxies may be softened with MEK, as an alternate, prior to touch-up.
- 7.4. If coating sub-contractor is used, the responsibility for conformance to these specifications remains with the Licensee.
- 7.5. A coating touch-up kit, compatible with the sti-P₃[®] approved coating used, must be furnished with each shipment.

8. COMPLETION

- 8.1. The following steps are to be completed after the above specifications have been complied with. These completion steps should be done after the tank coating has been cured, checked and inspected. However, if it is anticipated that shipment will not be made for some time those steps marked * may be delayed until before shipment in order to avoid deterioration.
 - 8.1.1. Install cathodic protection monitor test station as specified in Appendix H. The test station can consist of a Protection Prover 1 (PP1), Protection Prover 2 (PP2), or a custom test station.

e 28 sti-P₃® SPECIFICATIONS

- 8.1.1.1.* PP-2 wire and installing instruction tag may be attached immediately prior to shipping.
- 8.1.2.* Install labels on each head of tank including the large sti-P₃® Label, Installation Instructions and the Steel Mark label, illustrated in Appendix I.
 - 8.1.2.1.* If packaged magnesium or zinc anodes are used, label or stencil above anode "DO NOT DISCONNECT ANODE LEAD WIRE" as shown in Appendix I.
 - 8.1.2.2. If weld-on anodes are used and tank is to be delivered and installed at once, remove the plastic wrap from the anodes.
 - 8.1.2.3. If weld-on anodes are used and the delivery or installation is to be delayed, or time of installation is unknown, the plastic anode wrap should remain on the anodes and the flourescent ink "CAUTION REMOVE PLASTIC WRAPPER BEFORE BACKFILLING" label (See Appendix I) must be wrapped around each anode. Cut a couple of short slits in the bottom of the plastic wrap so condensed moisture can escape.

sti-P₃® SPECIFICATIONS

Page 29

- 8.1.3. At each opening, or group of openings, apply the appropriate label or stencil for a threaded or flanged opening. (See Appendix I).
- 8.2. Inspection of sti-P₃[®] tanks shall be completed as soon as coating has set and prior to storage in yard (except those steps designated above). Tanks in storage will be considered complete by the STI Quality Control Inspector unless they are stored in a separate location and tagged "Do not ship until re-inspected".
- 8.3. Inspect tank and bring inspection papers up to date. Carefully load or store first, padding under and over loaded tank (especially if chains or cables are used) is recommended.
 - 8.3.1. At the job site, a crane of ample capacity to lift the tank cleanly is preferred. Controlled unloading may be used. In any case, tank and appurtenances must be handled to avoid damage to the coating. Dragging or shoving the tank may cause sufficient damage to the coating to void the warranty. See Appendix Q for installation instructions that are required to be followed.
- 8.4. Complete required paper work (See Appendix L), check and mail to STI.

age 30 sti-P3® SPECIFICATIONS

Tank Design Information - UL 58 Specifications

.

American National Standard ANSI/UL 58-1985 Approved October 22, 1985

UNDERWRITERS

TORI

DS

INC.0

Exhibit B Page 25 of 42

APRIL 15, 1986

1

ANSI/UL 58-1985

UL 58

STANDARD FOR STEEL UNDERGROUND TANKS FOR FLAMMABLE AND COMBUSTIBLE LIQUIDS

First Edition — October, 1925 Second Edition — September, 1929 Third Edition — February, 1937 Fourth Edition — April, 1949 Fifth Edition — December, 1961 Sixth Edition — December, 1971 Seventh Edition — October, 1976

(The fifth and previous editions were originally titled "Underground Tanks for Flammable Liquids")

EIGHTH EDITION

April 15, 1986

Approval as an American National Standard covers the numbered paragraphs on pages dated April 15, 1986. These pages should not be discarded when revised or additional pages are issued if it is desired to retain the approved text. Revisions of this standard will be made by issuing revised or additional pages bearing their dates of issue.

An effective date included as a note immediately following certain requirements is one established by Underwriters Laboratories Inc.

Approved as ANSI B137.1—1971, July 27, 1971 Approved as ANSI B137.1—1976, July 23, 1976 Approved as ANSI/UL 58—1985, October 22, 1985

(1-4/15/86)

COPYRIGHT © 1976, 1986 UNDERWRITERS LABORATORIES INC.

UL's Standards for Safety are copyrighted to protect UL's publication rights, not to restrict their use in product design or evaluation. See paragraph E of the Foreword.

Exhibit B Page 26 of 42 ٢

J

APRIL 15, 1986

TABLE OF CONTENTS

Foreword
Foreword
1. Scope
2. General
Construction
3. Capacities, Dimensions, and Metal Thicknesses
4. Materials
4. Materials
6. Heads and Head Joints
7. Compartment Tanks
8. Pipe Connections
8. Pipe Connections
10. Heating Coils and Hot Main
Manufacturing and Production Tests
11. General
Marking
12. General
13. Capacity Tables

FOREWORD

A. This Standard contains basic requirements for products covered by Underwriters Laboratories Inc. (UL) under its Follow-Up Service for this category within the limitations given below and in the Scope section of this Standard. These requirements are based upon sound engineering principles, research, records of tests and field experience, and an appreciation of the problems of manufacture, installation, and use derived from consultation with and information obtained from manufacturers, users, inspection authorities, and others having specialized experience. They are subject to revision as further experience and investigation may show is necessary or desirable.

B. The observance of the requirements of this Standard by a manufacturer is one of the conditions of the continued coverage of the manufacturer's product.

C. A product which complies with the text of this Standard will not necessarily be judged to comply with the Standard if, when examined and tested, it is found to have other features which impair the level of safety contemplated by these requirements.

D. A product employing materials or having forms of construction differing from those detailed in the requirements of this Standard may be examined and tested according to the intent of the requirements and, if found to be substantially equivalent, may be judged to comply with the Standard.

E. UL, in performing its functions in accordance with its objectives, does not assume or undertake to discharge any responsibility of the manufacturer or any other party. The opinions and findings of UL represent its professional judgment given with due consideration to the necessary limitations of practical operation and state of the art at the time the Standard is processed. UL shall not be responsible to anyone for the use of or reliance upon this Standard by anyone. UL shall not incur any obligation or liability for damages, including consequential damages, arising out of or in connection with the use, interpretation of, or reliance upon this Standard.

F. Many tests required by the Standards of UL are inherently hazardous and adequate safeguards for personnel and property shall be employed in conducting such tests.

GENERAL

1. Scope

1.1 These requirements cover horizontal atmospheric-type steel tanks intended for the storage underground of flammable and combustible liquids.

1.2 These tanks are intended for installation and use in accordance with the Standard for the Installation of Oil-Burning Equipment, NFPA 31, and the Flammable and Combustible Liquids Code, NFPA 30.

1.3 Tanks covered by these requirements are cylindrical tanks that are fabricated, inspected, and tested for leakage before shipment from the factory as completely assembled vessels.

1.4 These requirements do not apply to tanks covered by the Standard for Welded Steel Tanks for Oil Storage, ANSI/API 650, nor tanks intended for use in chemical and petrochemical plants.

2. General

2.1 If a value for measurement is followed by a value in other units in parentheses, the second value may be only approximate. The first stated value is the requirement.

CONSTRUCTION

3. Capacities, Dimensions, and Metal Thicknesscs

3.1 Capacities, dimensions, and construction details shall comply with the applicable requirements of this standard.

3.2 Tables 13.1 and 13.2 give capacities for cylindrical tanks in gallons per foot of length and in liters per meter of length. For a tank with conical heads, the total capacity is obtained by adding one-third the height of the heads to the shell length.

TABLE 3.1 THICKNESS OF STEEL

					Minimum '	Thickness		
	Maxi	mum	·	Carbor	n Steel			
apacity			Uncos	ted	Galva	nized	Stain Ste	
dmĴ	Inches	m	Inches	<u>тт</u>	inches		inches	mm
Up to 1078 1082 to 2120 2124 to 4164 4168 to 15142 15145 to 45425 45429 to 75708 75712 to 189270	# 48 64 84 126 144 144	• 1.22 1.63 2.13 3.20 3.66 3.66	0.067 0.093 0.123 0.167 0.240 0.302 0.365	1.70 2.36 3.12 4.24 6.10 7.67	0.070 0.097 0.126	1.78 2.45 3.20	0.071 0.071 0.086 0.115 0.158 0.209	1.80 1.80 2.18 2.92 4.01 5.31
	Up to 1078 1082 to 2120 2124 to 4164 4168 to 15142 15145 to 45425 45429 to 75708	apacity Diam dm ³ Inches Up to 1078 • 1082 to 2120 48 2124 to 4164 64 4168 to 15142 84 15145 to 45425 126 45429 to 75708 144	dm ³ inches m Up to 1078 Inches m 1082 to 2120 48 1.22 2124 to 4164 64 1.63 4168 to 15142 84 2.13 15145 to 45425 126 3.20 45429 to 75708 144 3.66	apacity Diameter Uncorr dm ³ inches m Inches Up to 1078 # # 0.067 1082 to 2120 48 1.22 0.093 2124 to 4164 64 1.63 0.123 4168 to 15142 84 2.13 0.167 15145 to 45425 126 3.20 0.240 45429 to 75708 144 3.66 0.302	Maximum Diameter Uncoated dm ³ inches m Inches mm Up to 1078 • 0.067 1.70 1082 to 2120 48 1.22 0.093 2.36 2124 to 4164 64 1.63 0.123 3.12 4168 to 15142 84 2.13 0.167 4.24 15145 to 45425 126 3.20 0.240 6.10 45429 to 75708 144 3.66 0.302 7.67	Maximum Diameter Carbon Steel dm ³ inches m Uncoated Galvar Up to 1078 s s 0.067 1.70 0.070 1082 to 2120 48 1.22 0.093 2.36 0.097 2124 to 4164 64 1.63 0.123 3.12 0.126 4168 to 15142 84 2.13 0.167 4.24 15145 to 45425 126 3.20 0.240 6.10 45429 to 75708 144 3.66 0.302 7.67	Maximum Diameter Uncoated Galvanized dm ³ inches m inches mm Up to 1078 s s 0.067 1.70 0.070 1.78 1082 to 2120 48 1.22 0.093 2.36 0.097 2.46 2124 to 4164 64 1.63 0.123 3.12 0.126 3.20 4168 to 15142 84 2.13 0.167 4.24 15145 to 45425 126 3.20 0.240 6.10 45429 to 75708 144 3.66 0.302 7.67 1.67	Maximum Diameter Carbon Steel Stain Galvanized Stain Ste dm ³ inches m Inches mm inches mm Inches Ste Up to 1078 • 0.067 1.70 0.070 1.78 0.071 1082 to 2120 48 1.22 0.093 2.36 0.097 2.46 0.071 2124 to 4164 64 1.63 0.123 3.12 0.126 3.20 0.086 4168 to 15142 84 2.13 0.167 4.24 0.115 0.115 15145 to 45425 126 3.20 0.240 6.10 0.158 0.158 45429 to 75708 144 3.66 0.302 7.67 0.209 0.209

⁸42 inches (I.07 m) for carbon steel and 48 inches (1.22 m) for stainless steel.

3.3 The total capacity of a tank shall not be (1) less than the rated nominal capacity and (2) more than 105 percent of the rated nominal capacity.

6

Paragraph 3.3 effective June 1, 1987

3.4 The total capacity is to be determined at the level of the lowest opening when the tank is in the intended installation position.

Paragraph 3.4 effective June 1, 1987

3.5 The overall length of a tank shall not be greater than six times its diameter.

3.6 A tank shall be constructed from steel not thinner than specified in Table 3.1 for its capacity and diameter.

3.7 The thickness of steel is to be determined by five micrometer readings equally spaced along the edge of the full piece as rolled. Thickness is to be determined on the sheet not less than 3/8 inch (9.5 mm) from a cut edge and not less than 3/4 inch (19 mm) from a mill edge.

3.8 To provide for manufacturing variations in applying Table 3.1, a plus tolerance of 5 percent in maximum capacity and a plus tolerance of 5 percent in either the maximum diameter or the maximum length is permitted for tanks constructed of 0.167-inch (4.24-mm) or thicker steel.

Paragraph J.8 effective June 1, 1987

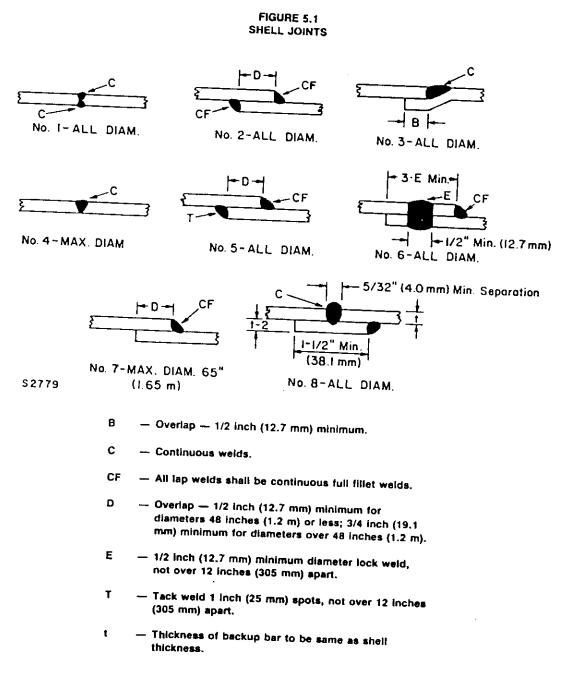
4. Materials

4.1 A tank shall be constructed of commercial or structural grade carbon steel or of Type 304 or 316 stainless steel, as noted in paragraphs 4.2 and 4.3. Only new material shall be used.

4.2 Carbon steel shall:

A. Comply with the Specification for Structural Steel, ASTM A36-81a; or Specification for Steel, Carbon (0.15 Maximum, Percent), Hot-Rolled Sheet and Strip, Commercial Quality, Hot-Rolled Carbon, ASTM A569-72 (Reapproved 1979); or Specification for Hot-Rolled Carbon Steel Sheet and Strip, Commercial Quality, Heavy Thickness Coils (Formerly Plate), ASTM A635-81; or

B. Have (1) a carbon content of 0.3 percent or less, or a carbon equivalency of 0.53 percent or less, and (2) mechanical strength and welding characteristics at least equivalent to one of the steels specified in item A.


4.3 Stainless steel shall comply with the Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip, ASTM A167-82; or Specification for Heat-Resisting Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels, ASTM A240-82C.

5. Shell Joints

5.1 A shell joint of a tank shall be one of the constructions illustrated in Figure 5.1 except that:

A. Shell joint No. 4 in Figure 5.1 shall not be used on a tank larger than 96 inches (2.44 m) in diameter, and

B. Shell joint No. 7 in Figure 5.1 shall not be used on a tank larger than 65 inches (1.65 m) in diameter.

7

θ

С

CF

F

6. Heads and Head Joints

8

A head of a tank shall be constructed of not more 6.1 than two pieces for diameters of 48 inches (1.22 m) or less, three pieces for diameters of from 49 to 96 inches (1.24 to 2.44 m), and four pieces for diameters of from 97 to 144 inches (2.46 to 3.66 m). When two

or more pieces are used, joints shall comply with the requirements for shell joints in paragraph 5.1.

6.2 A head of a tank may be flat, dished, or conical.

6.3 A head of a tank shall be attached to the shell by one of the joints illustrated in Figure 6.1.

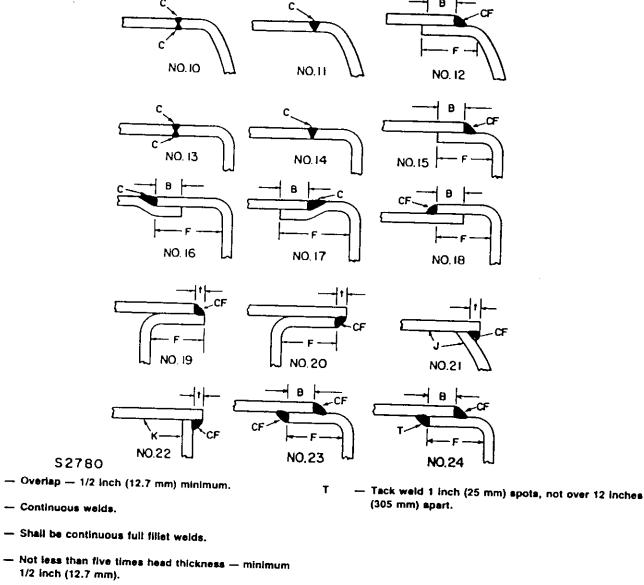


FIGURE 6.1 HEAD JOINTS FOR ALL DIAMETER TANKS

– Joint No. 21 — Minimum thickness of 0.167 inch J (4.24 mm).

S2780

- Continuous welds.

1/2 inch (12.7 mm).

--- Joint No. 22 --- Heads require bracing. (see No. 1 к and 2 of Figure 6.2). Minimum thickness of 0.167 (4.24 mm).

- Minimum, 1 X shell thickness. ŧ

Heads may be flat, dished, or cone. Height of cone heads --- not less than onetwelfth diameter. Height of dished heads shall conform to Table 6.1.

h

6.4 An unflanged flat head of a tank shall be brac-FIGURE 6.2 (Cont'd) ed in accordance with Figure 6.2, No. 1 or 2, and С the head and shell shall be made of steel not less than -- Weld. S --- From center, approximately 1/4 of diameter. 0.167 inch (4.24 mm) thick. ы. Weld three sides each foot. ۷ - Bracing. 6.5 A flanged flat head of a tank is not required to - Minimum length of foot. W be braced. T. - Tack welds, not over 12 Inches (305 mm) apart. v FIGURE 6.2 - Bracing. BRACING FOR UNFLANGED х - Not over 2 inches (51 mm) from shell. FLAT HEADS AND BULKHEADS BRACING FOR FLANGED FLAT BULKHEADS - Tack welds, not over 12 Inches (305 mm) apart. т - Not over 2 inches (51 mm) from shell. X - Bracing (locate 6 inches (150 mm) below center of Y W head). Not greater W B - I than 45* 6.6 A conical head of a tank shall have a height of not less than one-twelfth the diameter of the tank. 6.7 The depth of dish of a dished head shall not be less than that specified in Table 6.1. 8-2 6.8 Strut bracing for unflanged flat heads and BRACING FOR FLANGED FLAT BULKHEADS bulkheads shall comply with Table 6.2. 6.9 Surface bracing for unflanged flat heads and bulkheads shall comply with Table 6.3.

6.10 Surface bracing for flanged flat bulkheads shall comply with Table 6.4.

9

S2781

B-3

<u>,</u> 27

Diameter		Minimur	inimum Dish Dian		meter	Minimum Dish	
Inches	m	Inches	mm	inches	m	Inches	m
Up to 60	Up to 1.52	1-1/2	38	97-108	2.46-2.74		
61-72	1.55—1.83	2	51	109-120	2.77-3.05	4-1/2	114
7384	1.85-2.13	2-1/2	64	121-132		5-1/2	140
85-96	2.16-2.44	3-1/2			3.07-3.35	7	178
		J-1/2	89	133—144	3.38-3.66	8	203

TABLE 6.1 DISHED HEADS - MINIMUM HEIGHT

NOTE — The use of standard S.I. (metric) sizes and weights of angles, channels, and I-beams as substitutes for the U.S.A. structural units specified in Tables 6.2, 6.3, and 6.4 shall be based on those sizes and weights having an equal or greater section modulus (S).

TABLE 6.2
STRUT BRACING FOR UNFLANGED FLAT HEADS AND BULKHEADS ^a

Diamete	er Head	Channels		Angles		Wª	
inches	m	Size, Inches	Section Modulus(s) In. ³	Size, Inches	Section Modulus(s) In. ³	Inches	
Up to - 60	Up to 1.52	1 by 3/8 by 1/8	0.048 ^b				
6172	1.55-1.83		0.048 ⁻ 0.048 ^b	1 by 1 by 1/8	0.031	1	25.0
73—84	1.85-2.13	1 by 1/2 by 1/8		1-1/4 by 1-1/4 by 1/8	0.049	1-1/4	32.0
85-96	2.16-2.44	1 by 1/2 by 1/8	0.063 ^b	1-1/2 by 1-1/2 by 1/8	0.072	1-1/2	38.0
97-108	2.46-2.74		0.063 ^b	1-3/4 by 1-3/4 by 3/16	0.140	1-3/4	44.0
109120	2.77-3.05	1-1/2 by 3/4 by 1/8	0.147 ^b	2 by 2 by 3/16	0.190	2	51.0
121-132		in pounda	1.1 ^b	2 by 2 by 1/4	0.250	2	51.0
133-144	3.07-3.35	3 inches 4.1 pounds	1.1 ^b	2-1/2 by 2-1/2 by 5/16	0.480	2-1/2	64.0
	3. 38—3.6 6	3 inches — 4.1 pounds	1.1 ^b	2-1/2 by 2-1/2 by 5/16	0.480	2-1/2	64.U

^aSee Figure 6.2, No. 1.

^bFlange of channel welded to head or bulkhead and shell.

Diame	ter Head	Channels		Angles	
Inches	m	Size	Section Modulus(s) In. ³	Sizes, Inches	Min. Section Modulus(a In. ³
Up to 60	Up to 1.52	3 Inches — 4.1 pounds	1.1 ^b	2 by 2 by 3/8 or	0.35
61-72	1.55-1.83	3 Inches — 4.1 pounds	1.1 ^b	2-1/2 by 2-1/2 by 1/4 3 by 3 by 7/16 or	0.95
7384	1.85-2.13	4 inches - 5.4 pounda	1.9 ^b	3-1/2 by 3-1/2 by 5/16 3-1/2 by 3-1/2 by 1/2 or	1.50
85—96	2.16-2.44	5 inches 6.7 pounds	3.0 ^b	4 by 4 by 3/8 4 by 4 by 1/2 or	2.00 ^b
97—108	2.46-2.74	5 inches 6.7 pounds	3.0 ^b	5 by 3-1/2 by 3/8 4 by 4 by 3/4 or	2.80 ^b
09—120	2.77—3.05	6 inches 8.2 pounds	4.3 ^b	6 by 4 by 3/8 5 by 5 by 5/8 or	3.90 ^b
21-132	3.07-3.35	7 inches — 9.8 pounds	6.0 ^b	6 by 4 by 1/2 5 by 5 by 3/4 or	4.50 ^b
33—144	3.383.66	7 inches — 9.8 pounds	6.0 ^b	6 by 4 by 9/16 5 by 5 by 3/4 or 6 by 4 by 9/16	4.50 ^b

TABLE 6.3 SURFACE BRACING FOR UNFLANGED FLAT HEADS AND BULKHEADS[#]

See Figure 6.2, No. 2.

^bShort leg of angle or flange of channel welded to head or bulkhead.

Diame	Diameter Head I-Beams		Channels		
Inches	m	Size	Section Modulus(s) In. ³	Size	Section Modulus(s) In. ³
72—84	1.83-2.13	3 inches — 5.7 pounds	1.7 ^b	3 inches - 4.1 pounds	1.10
8596	2.16-2.44	3 Inches — 5.7 pounds	1.7 ^b	4 inches — 5.4 pounds	1.9 ^b
97—108	2.46-2.74	4 inches 7.7 pounds	3.0 ^b	5 Inches - 6.7 pounds	3.0 ^b
109—120	2.77—3.05	5 Inches 10 pounds	4.8 ^b	5 inches - 6.7 pounds	3.0 ^b
121—132	3.07	5 inches — 10 pounds	4.8 ^b	6 inches — 8.2 pounds	4.3 ^b
133—144	3.38-3.66	5 Inches — 10 pounds	4.8 ^b	6 inches — 8.2 pounds	4.3 ^b

•

TABLE 6.4 SURFACE BRACING FOR FLANGED FLAT BULKHFADS*

⁸See Figure 6.2, No. 3.

^bFlange of I-beam or channel welded to buikhead.

Exhibit B Page 35 of 42

÷.

7. Compartment Tanks

..1 Bulkheads of a compartment tank shall be constructed so that any leakage through joints will be directed to the outside of the tank rather than from one compartment to another. See Figure 7.1 for acceptable bulkhead constructions.

7.2 A single bulkhead of a compartment tank, illustrated in Nos. 101 and 102 of Figure 7.1, shall be constructed of one piece of material and may be flat or dished. The height of a dished bulkhead shall not be less than that specified in Table 6.1. 7.3 A bulkhead of a double bulkhead tank, illustrated in No. 100 in Figure 7.1, shall be constructed of not more than two pieces for diameters of 48 inches (1.22 m) or less, three pieces for diameters of from 49 to 96 inches (1.24 to 2.44 m), and four pieces for diameters of from 97 to 144 inches (2.46 to 3.66 m). When two or more pieces are used, joints shall comply with the requirements for shell joints in paragraph 5.1.

7.4 The minimum thickness of metal employed for a bulkhead depends upon the tank diameter and shall not be less than that specified in Table 3.1.

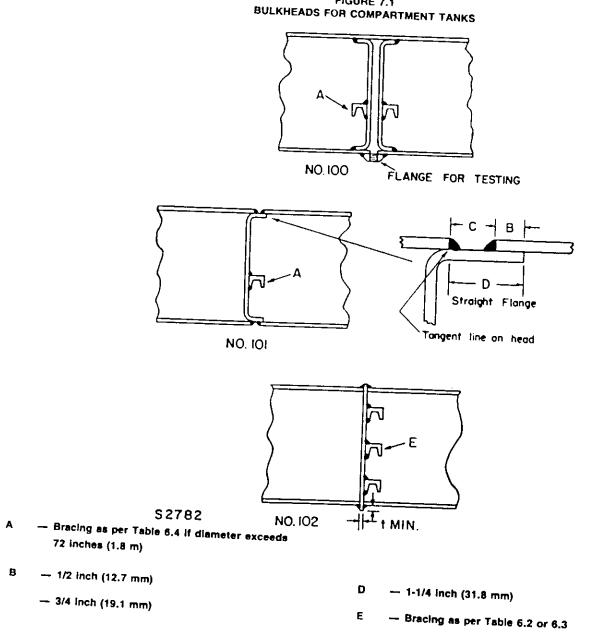
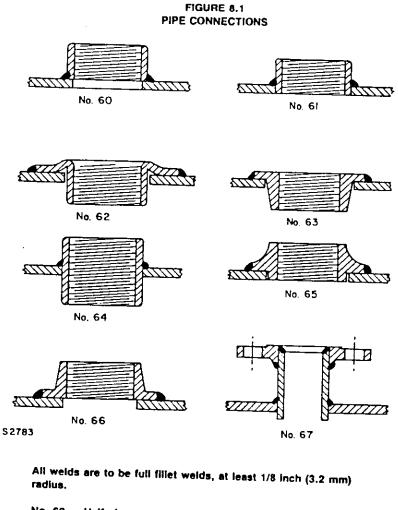


FIGURE 7.1

12

Exhibit B Page 36 of 42 7.5 An unflanged flat bulkhead of a compartment tank shall be braced in accordance with Figure 6.2, No. 1 or 2, and shall be made of steel not less than 0.167 inch (4.24 mm) thick.

7.6 A flanged flat bulkhead of a compartment tank more than 72 inches (1.83 m) in diameter shall be made of steel not less than 0.302 inch (7.67 mm) thick or it shall be braced as illustrated in No. 3 of Figure 6.2.


7.7 A flanged flat bulkhead 72 inches (1.83 m) or less in diameter does not require bracing.

8. Pipe Connections

8.1 A pipe connection shall be provided by welding to the tank a standard threaded pipe coupling, a threaded flange, or a standard half pipe nipple, or by a bolted and gasketed flanged connection welded to a pipe nipple that in turn, is welded to the tank.

8.2 Conventional types of pipe connections are illustrated in Figure 8.1.

8.3 The minimum length of thread in a pipe connection shall be specified in Table 8.1.

No. 60 - Haif pipe coupling.

No. 61 - Half pipe coupling.

- No. 62 Pressed steel, hub Inside tank only.
- No. 63 Forged steel, hub inside tank.

No. 64 - Full pipe coupling.

- No. 65 Forged steel, with pilot.
- No. 66 Forged steel, without pilot.
- No. 67 --- Standard pipe nipple and welding flange.

Exhibit B Page 37 of 42

Pipe Size ^a Nominal	Minimum Len	gth of Thread	Minimum Thickness of Fla Section of Pressed- Steel Fittings	
inches	Inches	mm	Inches	mm
1/8	1/4	6.4		
1/4	3/8			
3/8	3/8	9.5		
1/2	1/2	9.5		
3/4	5/8	12.7		
1	5/8	15.9	0.123	3.12
1-1/4		15.9	0.138	3.51
1-1/2	11/16	17.5	0.138	3.51
2	3/4	19.1	0.138	3.51
2-1/2	3/4	19.1	0.138	3.51
3	1	25.4	0.167	4.24
3-1/2	1	25.4	0.167	4.24
	1	25.4	0.167	
4	1-1/8	28,6	0.167	4.24
5	1-3/16	30.2	0.107	4.24
6	1-1/4	31.7		
8	1-3/8	34.9		

TABLE 8.1 PIPE CONNECTIONS

^aStandard for Weided and Seamless Wrought Steel Pipe, ANSI B36.10-1979

Сарас	city of Tank	Nominal Pipe Size ^a .
U.S. Gallons	L	Inches
0 to 500	Up to 1895	1-1/4
500 to 3000	1900 to 11355	1-1/2
3001 to 10000	11360 to 37855	2
10001 to 20000	37860 to 75710	2-1/2
20001 to 35000	75715 to 132490	з
5001 to 50000 132495 to 189270		4

⁸Standard for Welded and Seamless Wrought Steel Pipe, ANSI B36.10-1979.

8.4 A pressed-steel pipe-connecting fitting shall be (1) installed with the hub section on the inside of the tank only and (2) of the form illustrated in No. 62 of Figure 8.1. The minimum thickness of the flange section shall be as specified in Table 8.1.

8.5 A half pipe nipple shall be welded to the tank as illustrated in No. 67 of Figure 8.1.

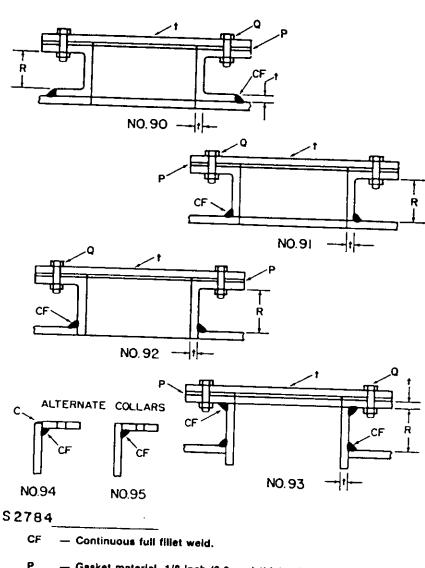
8.6 Except as indicated in paragraphs 8.7 and 8.8, all openings in a tank shall be located in the top, parallel with the longitudinal axis of the tank.

8.7 If the application of a tank is such that pipeconnecting openings in the top are required to be grouped, the openings may be located off center of the longitudinal axis under the conditions specified in paragraph 8.8.

8.8 No opening in the shell of a tank shall be located more than 12 inches (305 mm) from the longitudinal centerline of the top, and the upper end of the pipe coupling or other pipe-connecting fitting welded to the tank shall terminate above the top of the shell.

8.9 All openings in a tank shall be closed with wooden plugs, metal covers, or the equivalent, to protect the threads and exclude foreign matter while the tank is in storage or in transit.

8.10 Each tank shall have a pipe connection of a size not less than that specified in Table 8.2 for attachment of a vent pipe.


8.11 An opening for connection of a vent pipe shall not be located in a manhole cover.

1

9. Manholes

9.1 A manhole, if provided in a tank, shall be located above the highest intended liquid level and shall be of the bolted-cover type as illustrated in Figure 9.1. 9.2 A manhole-cover joint shall be provided with a gasket of material determined to be acceptable for the liquid to be stored and shall not be less than 1/8 inch (3.2 mm) thick.

FIGURE 9.1 CONVENTIONAL MANHOLES

- Gasket material, 1/8 Inch (3.2 mm) thick minimum ring or face gasket.
- Q Minimum, 1/2 Inch (12.7 mm) bolts spaced 4 inch (102 mm) centers maximum.
- R --- Minimum, 2 inches (51 mm) for tanks 6 feet (1.8 m) in diameter or larger.
- t Not less than 0.167 inch (4.24 mm) thick.

Exhibit B Page 39 of 42

10. Heating Coils and Hot Wells

10.1 A heating coil or hot well that is provided as a part of a tank assembly and that handles a fluid other than that stored in the tank, such as steam or hot water, shall have no joints in the portion of the coil or well that is located within the tank unless the joints are continuously welded or brazed.

10.2 Inlet and outlet connections of a heating coil or a hot well shall be located above the highest intended liquid level. A continuous weld shall be made where a connection pierces the shell of the tank or a manhole cover.

MANUFACTURING AND PRODUCTION TESTS

11. General

11.1 Each tank, before painting, shall be tested by the manufacturer and proved tight against leakage by:

A. Applying internal air pressure and using soapsuds, linseed oil, or equivalent material for the detection of leaks. The test pressure is to be 5-7psig (34.5-48.3 kPa); or B. Completely filling the tank with water and applying an additional 5 psig (34.5 kPa) pressure while the tank is placed in the position in which it will be installed.

11.2 If leaks are noted during the test, the tank shall be made tight by welding and retested. Defects in welds shall be repaired by chipping or melting out from one or both sides of the joint, as required, and rewelding.

11.3 Each compartment of compartment tanks shall be separately tested for leakage.

MARKING

12. General

12.1 Each tank shall be marked with the name of the manufacturer or a distinctive marking, which may be in code, by which it may be identified as the product of a particular manufacturer.

12.2 If a manufacturer produces tanks at more than one factory, each tank shall have a distinctive marking to identify it as the product of a particular factory.

12.3 Each tank shall be marked with the minimum gage steel used in its construction.

Paragraph 12.3 effective June 1, 1987

13. Capacity Tables

Diameter	U.S. Gallons	Diameter	U.S. Gailons	Diameter	U.S. Gallor
ln 	1-Foot	in	1-Foot	in	1-Foot
Inches	Length	Inches	Length	Inches	Length
24	23.50	65	172.38	105	
25	25.50	66	177.72	105	449.82
26	27.58	67	183.15	107	458.30
27	29,74	68	188.66		467.70
28	31.99	69	194.25	108	475.89
29	34.31	70	199.92	109	485.00
30	36.72	71	205.67	110	493.70
31	39.21	72	211.51	111	502.70
32	41.78	73	217.42	112	511.90
33	44.43	74	223.42	113	521.40
34	47.16	75		114	530,24
35	49.98	76	229.50	115	540.00
36	52.88	77	235.66	116	549.50
37	55.86	78	241.90	117	558.51
38	58.92	79	248.23	118	568.00
39	62.06		254.63	119	577.80
40	65.28	80	261.12	120	587.52
41	68.58	81	267.69	121	597.70
42	71.97	82	274.34	122	607.27
43		83	281.07	123	617.26
44	75.44	84	287.88	124	627.00
45	78.99	85	294.78	125	638.20
46	82.62	86	301.76	126	647.74
40	86.33	87	308.81	127	650.60
47	90.13	86	315.95	128	668,47
40	94.00	89	323.18	129	678.95
50	97.96	90	330,48	130	690.30
51	102.00	91	337.86	131	700.17
52	106.12	92	345.33	132	710.90
53	110.32	93	352.88	133	721.71
53 54	114.61	94	360.51	134	732.60
55	118.97	95	368.22	135	743.58
	123.42	96	376.01	136	754.64
56	127.95	97	383.89	137	754.84
57	132.56	98	391.84	138	776.99
58	137.25	99	399.88	139	
59	142.02	100	408.00	140	788.30
60	146.88	101	416.00	141	799.68
61	151.82	102	424.48	141	811.14
62	156.83	103	433.10	142	822.69
63	161.93	104	441.80	143	834.32
64	167.12			1444	846.03

TABLE 13.1 GALLON CAPACITY PER FOOT OF LENGTH

Exhibit B Page 41 of 42

•

APRIL 15, 1986

Diameter in mm	Liters (dm ³) 1-meter Length
600	282.7
700	384.8
800	502.7
900	636.2
1000	785.4
1100	958.2
1200	958.2 1131.0
1300	
1400	1327.3
1500	1539.4 1767.2
1600	2010.6
1700	2269.8
1800	2544.7
1900	2835.3
2000	3141.6
2100	3463.6
2200	3801.3
2300	4154.8
2400	4523.9
2500	4908.8
2600	5309.3
2700	5725.6
2800	6157.5
2900	6605.2
3000	7068.6
3100	7547.7
3200	8042.5
3300	8553.0
3400	9079.2
3500	9621.2
3600	10178.8
3700	10752.1
3800	11341.2

.

TABLE 13.2 LITER CAPACITY PER METER OF LENGTH

EXHIBIT C

TANK MANUFACTURER CERTIFICATION

•	INSPECTION (See back of form f Date <u>- / 8/90</u> sti-P,•Label# <u>10</u> Tank <u>Ca</u> Type I Dual Walt	or instruction Manufacto 9778	ns) urer Identific UL Label #.	ation: A+ 37896	<u>Asi</u> Length_	NE Labe	i#	AMOUNT \$
H	Dimensions & Gau Special Approval T	- ank Drawing	#		<u>48∛ç</u> (inclu	ide copy	128 ³) Manholes (<u>8 O.D. 10 GA</u> # and size) <u>1-24 571-56</u> eson under remarks)
	PRE-COATING I	-58 Tank 3 [•] spec)	ø	Seal Weldin Striker Plate PP2 ^e Conne	as Under		hings	Anodes Spaced Property Bag Anode Lead Connectors Protected Bure X Rey Signature
	COATING INSPE	CTION (dr	y film thick	ness readir	ngs)			
- -	Head Diameter Req. readings for 2 heads	Under 64 ⁻ 8	64* - 72 <u>*</u> 12	73° - 120° 16	121°-1 20	132* (Greater 133* 24	COATING BRAND USED:
	Tank Capacity	1 - 1,499 gal.	to 5,999 gal.	to 11,999 gal.	to 24,9 gal		25,000 + gal.	TANK CHECKED FOR LOW COATING AND
	Req. readings for shell	10	15	20	25		30	RECOATED IF NECESSARY
]	No. of Readings Taken	-	Low DFT	No. of Readings				Bruce & Poren
]	ELECTRICAL IN Isolation Esti-P ₃ • Approve Bushings Insta	ed Nylon	I		-	fler to st Disco	i-P ₃ •Spec.) Intinuity /6 5	■ Signature * Wired-On Anodes # UsedMg BagZn Bag Weight Used □ Anode-to-tank continuity test O.K.
]	# Used(S 10#) zinc 5#) zinc 17#) magne:	sium	STI-86 Ele Between T Cover: (Identify Pi Section or	ank and i <u>VCS</u> pe Openi	Manway	ity 	Remarks: <u>4 - 4''</u> <u>2 - 2''</u>
]′]		oment install	ed	☐ Manwa discont ☐ Manwa	y electric inuity veri y conside	ally isola ified <u>Off</u> ared part		c. Signature
ы j	PRE-SHIPMENT I	ment attach	nd ,⊠Ta Q∕#v	ink properly k veld-on anod istic covers r	les used,		ve .	inal Approval/Shipping Date: <u>5/8/90</u> Icensee Company: <u>CLAW 01</u>

Exhibit C Page 1 of 1 -1264

and the second

5

EXHIBIT D

CALCULATIONS OF TANK VENTING REQUIREMENTS

EXHIBIT D TANK VENTING CALCULATIONS (PER API 2000) CHEMICAL WASTE MANAGEMENT, INC., EMELLE, ALABAMA FACILITY

		Length/	Depth/	Tank		Tank	Tank	Tank	Tank		With-		IN-B	REATHING	3			OUT-	BREATHIN	IG		EME	RGENC	Y
	Width/	Shell	Cone	Wetted	Tank	Rated	Relief	Rated	Relief	Fill	drawal	Normal	Thermal	Total Vent	Min.	Min.	Normal	Thermal	Total Vent	Min.	Min.	Vent	Min.	Min.
	Diameter	Height	Height	Surf. Area	Capacity	Press.	Press.	Vac.	Vac.	Rate	Rate	Venting	Venting	Capacity	Area	Size	Venting	Venting	Capacity	Area	Size	Capacity	Area	Size
Tank Nos.	(ft)	(ft)	(ft)	(sf)	(gal)	(in WG)	(in WG) ¹	(in WG)	(in WG) ¹	(gpm)	(gpm)	(cfh) ²	(cfh) ³	(cfh)	(sq in) ⁸	(in)	(cfh)⁴	(cfh)⁵	(cfh)	(sq in) ⁸	(in)	(cfh) ⁶	(sq in)7	(in)
LABORATORY	TANK ST	ORAGE I	UNIT 70	8																				
T-725	4.00	10.67		NA	1,003	140.00	70.00	70.00	35.00	150	150	1,200	24	1,224	0.49	1.00	2,571	24	2,595	0.73	1.00	NA	NA	NA

NOTES:

- 1. Pressure and vacuum relief is assumed to be set to relieve at 50% of the design rated pressure or vacuum, unless noted. Emergency relief is assumed to be set at 75% of design pressure.
- 2. Normal in-breathing at 5.6 scfh per 42 gal barrel per hour of withdrawal, as specified in API 2000, 4th Edition.
- 3. Thermal in-breathing at 1 scfh per 42 gal barrel of tank volume, up to 20,000 barrel (840,000 gal) volume, as in API 2000.
- 4. Normal out-breathing at 12 scfh per 42 gal barrel per hour of fill for volatile liquids (flash point <100 deg F), as in API 2000. For non-volatile liquids 6 scfh per 42 gal barrel may be used.
- 5. Thermal out-breathing at 1 scfh per 42 gal barrel of tank volume for volatile liquids, up to 20,000 barrel volume, as in API 2000. For non-volatile liquids 0.6 scfh per 42 gal barrel may be used.
- 6. From API 2000 Appendix B on Emergency Venting, for four ranges of tank surface area, heat absorption, Q, is calculated. Vent capacity in SCFH is then calculated from the heat absorption according to the equation:

SCFH = 70.5 * Q / [L * sqrt(M)] assuming a conservative "L * sqrt(M)" value of 1,337, that of hexane.

- 7. Formula for emergency vent area adapted from Protectoseal Technical Manual, on flow capacity of tank emergency venting devices for nozzles 8 in. and larger: CFH = 1,667 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank emergency relief setting and atmospheric conditions.
- 8. Formula for vent area for smaller nozzles such as normal breather vents, adapted from Crane Flow of Fluids, Eq. 2-24, very similar to, but more conservative, than Protectoseal equation: CFH = 845 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank relief setting and atmospheric conditions. The factor 845 was derived using unit conversion factors, a vapor density of 0.1875 lb/cf, and a conservative Y of 0.80 from charts on Crane p. A-21.

EXHIBIT E

TANK MATERIAL OF CONSTRUCTION COMPATIBILITY INFORMATION

Compatibility Information

Unit 708: T-725

Tnemec Series 120 Vinyl Ester coating

and the second sec

Exhibit E Page 1 of 16

L

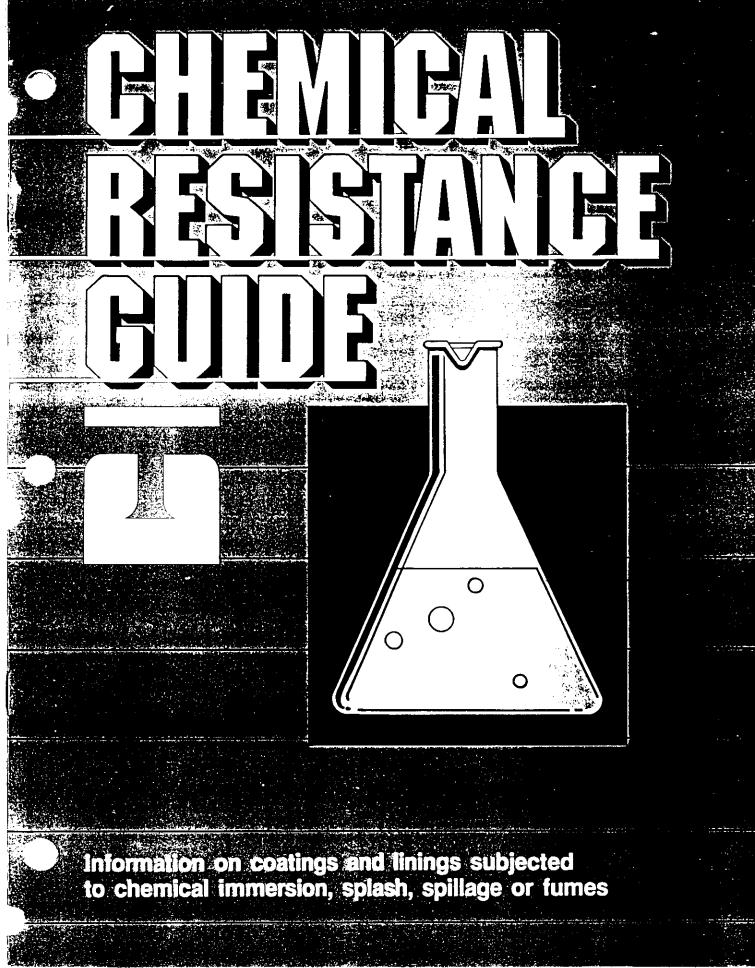


Exhibit E Page 2 of 16

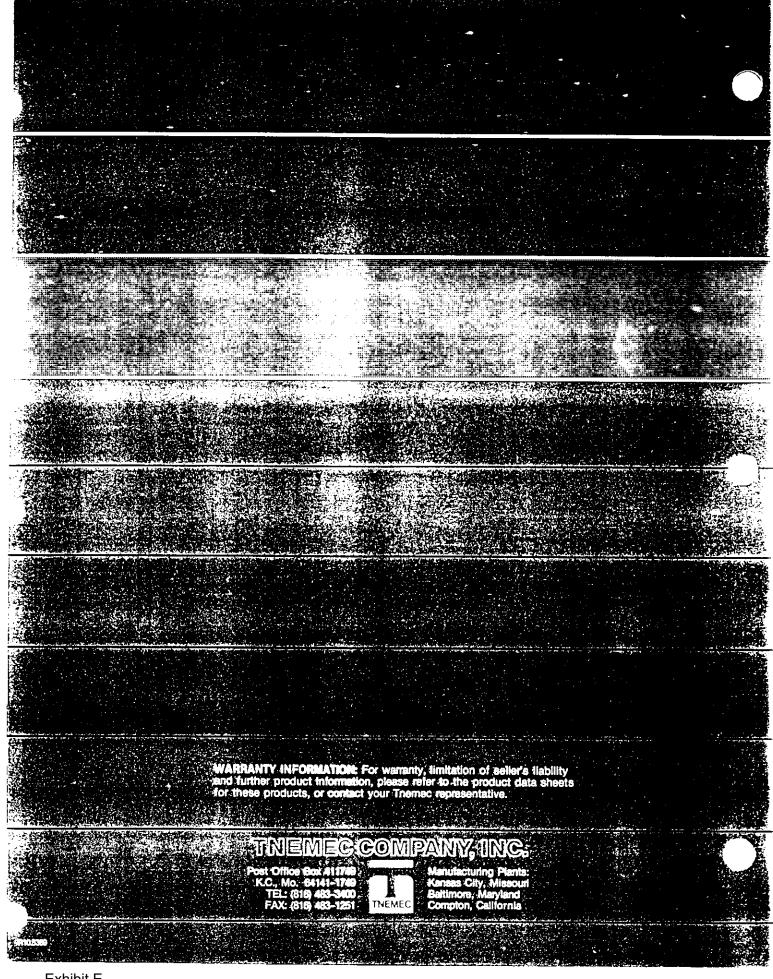


Exhibit E Page 3 of 16

Harsh chemical environments are the true test of a protective coating or lining. Aggressive chemical exposure leaves no margin for error. Any mistakes in the application of the coating or lining invite rapid failure.

The principal reasons for poor coating or lining performance are:

Improper coating selection

Failure to match coating characteristics to conditions, such as type of chemical exposure, temperature and temperature variations, abrasiveness and mechanical stress.

Failure to provide a proper anchor profile for the coating erto remove all contaminants from the substrate

Improper application

Failure to apply sufficient and uniform film thickness or to allow proper curing time.

Improper substrate design

Failure to design for peak coating performance

2 © 1989, Themed Company, Inc.

Exhibit E Page 4 of 16 Each year, billions of dollars are lost to corrosion because of deficiencies in these areas. Those dollars include repair of the damaged substrate, the material and labor cost of removing and replacing the coating, downtime and the cost of replacing any contaminated product.

That's why it pays to do the job right from the start. This guide will assist you in developing a coating or lining specification, and also provide references for proper surface preparation, application and safety.

We live in a chemical world. Tens of thousands of chemicals are on the market and hundreds more are added every year. There is no universal coating that can tolerate all those chemicals. That's why choosing the correct coating or lining is so difficult. What's more, a company may have several micro-environments within its walls---each requiring a different type of coating.

Of course, the most important factor in coating selection is whether the coating can withstand attack by the chemical to which it is exposed. A pocket in the back of this guide includes a chart outlining resistance of specific Themec coatings to different chemicals

Chemical resistance is not the only factor to consider in coating selection. Some others are: temperature resistance, flexibility, adhesion, toxicity, moisture vapor transmission, scrubbability, pot life, drying and curing time, method and ease of application, resistance to abrasion and impact. Flash point is also an important consideration as is solids-by-volume which gives an indication of coverage potential, volatile solvent content and value. Lastly, the life-cycle cost—not just initial cost—of the coating should be weighed.

Information to aid coating selection is available from

- · Themed Company, Inc. product data sheets
- National Association of Corrosion Engineers (NACE) publication Corrosion Prevention by Protective Coatings by Charles G. Munger

High-solids Epoxy.

Amine-cured epoxy coating offers excellent corrosion and chemical resistance to both acids and bases Provides exceptional adhesion, and solvent and abrasion resistance. Highsolids, two-component formula with over 80% solids-by-volume assures excellent coverage and value. Beige and gray high-gloss finish

Epoxy-Polyamide Coating. Hibuild characteristic delivers excellent protection over properly primed steel and concrete surfaces. Two-component formula delivers exceptional corrosion, abrasion and moisture resistance. Select colors USDA approved for incidental contact. CHROMACOLORS available. Semi-gloss finish

Vinyl-Copolymer Coating.

A proven high performance, onecomponent coating that provides good corrosion resistance for long-term protection. Dries quickly, has good flexibility, recairs easily, and can be applied in low ambient temperatures (35 F minimum). USDA approved for incidental contact. Available in select Themec. CHROMACOLORS.

High-solids Amine-cured Epoxy.

High-solids (over 80%) formula with high-build characteristics (up to 10 mils) provides extraordinary protection, often with a single coat. Delivers strong chemical, corrosion, abrasion and stain resistance. Two-component formula is available in Themec CHROMACOLORS Select colors meet USDA recurrements for incidental contact.

Vinyl-Ester Coating.

Premium high-solids coating (theoretical 92% solids-by-volume mixed) is especially formulated for lining tanks and vessels holding acid solutions. Two-component formula offers exceptional wet and dry temperature resistance. Available in beige (primer) and grav (finish coat).

High-build Coal Tar-Epoxy.

Provides exceptional adhesion and chemical resistance—especially to alkali and salt solutions. Good abrasion resistance. High-build, two-component formula permits dry film thickness up to 20 mils for one-coat coverage, one-coat savings. Black semi-gloss finish only

62-1400 SEAM SEALER, 63-1500 FILLER/SURFACER.

Two-component, epoxy-polyamine products include solventless, nonshrinking seam sealer and filler/surfacer. Both develop high bond strength and outstanding resistance to water. Knife or trowel-grade products seal seams, rivet and bolt heads and faying surface edges. Also used to fill and patch voids and pits. For interior or exterior use.

120-5003 VINESTER F & S.

Vinyl-ester filler and surfacer offers outstanding bond strength for use in heavy service areas and wet or corrosive environments. Two-component, trowel-grade product patches, fills and surfaces concrete.

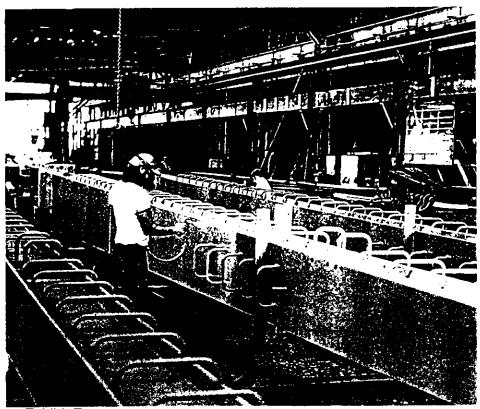
З

The importance of good surface preparation cannot be overstated. The most chemical-resistant coating made will perform poorly if the surface preparation has been slighted.

Surface preparation is especially important for coatings and linings that will be subjected to chemical stress. Adhesion is directly related to the cleanliness of the surface and the surface profile

For carbon steel, the Steel Structures Painting Council describes in-depth specifications for various degrees of surface preparation to assure good adhesion. These range from simple solvent cleaning to white metal blast cleaning. The coating manufacturer should be consulted to determine the degree of surface preparation and profile or "tooth" required for the coating to adhere to

Concrete preparation includes the removal of all laitance, surface defects and contaminants either through acid etching or abrasive blasting. In addition, in accordance with the guidelines of the American Concrete Institute, new concrete must be cured for all least 28 days.


If a previous coating has failed, the substrate is contaminated and special care must be taken to remove all contaminants. This can be very difficult Acids, alkalies, chlorides, sulfates, sulfides, oils, waxes and silicones can

remain after an abrasive blast. Combinations of a contrast abrasive blast, water but contrast cleaning or steam cost og may be required to remove contamination and to assure proper adfession.

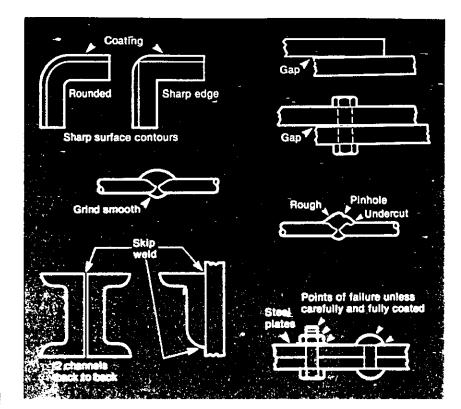
Detailed in imition on surface preparation rechniques and equipment can be too one.

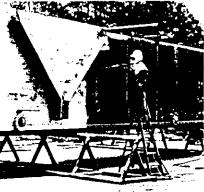
- Themsel Company, Ind. "Surface Preparation and Application Galder
- NACE publications: 6F-163. "Surface Preparation of Steel or Concrete Tank Interiors": TM-01-70. "Visual Standard for Surfaces of New Steel Airblast Cleaned with Sand Abrasive". 6G-164. "Surface Preparation Abrasives for Industrial Maintenance Painting 6G-166. "Surface Preparation of Concrete for Coating".
- SSPC's Steet Structures Painting Manual, Volumes 1 and 2

The third cornerstone of coating performance is provided by application. Here again, proper methods are critical. It is essential that a continuous, even film be applied with no discontinuities. Pinholes can quickly undermine a fining and damage the vessel.

Application starts with mixing the product—a step crucial to the performance of any coating and especially two-component coatings. From there, a choice of method is chosen—brush, rotler or spray.

High-performance coatings are usually sprayed on. It is the only way to achieve uniform film thickness. Equipment must be in top condition, air pressure and fluid pressure must be fine-tuned, and good application practices must be followed.


Exhibit E Page 6 of 16



Weather conditions play an important role in coating application. Wind, temperature and humidity are all factors in applying the coating and in the curing time that will be necessary Manufacturer's literature provides data on curing times. In some instances, force-drying is required to assure desired performance.

Information on application can be found in:

- Themec Company, Inc. product data sheets
- SSPC's Steel Structures Painting Manual, Volumes 1 and 2
- NACE publication Corrosion Prevention by Protective Coatings by Charles G. Munger

Taking shortcuts with safety is simply a faster way to an accident. Coatings require special care at all times especially in confined areas.

Safety involves every aspect of coating application including safe, wellmaintained, carefully checked equipment, adequate ventilation; protective clothing and breathing apparatus, and adequate training in the use of equipment. It involves an understanding of environmental conditions and a state of mind—safety-conscious workers are never careless workers.

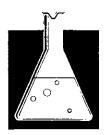
Several sources provide information on the safe use of coatings. Some of these are:

- Tnemec Company, Inc. material safety data sheets
- Occupational Safety and Health Administration
- NACE publication T-6D, "Manual for Painter Safety"
- NACE publication 6F264,
 "Recommended Safety Inspection

Checklist for Application of Interior Linings

- SSPC's Steel Structures Painting Manual. Volumes 1 and 2
 NACE publication Corrosion
- Prevention by Protective Coatings by Charles G. Munger
- Evaluations

Structural design also plays a crucial role in the performance of a coating All too often the coating is the last item for consideration by the design engineer—even though the coatings are a prime factor in determining the life of that structure. Unfortunately, by the time a coating is applied, there is usually not much that can be done to the design.


However, if an engineer plans his project with an eye toward the integrity of the coating, there are many steps that can be taken to assure maximum performance. He can strive for designs with continuous welds; avoid sharp angles channels edges, and corners; ano seal void areas.

If these problem areas cannot be avoided, the coating contractor should pay extra attention to them. At the least, sharp edges and rough welds must be smoothed and rounded to assure good coating performance.

Guidelines for structural design that effect coating performance can be found in

- NACE standard RP-01-77

 Design, Fabrication, and Surface
 Finish of Metal Tanks and
 Vessels to be Lined for Chemical Immersion Service
- NACE publication Corrosion Prevention by Protective Coatings by Charles G. Munder

Chemical resistance

The Tnemec chart in the pocket at right will provide information for matching the performance of specific Tnemec coatings to expected chemical exposure. It is a compilation of Tnemec product testing to date and will be periodically revised as new data becomes available. The chart is only a guide. Combinations of chemicals can have a completely different effect on coating performance than the chemicals separately. To be sure of a coating's performance, ask your Themec representative for a panel or coupon for testing.

KEY TO THE CHART

IS-IMMERSION SERVICE. Suitable for continuous contact with chemical at 70-100 F. temperature. (Higher temperatures may be indicated for insulated tanks.) Coating will show no effect except slight softening or color change after six months continuous immersion.

OC-OCCASIONAL CONTACT. Suitable for occasional splash and spillage or occasional exposure to concentrated vapors. The coating shows no effects, except slight softening or color changes, following short exposure to splash or spillage which evaporates, is hosed off, or dried overnight or, 24 hours exposure to vapor.

NR—NOT RECOMMENDED. Suitable for mild concentrations of vapors only.

This guide is for reference only and is not intended to provide complete information concerning product application, preparation or safety. Themec Company, Inc. does not accept responsibility for any methods discussed in this publication. The use of materials and methods is solely at the risk of the user.

Chemical resistance results were obtained in a controlled environment and Themec Company makes no claim that these tests accurately represent all environments.

FC-FREQUENT CONTACT. Suitable for frequent splash or prolonged exposure to concentrated vapors. The coating will show no effects except slight softening or color change after eight hours continuous immersion in the liquid chemical or 72 hours exposure to the vapor.

NA-NOT APPLICABLE. This designation makes no statements regarding chemical resistance. The coating may in fact do the job, but other systems are judged more applicable.

NT-NOT TESTED.

Exhibit E Page 8 of 16

÷

This chart is to be used in conjunction with the Themec Chemical Resistance Guide which explains abbreviations and provides information on chemical resistance. Contact your Themec representative for further information and technical data.

AUGUST 1988

CHEMICAL EXPOSURE	Series 35	46H413	Series 61	Series 66	Series 104	Series 120
Acetic Acid (10%)	OC	oc	FC	FC	FC	IS
Acetic Anhydride	NT	FC	FC	oc	FC	NT
Acetone	NR	oc	ос	ос	ос	NT
Activated Carbon	NT	NT	IS	FC	IS	IS
Adipic Acid (Dry)	FC	NT	FC	ос	FC	NT
Aluminum Chloride (25%)	NT	NT	FC	ос	FC	FC
Aluminum Nitrate (50%)	NT	NT	FC	FC	FC	IS
Aluminum Sulfate (49%)	NT	FC	FC	FC	FC	IS
Ammonium Chloride (50%)	NT	FC	FC	FC	FC	is
Ammonium Hydroxide (10%)	OC	IS	IS	IS	IS	FC
Ammonium Hydroxide (28%)	oc	IS	IS	FC	FC	FC
Ammonium Nitrate (38%)	NT	IS	IS	FC	IS	NT
Ammonium Phosphate (50%)	NT	IS	IS	IS	IS	NA
Ammonium Sulfate (65%)	FC	IS	IS	IS	IS	IS
Amyl Acetate	NR	NR	FC	ос	FC	NT
Aviation Gas 100/130	NT	NT	IS	NT	NT	NA
Barium Chloride (50%)	NT	FC	FC	FC	FC	IS
Benzene	NR	ос	IS	FC	FC	NT
Boric Acid (5%)	FC	IS	IS	IS	IS	IS
n-Butyl Alcohol	NR	ос	IS	ос	FC	FC
n-Butyl Acetate	NR	NR	FC	ос	FC	NT

Chemical resistance results were obtained in a controlled environment and Themec Company makes no claim that these tests accurately represent all environments.

ς.

ĒHĒMICAL EXPOSURE	Series 35	46H413	Series 61	Series 66	Series 104	Series 120
Butyl Cellosolve	NR	NR	FC	ос	FC	FC
Calcium Chloride (50%)	FC	FC	IS	FC	IS	IS
Calcium Hypochlorite (5%)	FC	IS	IS	IS	IS	IS
Chromic Acid (10%)	FC	FC	FC	FC	FC	IS
Citric Acid (50%)	FC	FC	IS	IS	IS	IS
Coal Oil	NR	IS	IS	IS	IS	IS
Copper Sulfate (50%)	FC	FC	IS	NT	IS	IS
Corn Mash Solution	NR	FC	IS (120 F.)	FC	FC	NA
Cyclohexane	NR	IS	IS	IS	IS	NA
n-Decyl Alcohoł	NR	ос	IS	oc	FC	NT
Dieset Oil HD #2	NR	IS	IS	IS	IS	IS
Diethanolamine	FC	FC	IS	FC	IS	NR
Ethyl Alcohol	NR	FC	IS	FC	IS	FC
Ethylene Glycol	FC	FC	IS	IS	IS	NA
Furfuryl Alcohol	NT	NR	ос	oc	oc	FC
Gasoline - Leaded	NR	NT	IS	NT	IS	NA
Gasoline - Unleaded	NR	NT	IS	NT	IS	NA
Gasoline - Gasohol	NR	NR	IS	ос	IS	NT
Grease	FC	FC	IS	FC	IS	NA
Glycerin	FC	IS	IS	IS	IS	NA
Heptane	FC	IS	IS	IS	IS	NA
Hexane	FC	IS	IS	IS	IS	NA
Hydraulic Fluid	NR	IS	IS	IS	IS	NA

Chemical resistance results were obtained in a controlled environment and Themec Company makes no claim that these tests accurately represent all environments

CHEMICAL EXPOSURE	- Series 35	46H413	Series 61	Series 66	Series 104	Series 120
Hydrochloric Acid (10%)	FC	FC	FC	FC	FC	IS (150 F.)
Hydrochloric Acid (30%)	FC	FC	FC	FC	FC	IS
Hydrochloric Acid (37%)	FC	FC	FC	FC	FC	FC
Hydrofluoric Acid (10%)	NR	NR	oc	NR	ос	FC
Hydrogen Peroxide (30%)	FC	FC	IS	FC	FC	NA
Isobutyl Alcohol	NR	ос	IS	ос	FC	FC
Isooctyl Alcohol	NR	OC	IS	OC	FC	FC
Isopropyl Alcohol	NR	FC	IS	FC	IS	FC
Isopropyl Acetate	NR	NR	FC	ос	FC	FC
JP-4 Aviation Fuel	NT	NT	IS	NT	NT	NA
JP-5 Aviation Fuel	NT	NT	IS	NT	NT	NA
Jet A Fuel	NT	NT	IS	NT	NT	NA
Kerosene	ос	NA	IS	IS	IS	NA
Lactic Acid (10%)	FC	FC	IS	FC	FC	IS
Lactic Acid (85%)	FC	OC	FC	FC	FC	IS
Lime Slurry	FC	IS	IS	IS	IS	NT
Linseed Oil	FC	IS	IS	IS	IS	NT
Magnesium Chloride (50%)	NT	FC	IS	FC	IS	IS
Magnesium Hydroxide (50%)	ос	IS	IS	IS	IS	FC
Methyl Alcohol	NR	NR	FC	oc	FC	FC
Methyl Ethyl Ketone	NR	NR	oc	oc	ос	FC
Methyl Propyl Ketone	NR	ос	FC	ос	FC	NA
N-Methyl-2-Pyrolidone	NR	NR	oc	NR	oc	NA

Chemical resistance results were obtained in a controlled environment and Tnemec Company makes no claim that these tests accurately represent all environments.

.

•

.

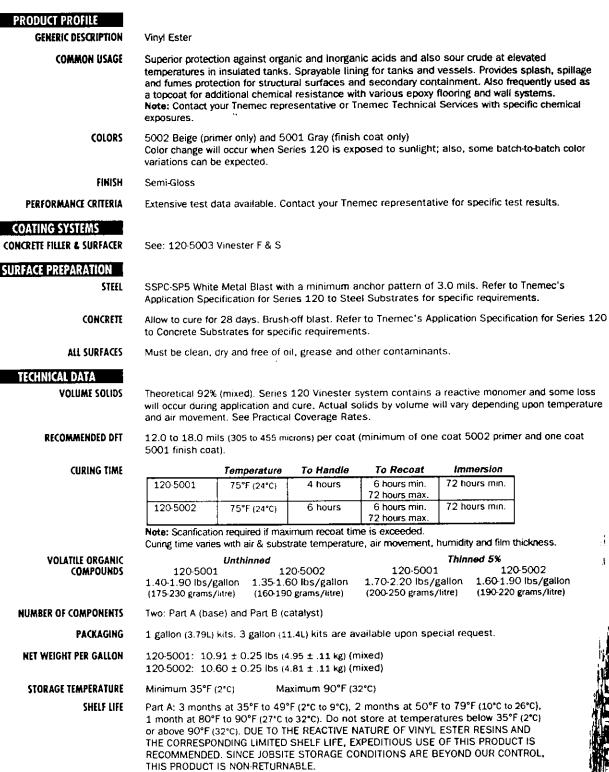
CHEMICAL EXPOSURE	Series 35	46H413	_ Series _61	. Series 66	Series 104	Series 120
Mineral Spirits	FC	IS	IS	IS	IS	NA
Naptha	FC	FC	IS	IS	IS	NA
Nitric Acid (10%)	FC	ос	ос	ос	ос	IS
n-Octyl Alcohol	NR	ос	IS	ос	FC	FC
Oxalic Acid (10%)	FC	FC	FC	FC	FC	IS
Perchloroethylene	NR	FC	IS	FC	ос	NA
Phosphoric Acid (10%)	FC	FC	FC	FC	FC	IS (150 F.)
Phthalic Acid (90%)	FC	FC	FC	FC	FC	IS
Potassium Hydroxide (10%)	FC	FC	IS	IS	IS	FC
n-Propyl Alcohol	NR	OC	IS	ос	FC	FC
Propylene Glycol	ос	FC	IS	FC	IS	NA
Sodium Bisulfate (30%)	FC	FC	FC	FC	FC	IS
Sodium Carbonate (30%)	FC	IS	IS	IS	IS	NA
Sodium Carbonate Slurry	FC	IS	IS	IS	IS	NT
Sodium Chloride (10%)	FC	IS	IS	IS	IS	NA
Sodium Chloride (20%)	FC	IS	IS	IS	IS	NA
Sodium Chromate (50%)	NT	NT	FC	NT	FC	ıs
Sodium Formate	NT	NT	NT	NT	NT	IS
Sodium Hydrosulfide (72%)	NT	NT	FC	NT	NT	IS
Sodium Hydrosulfite (10%)	NT	NT	NT	NT	NT	IS
Sodium Hydroxide (10%)	FC	IS	IS (150 F.)	IS	IS	FC
Sodium Hydroxide (50%)	ос	IS	IS (150 F.)	IS	IS	FC
Sodium Hypochlorite (5%) (Bleach)	FC	FC	FC	FC	FC	IS

Chemical resistance results were obtained in a controlled environment and Themec Company makes no claim that these tests accurately represent all environments.

CHEMICAL EXPOSURE	Series 35	 46H413	Series _ 61	Series 66	Series 104	Series 120
Sodium Silicate	NT	NT	NT	NT	NT	IS
Sodium Sulfate (6%)	FC	IS	IS	IS	IS	NA
Sodium Thiosulfate (30%)	NT	NT	FC	NT	FC	IS
Sodium Tripolyphosphate	FC	IS	IS	IS	IS	NA
Sour Crude	ОС	IS	IS (150 F.)	IS	IS	IS
Sweet Crude	ос	IS	IS (150 F.)	IS	IS	IS
Soybean Oil	FC	IS	IS	IS	IS	NA
Sulfuric Acid (10%)	FC	FC	FC	FC	FC	IS
Sulfuric Acid (30%)	FC	FC	FC	FC	FC	IS
Sulfuric Acid (50%)	ос	ос	ос	oc	ос	IS
Styrene	NR	NR	FC	NR	ос	IS
Tannic Acid	FC	IS	IS	IS	IS	IS
Toluene	NR	FC	IS	FC	IS	NA
Transmission Fluid	NR	IS	IS	IS	IS	IS
1,1,1-trichloroethane	NR	FC	IS	oc	FC	FC
Trisodium Phosphate (20%)	FC	FC	IS	FC	IS	IS
Turpentine	oc	IS	IS	iS	IS	NA
Vinegar	FC	oc	FC	FC	FC	IS
Water, Distilled	FC	IS	IS (200 F.)	IS	IS	NA
Water, Fresh	IS	IS	IS (200 F.)	IS	IS	NR
Water, Sea	IS	IS	IS	IS	IS	NA
Water, Sewage	NR	IS	IS	ıs	IS	IS
Xylene	NR	FC	IS	FC	IS	NA

Chemical resistance results were obtained in a controlled environment and Themec

Company makes no claim that these tests accurately represent all environments.


1

 - Chemical exposure	Series 35	46H413	Series 61	Series 66	Series 104	Series 120
Zinc Chloride (40%)	NT	FC	IS	FC	FC	1S
				1		

Chemical resistance results were obtained in a controlled environment and Themec Company makes no claim that these tests accurately represent all environments.

Part B: 12 months at recommended storage temperature.

© March 1994, by Themed Company, Inc.

TECHNICAL DATA (cont'd)

FLASH POINT - SETA

Part A: 90°F (32°C)

Part B: 190°F (88°C)

HEALTH & SAFETY

Paint products contain chemical ingredients which are considered hazardous. Read container label warning and Material Safety Data Sheet for important health and safety information prior to the use of this product. Keep out of the reach of children.

APPLICATION

PRACTICAL COVERAGE RATES

Dry Mils	Wet Mils	Sq Ft/Gal
(Microns)	(Microns)	(m²/Gal)
12.0-18.0 (305-455)	20.0-25.0 (510-625)	60-80 (5.6-7.4)

Practical spreading rates are based on typical field applications. Actual spreading rates will vary with surface profile, amount of overspray and surface irregularities.

Application of coating below minimum or above maximum recommended dry film thicknesses may adversely affect coating performance. THIS PRODUCT SHOULD NOT BE APPLIED BELOW 60°F (16°C) MATERIAL TEMPERATURE.

MIXING Power mix contents of Part A (base) thoroughly, making sure no pigment remains on the bottom of the can. Add the Part B (catalyst) slowly to the Part A while under agitation. Continue to agitate until thoroughly mixed. Care should be exercised so as not to entrap air in the mixed material. Do not use mixed material beyond pot life limits.

POT LIFE 3 to 4 hours at 65°F (18°C) 1-1/2 to 2-1/2 hours at 75°F (24°C)*
 *At higher temperatures pot life will decrease (use caution in spray equipment). In hot weather, material should be cooled to 65°F to 80°F (18°C to 27°C) prior to mixing and application to improve workability and avoid shortened pot life.

THINNING Use No. 19 Thinner. For air or airless spray, thin up to 5% or ³/₄ pint (190 mL) per gallon if needed for good atomization.

 SURFACE TEMPERATURE
 Minimum 60°F (16°C)
 Maximum 110°F (43°C)
 The surface should be dry and at least 5°F (3°C) above the dew point. At surface and ambient temperatures below 60°F (16°C), Series 120 will not cure properly or obtain maximum chemical resistance. Following application, the surface temperature must be held at or above 60°F (16°C) until the coating surface is tack free (approximately 8 hours at 60°F (16°C) surface temperature, 6 hours at 70°F (21°C) surface temperature, 4 hours at 80°F (27°C) surface temperature) to avoid incomplete polymerization.

At relative humidities above 75%, the cure of this coating may be retarded. It is also recommended that all precautions be taken to insure that adequate forced air ventilation exists.

APPLICATION EQUIPMENT

			Air Spray			
Gun	Fluid Tip	Air Cap	Air Hose ID	Mat'l Hose ID	Atomizing Pressure	Pot Pressure
Binks No. 18 or 62	66	63 PB	5/16" or 3/8" (7.9 mm or 9.5 mm)	3/8" or 1/2" (9.5 mm or 12.7 mm)	60-80 psi (4.2-5.5 bar)	10-20 psi (0.7-1.4 bar)

Low temperatures or longer hoses require higher pot pressure.

Airless Spray						
Atomizing Pressure	Mat'l Hose ID	Manifold Filter				
2400-3000 psi (165-207 bar)	1/4" or 3/8" (6.4 mm or 9.5 mm)	60 mesh (250 microns)				
	Atomizing Pressure 2400-3000 psi	Atomizing Pressure Mat'l Hose ID 2400-3000 psi 1/4" or 3/8"				

Use appropriate tip/atomizing pressure for equipment, applicator technique and weather conditions.

Brush: Recommended for small areas only. Use high quality natural or synthetic bristle brushes. **Note:** Two or more coats may be required to obtain recommended film thicknesses.

CLEANUP Flush and clean all equipment immediately after use with the recommended thinner or MEK. If material begins to exotherm, flush equipment immediately.

...

WARRANTY & LIMITATION OF SELLER'S LIABILITY: Themec Company, inc. warrants only that its coatings represented herein meet the formulation standards of Themec Company, inc. THE WARRANTY DESCRIBED IN THE ABOVE PARAGRAPH SHALL BE IN LIEU OF ANY OTHER WARRANTY, DORESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTES THAT DOTEND BEYOND THE DESCRIPTION ON THE FACE MEREOF. The buyer's sole and esclusive remedy against Themec Company, inc. allol be for replocement of the product in the event that a defective condition of the product should be found to exist. NO OTHER REMEDY (INCLUDING, BUT NOT LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR LOST PROFITS, LOST SALES, INURY TO PERSON OR PROPERTY, OR ANY OTHER INCIDENTIAL OR CONSEQUENTIAL CLOSS) SHALL BE AVAILABLE TO THE BUYER. The sole purpose of this exclusive remedy shall be to provide buyer with implacement of the product if any defect in materials is found to exist. INO SEQUENTIAL LOSS) SHALL BE AVAILABLE TO THE BUYER. The sole purpose of this exclusive remedy shall be to provide buyer with implacement of the product if any defect in materials is found to exist. This exclusive remedy shall not be deemed to have failed file sectually represent all environments. As application procedures. Test performance results were obtained in a controlled environment and mention herein is provide to care should be started or provide tests, or any extension herein is provide procedures. Test performance results were obtained in a controlled environment and performance results. When on the testes the coarding. Full ELEU TEST, MARKED TECHNICAL DATA AND RESTRUCTIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. CONTACT YOUR TREMEC REPRESENTATIVE FOR CURRENT TECHNICAL DATA AND INSTRUCTIONS.

Themec Company, Inc. P.O. Box 411749, Kansas City, MO 64141 816/483-3400 FAX: 816/483-3969

FOR INDUSTRIAL USE ONLY Page 2 of 2

Printed in USA

ATTACHMENT D-2-4-4 APPENDIX D-2-4 SECTION D-2

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 900

Revision No. 5.0

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 900 TANKS T-901 THROUGH T-904

TABLE OF CONTENTS

I. Introduction	1
II. Tank Design	1
III. Tank Foundation Design	2
IV. Ancillary Equipment Design	2
V. Secondary Containment System Design	3
V.A. Tanks T-901 and T-902	3
V.B. Tanks T-903 and T-904	3
VI. Tank Venting Requirements	4
VII. Hazardous Characteristics of the Waste Managed	4
VIII. Certification of Tank System Design Assessment	6

LIST OF EXHIBITS

- Exhibit A Tank Data Sheets
- Exhibit B Tank Design Calculations
- Exhibit C Tank Foundation Design Calculations
- Exhibit D Calculations of Tank Venting Requirements
- Exhibit E Tank Material of Construction Compatibility Information

LIST OF REFERENCED DRAWINGS

0900-010-001	Wheel Wash & Tank Storage Unit 900 - P&ID
0900-020-001	Wheel Wash & Tank Storage Unit 900 - Plan View
0900-030-001	Wheel Wash & Tank Storage Unit 900 - Sections
0900-080-001	Tank Data Sheet - T-901
0900-080-002	Tank Data Sheet - T-902
0900-080-003	Tank Data Sheet - T-903
0900-080-004	Tank Data Sheet - T-904

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 900 TANKS T-901 THROUGH T-904

I. Introduction

5 This document provides the assessment and certification for the design of the hazardous waste storage tank system(s) at Tank Management Unit 900 at the Chemical Waste Management, Inc. Facility in Emelle, Sumter County, Alabama. The assessment was performed to address the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), regarding the design of the system within Tank Management Unit 900 which is comprised of the tanks (i.e., Tanks T-901 through T-904), the tank foundation, the associated ancillary equipment and the secondary containment system.

Tank Management Unit 900 is located east of Unit 707/708 and south of Unit 1300 as shown on Drawing No. 0100-020-001 in Appendix D-1 to Section D of the RCRA Part B Permit
Application. The management of hazardous waste in tanks in Unit 900 is performed in two (2) aboveground Tanks (T-901 and T-902) and two (2) in-ground Tanks (T-903 and T-904). T-901 and T-902 are used to store the recovered washwaters collected in Tanks T-903 and T-904 located in the automatic wheel wash and manual equipment wash bays, respectively.

The following drawings were used in the preparation of this Assessment and Certification and are provided either in Exhibit A (Tank Data Sheets) or in Appendix D-1 to Section D of the RCRA Part B Permit Application:

	Drawing No.	Drawing Title
25	0900-010-001	Wheel Wash & Tank Storage Unit 900 - P&ID
	0900-020-001	Wheel Wash & Tank Storage Unit 900 - Plan View
	0900-030-001	Wheel Wash & Tank Storage Unit 900 - Sections
	0900-080-001	Tank Data Sheet - T-901
	0900-080-002	Tank Data Sheet - T-902
30	0900-080-003	Tank Data Sheet - T-903
	0900-080-004	Tank Data Sheet - T-904

II. Tank Design

Tanks T-901 through T-904 have been designed in accordance with the design codes and standards indicated within the DESIGN DATA section of the Tank Data Sheets (i.e., Drawing Nos. 0900-080-001 through -004) provided in Exhibit A to this tank system design assessment.

The criteria utilized in the assessment of the design of the shell, structural support, and anchorage for Tanks T-901 through T-904 are also provided within the DESIGN DATA section of the Tank Data Sheets, as well as within the tank design calculations provided in Exhibit B to this tank system design assessment.

5

The calculations provided in Exhibit B to this tank system design assessment demonstrate that the tank shell, structural supports and anchorages are, as designed, adequate to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as applicable, at the design conditions indicated on the tank data sheets.

10

III. Tank Foundation Design

The designs of the reinforced concrete foundations for Tanks T-901 through T-904 are indicated in Sections 5 & 6 on Drawing No. 0900-030-001 which is provided in Appendix D-1 to Section D of the RCRA Part B Permit Application. The criteria utilized in the assessment of the design of the foundation for Tanks T-901 through T-904 are provided within the tank foundation design calculations provided in Exhibit C to this tank system design assessment.

20

15

The tank foundation design calculations provided in Exhibit C demonstrate that the tank foundations are, as designed, adequate to support the load of the full tanks and to withstand associated environmental stresses at the design conditions indicated on the tanks data sheets and provided within foundation design calculations.

IV. Ancillary Equipment Design

25

All tank system ancillary piping systems shall be designed, installed and tested in accordance with the American Society of Mechanical Engineers (ASME) Standard B31.3, "Chemical Plant and Petroleum Refinery Piping", or an equivalent nationally recognized standard, and in accordance with recognized good engineering practices to ensure that they are supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

30

All other ancillary equipment for the tank system shall be designed, installed and tested in accordance with appropriate recognized standards, if any, and in accordance with recognized good engineering practices to ensure that it is supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

35

In order for this tank design assessment and associated certification to be maintained, and prior to the tank system being placed in use, the Facility shall ensure that the tank system ancillary

equipment is properly installed and that all required inspections, tests and repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f). Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule

335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested.

V. Secondary Containment System Design

V.A. Tanks T-901 and T-902

The design features of the secondary containment system for Tanks T-901 and T-902 within Unit 900 are indicated on Drawing Nos. 0900-020-001 and 0900-030-001 which are located in Appendix D-1 to Section D of the RCRA Part B Permit Application. As shown on these drawings and in accordance with the applicable requirements of 40 CFR 264.193 and ADEM Administrative Code Rule 335-14-5-.10(4), the secondary containment system design is comprised of a reinforced concrete base, with all joints sealed with chemical-resistant waterstops, and all concrete surfaces sealed with chemical-resistant concrete coating system. Information on the concrete coatings available for use on the secondary containment system is provided within Appendix D-1-3 to Section D-1 of the RCRA Part B Permit Application.

Calculations demonstrating that the design secondary containment capacity meets or exceeds the applicable requirements 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e) are provided in Appendix D-2-2 to Section D-2 of the RCRA Part B Permit Application.

25 Application.

V.B. Tanks T-903 and T-904

The design features of the secondary containment system for the Tanks T-903 and T-904 within Unit 900 are indicated on Drawing Nos. 0900-020-001 and 0900-030-001 which are located in Appendix D-1 to Section D of the RCRA Part B Permit Application. As shown on these drawings and in accordance with the applicable requirements of 40 CFR 264.193(e)(3) and ADEM Administrative Code Rule 335-14-5-.10(4)(e)3., the secondary containment system design is equivalent to that for a double-walled tank, with containment by the secondary wall. Each tank is also equipped with a continuous monitoring device to detect a leak from the primary tank into the interstitial space between the tank walls.

35

5

Although secondary containment is inherently provided by the double-walled tank design, calculations including the additional containment volume up to the level of the perimeter curb

AttachD-2-4-4Text.docx

demonstrate that the design secondary containment capacity meets or exceeds the applicable requirements 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e), as provided in Appendix D-2-2 to Section D-2 of the RCRA Part B Permit Application.

VI. Tank Venting Requirements

As indicated on the P&ID for Unit 900 (i.e., Drawing No. 0900-010-001 which is located in Appendix D-1 to Section D of the RCRA Part B Permit Application), Tanks T-901 and T-902 are designed as closed top tanks that passively vent to atmosphere. Tanks T-903 and T-904 are open top tanks and do not require venting. The Tank Data Sheets for Tanks T-901 and T-902 (i.e., Drawing Nos. 0900-080-001 and -002) specify the diameter of the atmospheric vent nozzle on each of the tanks.

The requirements for normal (i.e., liquid displacement and thermal effects) venting capacities for the Unit 900 tanks were evaluated in accordance with American Petroleum Institute Standard 2000, Venting Atmospheric and Low-Pressure Storage Tanks (i.e., API 2000). As shown in the venting calculations provided in Exhibit D to this tank system design assessment, the size of the vent nozzle on each of the tanks is adequate to allow the tank under normal conditions to be maintained within the design limitations for pressure and vacuum as specified on the Tank Data Sheets provided in Exhibit A and within the tank design calculations provided in Exhibit B to this tank system design assessment. The venting calculations provided in Exhibit D to this tank system design assessment also indicate the design maximum tank fill and withdrawal rates which were used in the evaluation of the tank venting requirements.

VII. Hazardous Characteristics of the Waste Managed

In accordance with the requirements of 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., this section presents an evaluation of the compatibility of the wastes managed within the Unit 900 tank system with the materials of construction of Tanks T-901 through T-904 and the ancillary equipment (i.e., pumps and piping) to determine their suitability for service in this unit.

The types of wastes managed within Tanks T-901 through T-904 will primarily be aqueous in nature and are non-hazardous. However, for permitting purposes, CWM assumes that virtually all types of hazardous wastes listed and identified in 40 CFR Part 261 and ADEM Administrative Code Rule 335-14-2, except for ignitable, corrosive and reactive wastes, may be managed in the Unit 900 as indicated in Appendix D-2-1 of this Application. Tanks T-901 through T-904 and the ancillary equipment that contact wastes within this system are primarily constructed of carbon steel with internal corrosion protection for the tanks.

15

Exhibit E to this tank system design assessment presents information which provides an indication of the relative compatibility of epoxy polyamide coating, such as Carboline 191 or demonstrated equivalent, with a wide variety of chemical compounds and other substances. The table in Exhibit E provides corrosion/compatibility information for Carboline 191 epoxy polyamide coating exposed to pure chemical compounds which, in general, tend to have a more 5 severe corrosive effect than wastes which contain mixtures and complexes of these compounds. Although this table may not provide corrosion data and service recommendations for all of the potential constituents of the wastes or waste mixtures which may be managed within the tank system in Unit 900, the table does demonstrate that Carboline 191 is generally compatible with and, under normal conditions, should not experience an accelerated rate of 10 corrosion or deterioration when exposed to a majority of the types and classes of wastes which are managed within the Unit 900 tank system. In addition to the compatibility/corrosion data provided in Exhibit E, the compatibility of Carboline 191 with the types of wastes managed within Unit 900 is further validated by the empirical data provided by many years of comparable service applications within a variety of units at the Facility. 15

Based on the information provided in Exhibit E of this tank system design assessment and the empirical data compiled at the Facility for comparable service applications, it is the conclusion of this evaluation that the Carboline 191 coated carbon steel tank system components are generally compatible with the types of waste managed within the Unit 900 tank system. It is further concluded that these materials of construction are suitable for this service if the tank system is operated within the design limitations set forth within this assessment, and that, if the tank system is managed in accordance with the following minimum practices, these materials of construction should not experience an accelerated rate of corrosion or deterioration which may result in a catastrophic failure of the tank system, throughout its useful life:

- Prior to placement of a waste into the tank system the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. References other than Exhibit E of this document, such as other recognized sources of corrosion data, may also be used to evaluate compatibilities. The Facility shall prohibit the placement into the Unit 900 tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components; and
 - The Facility shall perform an annual inspection of the tank shells to ensure that minimum code thicknesses are maintained, and that adequate corrosion allowance is available for continued service.

30

VIII. Certification of Tank System Design Assessment

In accordance with the requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), this section provides a certification by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), that an assessment of the design of the following tank system(s) demonstrates that the tank system foundation, structural supports, seams, connections, and pressure controls are adequate, and that the tanks have sufficient structural strength, compatibility with the wastes to be managed and/or protection from corrosion so that they will not collapse, rupture or fail, if properly installed, operated within the design limits, and properly inspected and maintained:

10

15

20

25

30

5

Tank System Location:	Chemical Waste Management, Inc.
	Emelle, Alabama
Tank System Identification:	Tank Management Unit 900
Applicable Tanks:	T-901, T-902, T-903, and T-904

At a minimum, the assessment of the tank system design, which is incorporated herein by reference, addresses and considers the following factors with respect to the intended use of the tank system:

- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tank designs have been evaluated for structural integrity with regards to the ability of the designed tank shell, structural supports and anchorages to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as applicable;
 - In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tanks have been evaluated with regards to the adequacy of the designed tank to provide the necessary capacity for normal venting;
- 35
- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which piping and other ancillary equipment shall be designed and constructed to maintain this certification;

- In accordance with 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., the assessment of the tank system design considers the compatibility of the tank's materials of construction and/or internal coatings with the types of hazardous wastes to be managed;
- In accordance with the applicable requirements of 40 CFR 264.192(a)(5) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)5., the assessment of the tank system design considers the ability of the designed tank system foundation to support the load of the full tanks and to withstand associated environmental stresses; and
- The assessment of the tank system design considers the adequacy of the capacity of the designed tank secondary containment system as required by the applicable requirements of 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e).
- ¹⁵ In order for this certification to be maintained, the Facility shall comply with the applicable requirements of 40 CFR 264 Subpart J and ADEM Administrative Code Rule 335-14-5-.10, and shall perform all routine management procedures, periodic inspections and reviews, and tank system functionality and integrity tests as required by the permit including, but not limited to, the following:
- 20

25

30

35

• The Facility shall ensure that the tank system is properly installed and that, prior to placing the tank system in use, all required inspections, tests and necessary repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f);

- Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested;
- Prior to placement of a waste into the tank system, the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the Unit 900 tank system any waste that may exhibit excessive corrosion or degradation to the

material of construction of the tank system components, including hazardous wastes that exhibit the characteristic of corrosivity as defined in 40 CFR 261.22 and ADEM Administrative Code Rule 335-14-2-.03(3);

- Prior to placement of a waste into the tank system, the Facility shall verify the specific gravity of the waste in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the tank system of any waste that has a specific gravity that exceeds the design maximum value specified within the tank system design assessment;
- Prior to placement of a waste into the tank system, the Facility shall verify in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application that the treatment of the waste will not cause temperatures within the tank system to exceed the design maximum value specified within the tank system design assessment;
 - The Facility shall perform a daily inspection of the visible aboveground portions of the tank exterior to detect excessive corrosion or deterioration;
 - The Facility shall perform a daily inspection of the visible aboveground portions of the tank secondary containment system to detect leakable cracks or gaps, or excessive deterioration of the concrete base and/or chemical-resistant concrete coatings;
 - The Facility shall perform an annual inspection of the tank shells, as described in Subsection F-2-6 of Section F-2 of the RCRA Part B Permit Application, to ensure that minimum code thicknesses are maintained, and that adequate corrosion allowance is available for continued service;
 - The Facility shall perform an annual inspection of the tank structural supports and anchorages to ensure that their integrity is maintained;
 - The Facility shall perform a periodic inspection of the tank venting devices to ensure that they are in good working order to maintain the tanks within the design limits for pressure as specified within the tank system design assessment;
- The Facility shall perform a periodic inspection of the tank level sensing, overfill control devices and associated interlocks to ensure that they are in good working order with the appropriate settings to prevent overfilling of the tanks. The frequencies and procedures for inspection of all tank level sensing and overfill control devices shall be as recommended by the manufacturer;
- The Facility shall perform a periodic inspection of any other operational controls for the tank system to ensure that they are in good working order with the appropriate settings to maintain the tanks within their design limits as specified within the tank

5

15

20

system design assessment. The frequencies and procedures for inspection of other tank system operational controls shall be as recommended by the manufacturer; and

• The Facility shall perform periodic inspections of the integrity of any tank system grounding and lightning protection systems.

Based on the information provided within the tank system design assessment and supporting documentation, the designs of Tanks T-901 through T-904 within Tank Management Unit 900 meet the current RCRA requirements relative to the design of new hazardous waste tank systems. The design assessment addresses only the applicable requirements of 40 CFR 264.192 and 40 CFR 264.193, and ADEM Administrative Code Rules 335-14-5-.10(3) and (4), and does not consider compliance with other codes or regulations, including, but not limited to, the requirements of the Occupational Safety and Health Act (OSHA).

With regards to the assessment and certification of the design of hazardous waste tank systems in accordance with the applicable requirements of 40 CFR 264.192(a) and (g), and ADEM Administrative Code Rules 335-14-5-.10(3)(a) and (g), I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

25

5

10

William O. Hagerman, P.E. Alabama P.E. No.: 14014 President

ETI Corporation
 6799 Great Oaks Road, Suite 100
 Memphis, Tennessee 38138-2500

2-1-95

This certification was originally submitted in 1995. As part of the 2002 Part B Application Renewal, revisions were made to the text in this attachment. These revisions consisted primarily of renaming the section for the Waste Analysis Plan to Section C to maintain consistency with the other Sections contained within this Part B Permit Application. No revisions were made to this attachment during this Part B Permit Application renewal process (Revision 5.0).

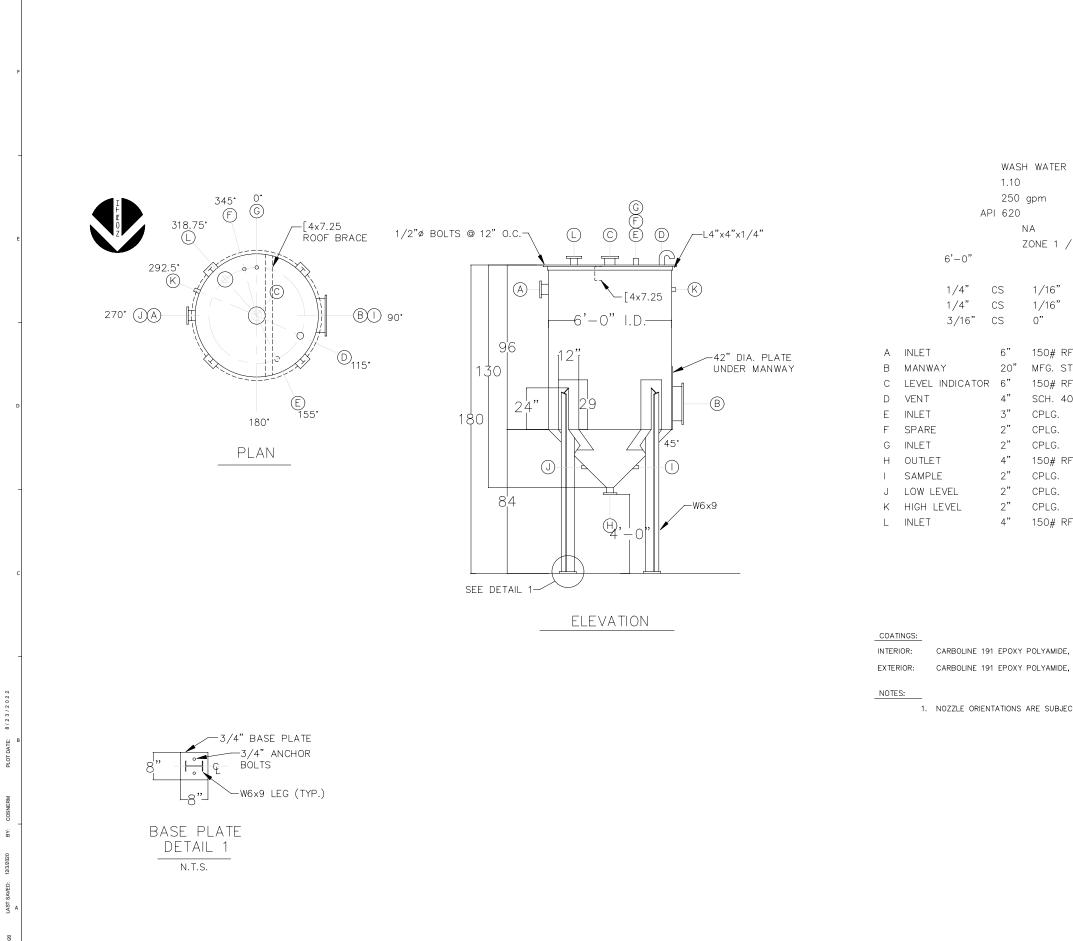
AttachD-2-4-4Text.docx

With regards to the revisions noted above, I certify under penalty of law that these modifications were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

10

20

5


Michael T. Feeney, P.E. Alabama P.E. No.: 15895 Jacobs Engineering Group Inc.

15 Ten 10th Street NW Atlanta, Georgia 30309 No. 15895 John Marine M

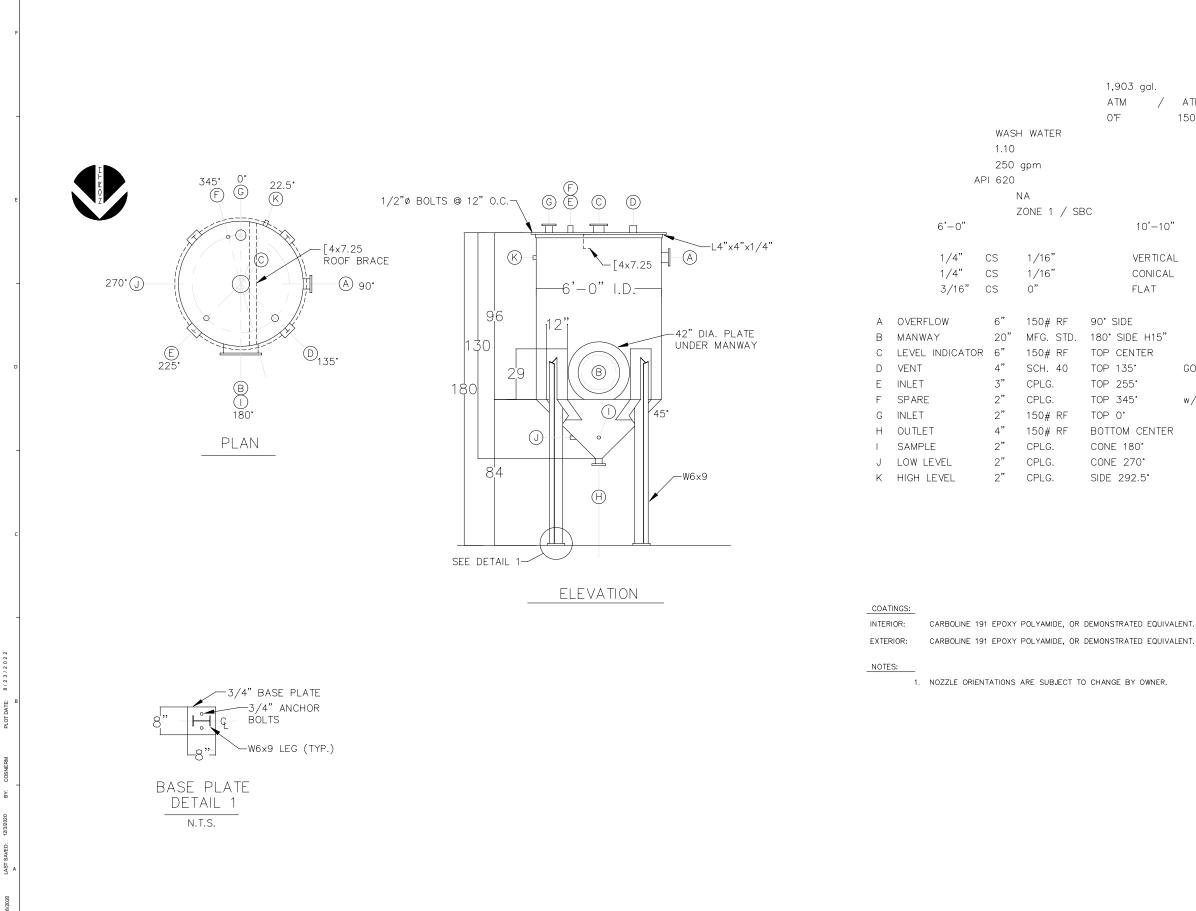

[End of Attachment D-2-4-4 Text]

EXHIBIT A

TANK DATA SHEETS

8	9		
			Jacobs.
1,903 gal. ATM / OF	ATM 150°F 12" 250 gpm 0.70		NOT RELEASED FOR CONSTRUCTION
/ SBC 10'-10" VERTICAL CONICAL FLAT			
 270° SIDE 90° SIDE H15" TOP CENTER TOP 155° TOP 345° TOP 0° BOTTOM CENTER CONE 270° SIDE 292.5° TOP 318.75° 	GOOSENECK w/ PLUG	RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY SAMTER COUNTY AL
C, OR DEMONSTRATED EQUIVAL			KCA MAT B REMIT KENKWA. REVISION DESCRIPTION
		THIS DRAW WITH THE AS SPECIFICATION PROJECT IN DATE: AUG DISC. LEAD MITF SHEET TITL	Image: Solution of the control of the contr
		SHEET	0900-080-001

9	(
		Jacobs	10 Tenth Street Suite 1400 Attentia, GA 303091 404.978.7600
12" 250 gpm			NUI KELEASEU FUK CONSTRUCTION
0.70 "-0" "-10" A			
SENECK PLUG	RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	Sumter County AL
		KCAA WATT & PERMIT RENEW A.	REVISION DESCRIPTION
	THIS DRAWING WITH THE APPLIX SPECIFICATIONS A PROJECT NO: DATE: AUGUS' DISC. LEAD:	HEN PLOTTED FULSCAL MILST BE USED IN CONTINUE TO DO OTHER CONTRACT DO D32279702 T 2022 DESIGNER: CHE	INCTION
	CUTT	NTA SHEET - T	-902

CARBOLINE 191 EPOXY POLYAMIDE, OR DEMONSTRATED EQUIVALENT.

1,903 gal. ATM

0°F

/ ATM 150°F

10'-10"

FLAT

180° SIDE H15"

TOP CENTER

TOP 135°

TOP 255°

TOP 345°

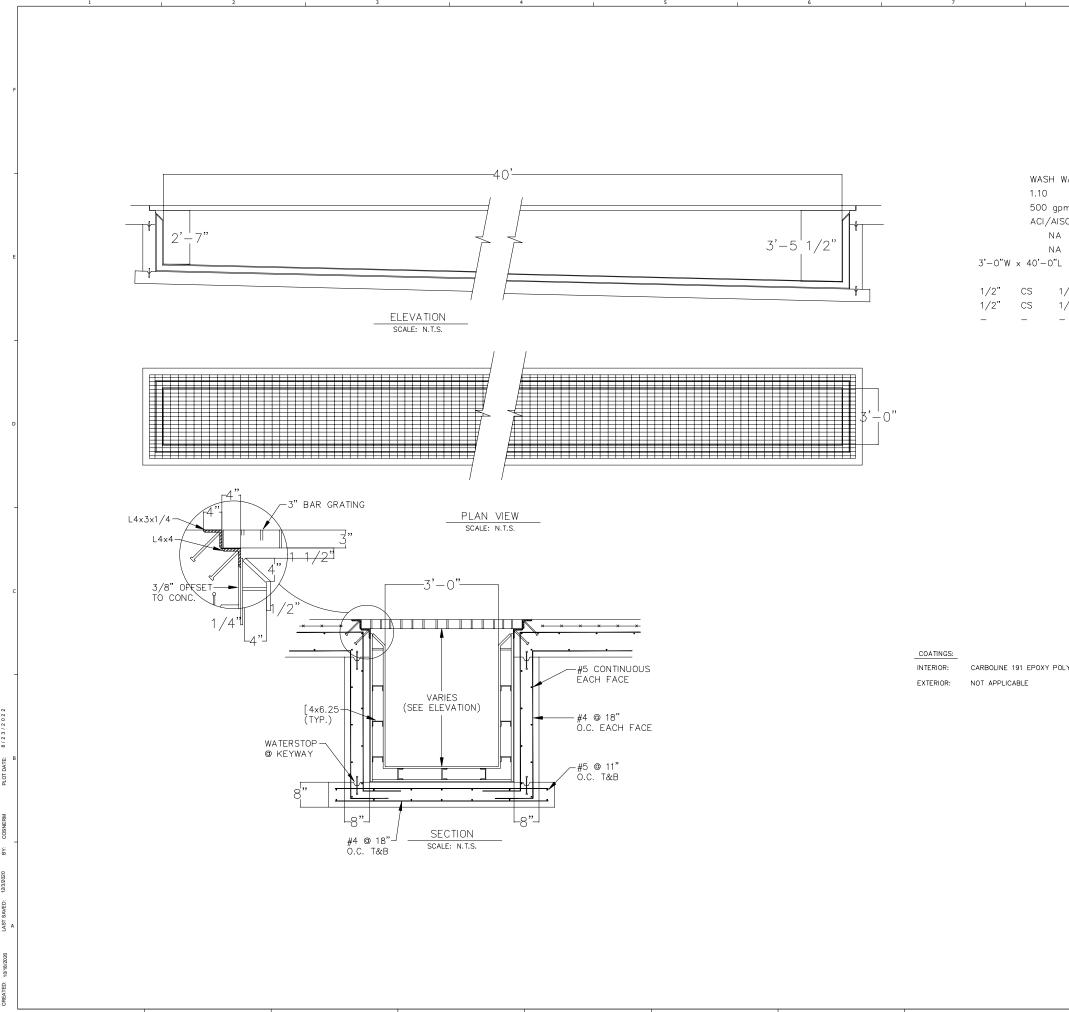
CONE 180°

CONE 270°

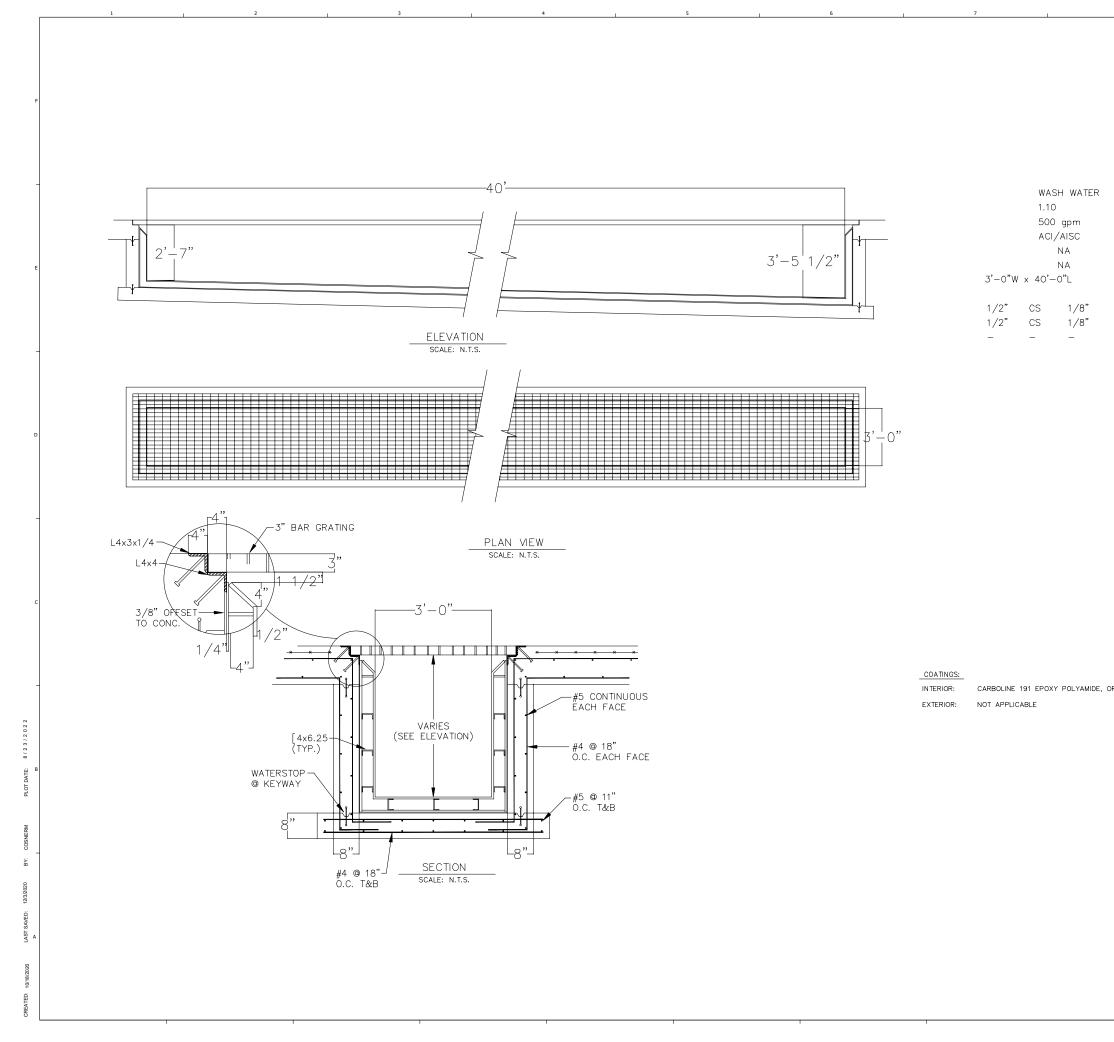
SIDE 292.5°

BOTTOM CENTER

TOP 0°


VERTICAL 8'-0"

CONICAL 2'-10"


NA

GOOSENECK

w/ PLUG

٤	8 1 9	
		Jacobs.
I WATER gpm AISC IA	3,104 gal. ATM / ATM OF 150F NA 500 gpm 0.70	NOT RELEASED FOR CONSTRUCTION
IA "L 1/8" -	2'-7" TO 3'-5 1/2" HORIZONTAL 16'-0" FLAT 2'-7" 	
	OR DEMONSTRATED EQUIVALENT.	RCRA PART B PERMIT APPLICATION CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY SUMTER COUNTY AL
POLTAMIDE, 1	UK DEMUNSIKATED EQUIVALENI.	THESLINE LESISTREE TROUCTED FULL SCALE THESLINE LESISTREE TROUCTED FULL SCALE THESLINE LESISTREE TROUCTED FULL SCALE THESLINE LESISTREE TROUCTED FULL SCALE THESLINE LESISTREE TROUCT INC. CONSTRUCTION PROJECT INC. CONSTRUCTION THE DESIGNER TROUCT INC. CONSTRUCTION TROUCT

8	9								
				adore:	パコンション			10 Tenth Street Svine 1400	Allarria, GA 30309 (1404.978.7600
3,104 gal. ATM / ATM O'F 150'	*F NA 500 gpm 0.70						NOT DELEASED EOD		CONSTRUCTION
2'—7" TO 3 HORIZONTAL FLAT —						WASTE MANAGEMENT			
					CHEMICAL WASTE MANAGEMENT INC.	EMELLE, ALABAMA TREATMENT FACILITY			SUMTER COUNTY, AL
NR DEMONSTRATED EQUIVALENT.		THE WITT SPECIF PROJ DATE DISC MTF SHEE	IG WHE VING MI IPPLICA DNS AND VO: D GUST D: DI R.	UST BE OR DOTHED 32797 2022 SIGN AK	USED GOVE CON 02 ER:		CHEC		ON ICAL ENTS

EXHIBIT B

TANK DESIGN CALCULATIONS

		CHEN	IICAL V	VASTE	MANAG	SEMENT CO.
			EME	ELLE, ALAE	BAMA FAC	ILITY
			CAL	CULATION	COVER S	SHEET
UNIT:					900	
TANK NO).:		T-90	01 8	\$ 7-	-902
DECRIPT	ION:		<i>σφ</i> χ	8' 0	2 <u>5 7</u>	-902 ANK W/ CONE BUT
					LCULATIO	
PREPARE	ED BY:		- ANC	2	DATE:	9/29/94
						· · ·
REV. NO.	DATE	BY	СНК	APPVD.	PAGES	REMARKS
		<u> </u>				
ТТАСНМ						CLUDED TO CALCULATIONS.
						WERY J ANY
						OCI 3 1994
	_					~ 1774

.

.

Exhibit B Page 1 of 13

1

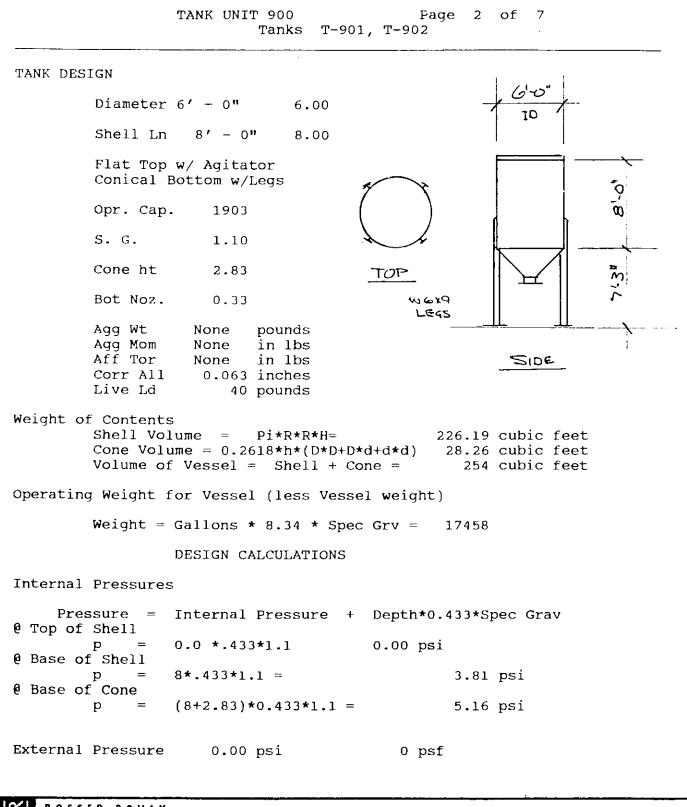
UNIT 900

DESIGN CALCULATIONS

DESIGN DATA SHEET T-901, T-902 Page 1 of 7

Service: Recycle Wash Water

6 ft. Diameter by 8 ft Shell, Flat Top, Conical Bottom, Legs


Chemical Waste Management, Emelle, AL Job No. 44228.00

Design Code Service Status Diameter/Length Shell/Heigth Bottom/Width	· · · · · · · · · · · · · · · · · · ·	Existing 6' - 0"
	•••••••••••••••••••••••••••••••••••••••	D] - +
· •	•••••••••••••	Flat
	••••	
Legs	• • • • • • • • • • • • • • • • • • • •	
Operating Capacity	<i>{</i> • • • • • • • • • • • • • • • • • • •	1.903 Gal
Material of Constr	ruction	Carbon Steel
Corrosion Allownce	2	1/16 inch
Joint Efficiency	• • • • • • • • • • • • • • • • • • • •	
	•••••••••••••	1.10
Design Pressure	•••••••••••••••••••••••••••••••••••••••	Atmospheric
Design Temperature	e 150 deg F. Max 0 deg M.	in
Poof Live Load per		
KOOL FINE FORG DSI		40 psf
Wind Load	• • • • • • • • • • • • • • • • • • • •	NA
Seismic Zone	• • • • • • • • • • • • • • • • • • • •	Zone l
Agitator	• • • • • • • • • • • • • • • • • • • •	NO
Location	•••••	Indoors

** NOTE: The design codes referenced for these tanks included UL - 142. This code was not used to design these tanks..

ROSSER	ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET O	F
ROS	• • • • • •	DESIGNED LANZ / /	CHECKED 4	111 29194

Exhibit B Page 2 of 13

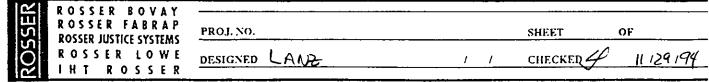


Exhibit B Page 3 of 13

Page 3 of 7 Tanks T-901, T-902 Rev 2 11/19/94 VESSEL DESIGN Material: This vessel is constructed of A 36 Carbon Steel. Corrosion allowance is 1/16 inch Reinforced Roof Check stress and deflection of roof plate Live load Roof load + vacuum = 40 psf = 0.28 psi Dead Load Use 3/16 " plate for new condition = 7.65 0.053 Use 1/8 " plate for corroded cond = 5.10 0.035 Use Roark, 6th Ed, Case 27, p 437 Beta =0.522 sigma r =Beta*q*a*a/t/t = 14327 psi Beta 1 =0.312 sigma t =Betal*q*a*a/t/t = 8563 psi Alpha = 0.087 defl = Alpha*q*a*a*a/E/t/t/t = 0.0229 inches a = 36.00 t = 0.125 USE 3/16 INCH PLATE FOR TOP Beam Design Assume load on the beam Total Live Load = Pi*R*R*(0.28) = 1347 pounds Pounds per foot = Load/Diameter = 225 pounds per foot Weight of agitator = No agitator 0 pounds per beam Bending Moment = 0 inch pounds Torque = 0 inch pounds $R1 = 1/d \star (W \star R + B + W \star D \star R) =$ 674 pounds Rr = 1/d*(W*R-B+W*D*R) =674 pounds Mctr = Rl*r-w*R*R/2 = 12125 inch pounds Req S =Moment/All Str = 12125/18000 = 0.67 inches cubed S of C 4 x 7.25 = 2.29in3 USE A C 4x 7.25 CHANNEL 7.25 pounds/foot Deflection OK by inspection Use a 4" x 4" x 1/4" Roof to Shell Angle Roof Load Load =Area(DL+LL+P)+C's+Agg = Pi*R*R(40+7.65)+1*6*7.5 = 1391 1391 pounds

TANK UNIT 900

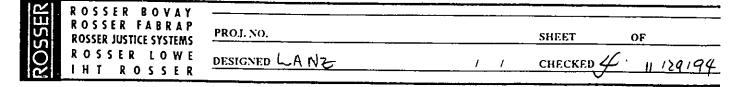


Exhibit B Page 4 of 13

TANK UNIT 900 Page 4 of 7 Tanks T-901, T-902 Rev.1, 10/19/94 _Rev 2 11/19/94 Shell Design The force per lineal inch at the base of the shell is (Eq 11, p 3-13) $T2 = P \star Rc = 3.81 \star 36$ 137.2 pounds per inch The shell thickness requred is (Eq 16, p 3-14) t = T2/Sts/E + C =0.012 + 1/16 = 0.075 inches Min Thick = 3/16 + CA (3.10.4.1)Sts = Allow Stress 0.250 INCH PLATE USE E is Joint Efficiency C is Corrosion Allowance ASME SEC VIII, Div 1, UG-28 (CALCULATION NOT REQUIRED) The allowable external pressure (internal vacuum) allowable is determined by the expression where Pa = 4 * B / 3 / (Do / t) =Pa is Allowable Pressure 7.49 psi B is 1094 Do is 36.50 inches THE VESSEL WILL WITHSTAND t is 3/16 inch 0.188 1/2 PSI EXTERNAL PRESSURE Cone Design Use Eq 16, p 3-14 where E = joint eff. =0.70 T2 = P*R/cosa = 194.0 lb/inalpha()= 0.7854 radians T1 = R/2/Cosa*(P+(W+F)/At)At = Pi * R * R= 4072 = 109.1 pounds/inch W is Wt of Cone Contents Cone Wt= 305 pounds $t = T_2/St_5/E + c_a = 0.017 + 1/16 =$ 0.080 inches USE 0.250 INCH PLATE FOR CONE Compression Ring Use Eq 26, p 3-19 where wh =.6*Sqrt(R2*t)=1.85 wc = .6*Sqrt(R2*t) =1.56 Q = T2*wh+T2s*wc-T1*Rc*Sina Q = -2524Area required for compression region is A = Q/15000 = 0.168 square inches Participating area = t*wh+t*wc = 0.640 square inches 0.640 0.218 square inches COMPRESSION RING NOT REQUIRED ROSSER BOVAY ROSSER FABRAP PROJ. NO. **ROSSER JUSTICE SYSTEMS** SHEET OF ROSSER LOWE DESIGNED (ANZ 1 checked \mathcal{U} 1 11129199 ΗT ROSSER

Exhibit B Page 5 of 13

TANK UNIT 900 Tanks T-901, T-90	Page 5)2	of 7 Rev 2 11/19/94
Weight of Shell and Cone		
Wt(shell) = Pi*D*H*8 = Wt(cone) = A*Wt/sqft = 1.5708*c*(D+d) = Corr Wt (shell) = 2/3 Wt Shell = 769 Corr Wt of Cone = 2/3 Wt Cone 203	305	pounds pounds 1/3 of vessel corroded
Column Support		
Roof Top Angle = Wt/ft x Length = Beams = Wt/ft x length = Plate = Pi*R*R*10.2 = Nozzles (estimated) Agitator 1100 + 100 Total Weight of Roof	Corr 137 48 174 40 0 399	New 137 48 262 50 0 496
Shell empty =	769	1154
Cone Weight=Area*15.3 = Nozzels (estimated) Total Weight of Cone	203 20 223	305 27 332
Legs 4 legs at 8.50 lb/ft-len 7.00 4 Base Plates @ 30.60 Total Weight of Legs	238 122 360	238 122 360
TOTAL DEAD LOAD	1752	2342
Live Load Roof = Area*LL =PI*Ro*Ro*40 = Vessel Content = TOTAL LIVE LOAD	1368 17458 18827	1368 17458 18827
TOTAL LIVE AND DEAD LOAD	20579	21169

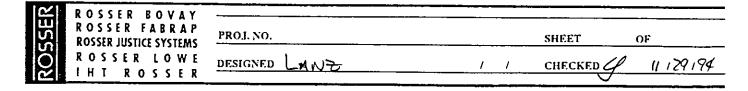


Exhibit B Page 6 of 13

1

TANK UNIT 900 Page 6 of 7 Tanks T-901, T-902 Rev 2 11/19/94 Wind Load (CS.B.C. 1994)(ASCE 7-88) Wind speed: 0 mph (Tank Inside a Building) Exposure: С Exposure Coeff: (eZ=30.0'): K2=0.98 Gust Factor: (eZ=30.0'): Gh=1.26 Shape Coeff: Cf=0.8 Importance Factor: I=1.0 A = D*H*(D=d)/2*h=57.0 Fw Mom Arm = 11.00**ዮሐ**ና $q2 = 0.00256 \times K2 \times I \times I \times V \times V =$ 0.0 Fw = q2*Gh*Cf*AFw = 0 pounds TOP Earthquake Load (CS.B.C. 1994) Feq = Av*Cc*P*Ac*Wt Av = 0.06 (Fig 1607.1.5A) p 395 Cl = 2.0 (Table 1607.6.4A) p 429 (Gen Equip) SIDE P = 0.5 (Table 1607.6.4A) p 429 (Gen Equip) Ac = 1.0 (Table 1607.6.4B) p 430 (Fixed) Wt = We + Wc = 21169 pounds Feq = 0.06*2*0.5*1*Weight(DL+Fluid) =1270 pounds Wind Load Uplift and Download Total Load per leg = 5292 pounds Dead Load per Leg = 586 Mom@base=Fw*Mom Arm = 0 ft-lb 0 pounds Ul & Dl = Mon/Len =Corr Dead Load per Leg = 438 pounds Uplift = Wind Ld-Dead Ld = -438 pounds NO UPLIFT ANCHOR BOLTS NOT REQUIRED FOR WIND LOADING Earthquake Loading Col Load= Feq*Mom Arm/Leg Dia = $= 1270 \times 11.0 / 6.0 =$ 2329 pounds per API 620 3.5.6 Max allow stress = 133% of design stress Percent = (Load + Col Load)/Load = = (5307 + 2123)/5307 =1.44 1.44 > 1.33 Feg Force Controls ROSSER BOVAY ROSSER FABRAP PROJ. NO. SHEET OF **ROSSER JUSTICE SYSTEMS** ROSSER LOWE 11 129194 DESIGNED LANZ CHECKED⁴ 1 I H T ROSSER

Exhibit B Page 7 of 13

TANK UNIT 900 Page 7 of 7 Tanks T-901, T-902 _Rev 2, 11/19/94 Select w 6x 9 Beam K*1/r = 2*6*12/1.03 =140 Stress Reduction = (1+K*K*]*1/r/r/1800) =2.086 Allowable Stress =18000/2.086 = 8629 psi Bending Moment at Base = Feq*Leg ht/Nmbr = 26673 in-lb Stress = P/A+M/S = (LL +DL)/Nmbr/Area + Moment/Sec Mod = Sec Mod = 3.3411046 psi 11046 < 11477 8629 x 1.33 Stress level is OK Base Plate P = TotL/Leg + FeqL/Leg = 7621 pounds fp = P/8.5/8.5 = 7621 *8.5*8.5= 105 psi Say m= 1 tp=SQRF(6/36000* 105.478) = 0.13 inch 3/4 inch Plate OK Support Details t/R =0.188 dividd by 36.00 = 0.0052 Allowable Stress = 8629 psi Pipe Dia*Plate t*All Stress 9708 psi > 14905 no need for a col. plate

N N	ROSSER BOVAY				
SE	ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ.NO.		SHEET	OF
ROSSER	ROSSER LOWE		1 1	CHECKED	11 129194
	INI KOZZEK	······································			

Exhibit B Page 8 of 13

		CHEM	IICAL V	VASTE	MANAG	EMENT CO.
			EME	ELLE, ALAE	BAMA FAC	ILITY
	<u> </u>		CAL	CULATION	COVER S	GHEET
UNIT:			<u></u>		00	
ΤΑΝΚ ΝΟ	D.:		T-90	<u>13 &</u>	7-9	104 Sump
		3)	<u>×40 x</u>	3/20	EEP	SUMP
					LCULATIC	
PREPARI	ED BY:		AN	7	DATE:	9/27/94
REV. NO.	DATE	BY	СНК	APPVD.	PAGES	REMARKS
. <u> </u>						
	 : 					
ATTACHN	IENTS:					CLUDED TO CALCULATIONS.
						OCT 3 1994

.

UNIT 900

DESIGN CALCULATIONS

DESIGN DATA SHEET T-903, T-904 Page 1 of 4

Service: Wheel Wash Unit Sump

3 ft by 40 ft by 3 1/2 ft deep Sump in Wash Unit

Chemical Waste Management, Emelle, AL

Job No. 44228.00

Design CodeACI/AISC Service StatusExisting Diameter/Length 40' - 0" Shell/Heigth 3' - 0''Bottom/Width 3' - 5 1/2" Heads/Ends Тор Open Bottom Legs ····· Inground Operating Capacity..... 3,104 Gal Material of ConstructionCarbon Steel Corrosion Allownce..... 1/8 inch Joint Efficiency 0.70 Design Spec. Grav..... 1.10 Design PressureAtmospheric Design Temperature..... 150 deg F. Max to 0 deg F. Min Roof Live Load psf..... NA Wind Load NA Seismic Zone Agitator NO Location ····· Inground

に に	ROSSER BOVAY			
551	ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET	OF
Š.	ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER	DESIGNED LANZ / /	CHECKED 4	1 124194

Exhibit B Page 10 of 13

UNIT 900 TANKS T-903 & T-904

THESE TANKS ARE LINERS FOR CASTIN-RACE CONCRETE SUMPS AND ARE USE AS THE INSIDE FORM. INTERIOR DIMENSIONS ARE 40'-0' LONG, 3'WIDE AND DEDTH FROM 2'-7" TO 3'-6". THE TANK WILL BE SET 3'-5" TO 4'-4' BELOW FINISED GRADE

$$\frac{\text{Wr of TANK LINER}}{\text{INMER WALL } (\underline{k}^{\prime})} A = 3.71 (2.40+2.3)+3.40$$

$$A = 353./ \otimes 20.4 = 7202^{\pi}$$

$$\frac{\text{OUTHER WALL } (\underline{k}^{\prime})}{A = 3.44 (2.40,75+2.377)+3.79(40,75)} A = 4.60.5 \text{ H}$$

$$WT = 460.5 \text{ H}$$

$$WT = 460.5 \text{ IDD } (C.417.5)$$

$$L_{RWATH} = 40.75.11+3.75.4 + 2(40.75+3.75)$$

$$= 537 \text{ LF}$$

$$WT = 537.7.5$$

$$WT = 537.7.5$$

$$WT = 40.29 \text{ H}$$

$$WT of \text{LINER} = 15.928^{4}/40.15 = 393^{4}/\text{FT}}$$

$$\frac{4^{4}}{4^{4}} = 4^{4}/4^{4}$$

$$WT of \text{LINER} = 15.928^{4}/40.15 = 393^{4}/\text{FT}}$$

WALL SEC.

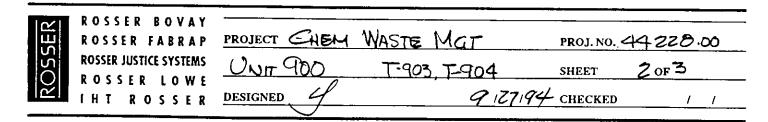


Exhibit B Page 11 of 13

T-903, T-904

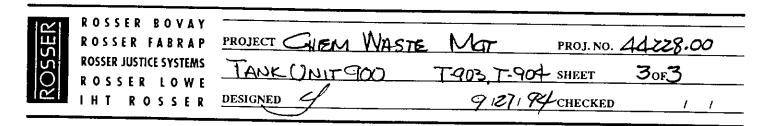
APPROXIMATE MOMENT OF INFERTIA

$$\frac{1}{X} = \frac{36 \cdot 2 \cdot 18}{36 \cdot 2 \cdot 40 \cdot 1} = 11.57''$$

$$\frac{1}{2} = 2 \cdot \frac{36^3}{12} + 2 \cdot 36(10 - 2)^2 + 40 \cdot 1(X)^2$$

$$= 7776 + 2976 + 5356$$

$$\frac{1}{11.57}$$


$$\frac{1}{5} = \frac{1}{1207} = 1335$$

$$5 \cdot \frac{1}{24.43} = 6.57$$

$$Usel'' T UKL$$

$$\frac{1}{24.43} = 6.57$$

MOMENT IN TANK (LIFT @ CG) $M = WL^2/2$ (FACH FIND AS CANTURNER) $= 390 \cdot (20.5)^2/2$ $= 81948.15^{14}$ STRESS = $\frac{M}{5} = \frac{983.385}{659} = 149283$ $M = 983.385^{114}$

T-903, T-904

MAXIMUM CALCULATED WALL THICKNESS

THE MAXIMUM DEPTH OF LIQUID WILL BE 4'. 10= 4.1.1.433 = 1.91 psi

REFER TO ROAKK BT ED. TABLE 26 CASE 82.

SE FIXED EDGE = -B, g b2 tz	where
$ = - \frac{.5 \cdot (1.81) \cdot 18^2}{(18)^2} = 0 $	B, = 0.500 9 = 1.91 ps1 6 = 12"
5 = 8,801 psi	t = Ks "
MINIMUM THERESS IS	
$t = \left(\frac{5(1.91) \cdot 12^2}{16,000}\right)^{\frac{1}{2}}$	
t = 0.093 INCHES (332" NO	NA)

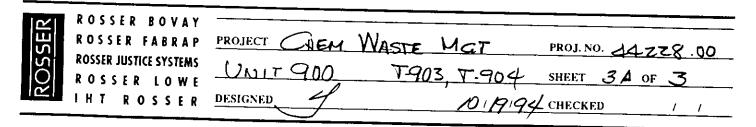
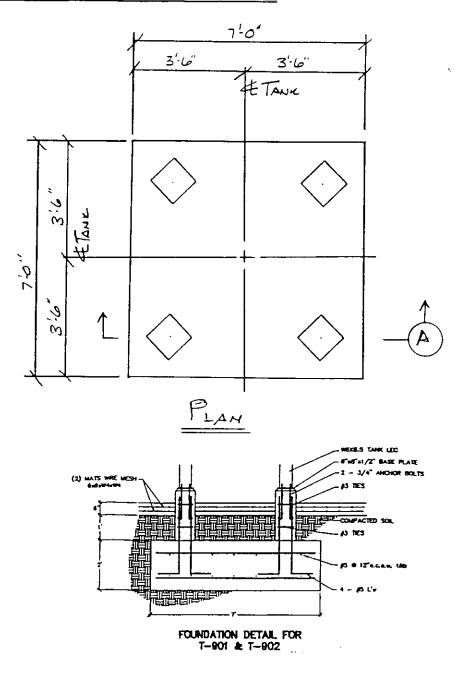


Exhibit B Page 13 of 13

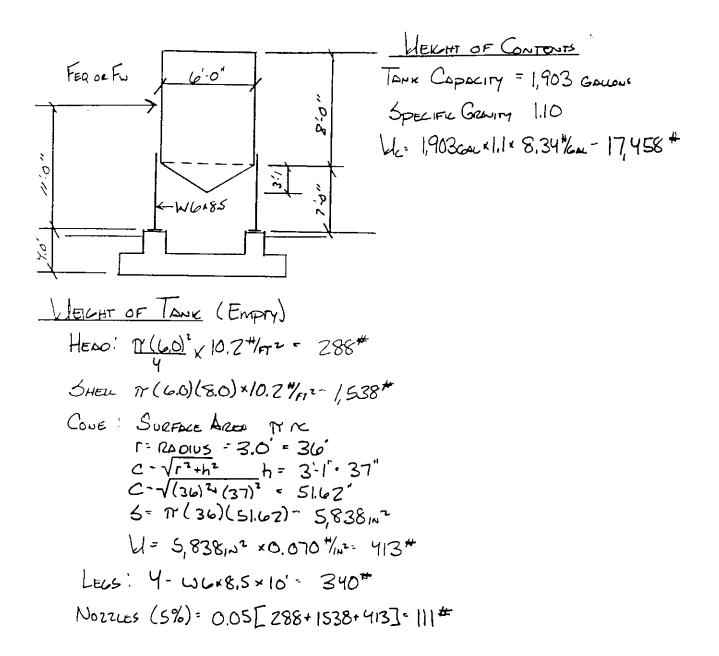

EXHIBIT C

TANK FOUNDATION DESIGN CALCULATIONS

	CHEMICAL WASTE MANAGEMENT CO.													
	·····		EM	ELLE, ALA	BAMA FAC	CILITY								
			CAL	CULATIO	N COVER S	SHEET								
UNIT:	UNIT:		900											
TANK NO	TANK NO.:		T-901 ET-902											
DECRIPT	DECRIPTION:		YCLE	LASH	WASTER									
			FO	UNDATION		ATIONS								
PREPARI	ED BY:	6,4	2mith	l	DATE:	9-9-94								
REV. NO.	DATE	BY	СНК	APPVD.	PAGES	REMARKS								
АТТАСНМ		PRIOR CA	LCULATIC ENT THE I	DNS HAVE DATA USE	BEEN INC	LUDED TO CALCULATIONS.								
						SCOTTR. SMITH 3140 60612 0.12 COX 918TE 10NAL 10-3-94								

٢

FOUNDATION FOR TANK T-901 + T-902



SECTION A-A

ROSSER BOVAY SSER PROJECT CHEM LASTE MANAGEMENT ROSSER FABRAP PROJ. NO. **ROSSER JUSTICE SYSTEMS** EMELLE, ALA SHEET SK- OF ROSSER LOWE DESIGNED 5. SMITH 919194 (HT ROSSER CHECKED 1 1

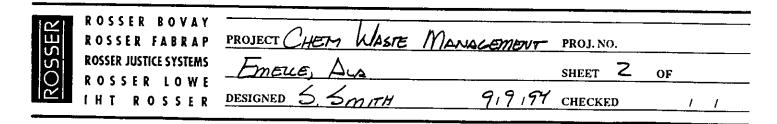
Exhibit C Page 2 of 11 FOUNDATIONS FOR TANKE T- 901 + T-902

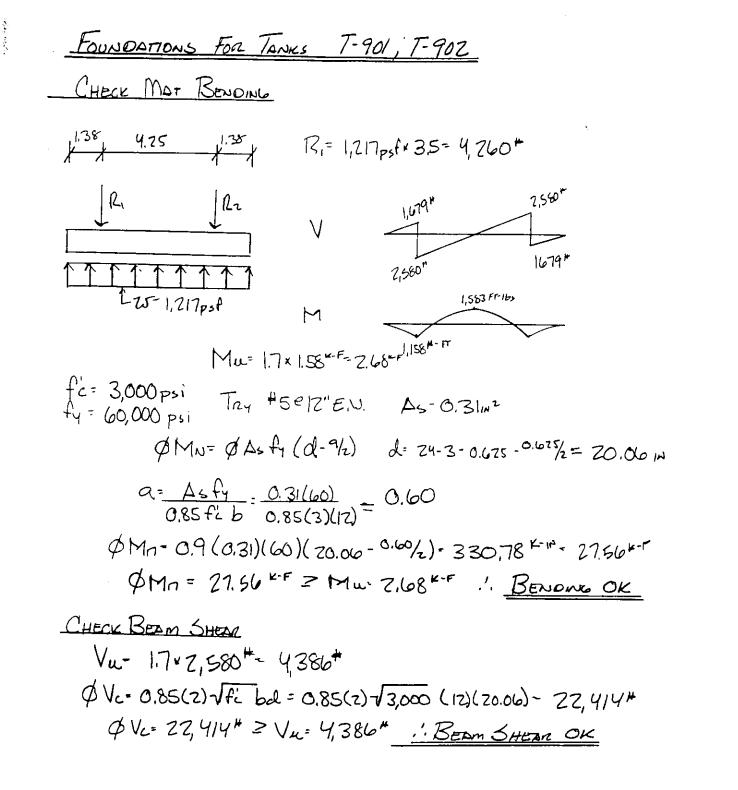
REF. TO VESSEL DUG 900-1

SER	ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER	PROJECT CHEM WASTE	MANAGEMENT	PROJ. NO.		
050	ROSSER JUSTICE SYSTEMS	EMELLE ALD		SHEET /	OF	
Ř	IHT ROSSER	DESIGNED 5 SMITH	919 194	CHECKED	1	1

Exhibit C Page 3 of 11

FOUNDATIONS FOR TANKS T-901; T-902 TOTAL WIT OF TANK (Empry) HEDD 288 ,538# SHELL CONE 413# LEUS 340" NOZZLES HE= 2,690# WIND LODD (S.B.C 1994) (ASCE 7-88) LIND SPEED ! 70 MPH EXPOSURE C EXPOSURE COEFF: (e Z= 30.0'): K2= 0.98 GUST FACTOR: (e Z= 30.0'): Gh= 1.26 SHAPE COEFF CF=0.8 IMPORTANCE FACTOR I-1.0 Fu= qz Gh CF A 92=0.00256(K1)(IV)2= 0.00256(0.98)(1.0#70)2= 12.3psf $A - (6.0' \times 8.0') + \left[\frac{8.0 \times 1.0}{2} \right] = 61.86 \text{ FT}^2$ Fu= 12.3psfx 1.26×0.8×61.86Fr3= 766# EARTHQUAKE LODD (S.B.C. 1994) FEQ = AX × C, × P× q, × L/-Ay = 0.06 (File 1607.1,5A) p395 CL= Z.O (TABLE 1607.6.4A) p429 (Gov Equip) P= 0.5 ("""") AL- 1.0 (TABLE 1607.6.4B) p430 (Fireo) Wr- 2,690# + 17,458#= 20,148# Feq=0.06 × 2.0 × 0.5 × 1.0 × 20, 148# - 1,208#




Exhibit C Page 4 of 11

$$\frac{F_{QUILDERTINUS} F_{DR} T_{DUNCS} T-90! + T-90!}{C_{HECK} STRENTY}$$
For Dimension* T:0'x7:0' x2:0"

A: T.0'x7:0' + 49.0 rr* 5' T.0(10)* - 57.16 rf?

 $Ur = T_{COL} 4 \times 1.0'x1.0'z.0' \times 150%r * 1/200"$

 $Mar T.0'x7:0' \times 20' \times 150%r * 1/200"$

 $Mar T.0'x7:0' \times 10'Kr * 8085*

 $Wr = Z3,985*$

 $Wr = Z3,985*$

 $Vr = Z3,985*$

 $Mar 44,133*,35 - 154,465^{FT:46}$

 $To' = 1.206*$

 $Mar 44,133*,35 - 154,465^{FT:46}$

 $To' = 1.206* \times 15.0^{-18},120^{FT:16}$

 $SR : Ma = 44,133*,35 - 154,465^{FT:46}$

 $Feq = 1,206*$

 $Mar 5,120FT:16 = 8,52 = 1.5$

 $Mar 5,120FT:16 = 5,52 = 1.5$

 $Mar 1,208*\times15.0' = 18,120FT:16 = 5,50 = 100$

 $Mar 1,208*\times15.0' = 13,120FT:16 = 5,50 = 100$

 $Mar 1,208*\times15.0' = 100$

 $Mar 1,208*\times15.$$

Exhibit C Page 5 of 11

.

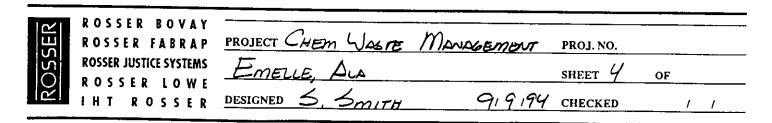
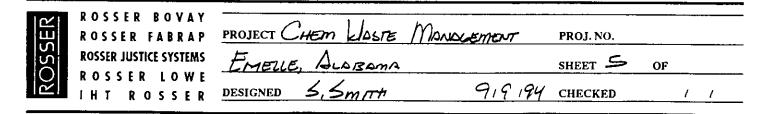


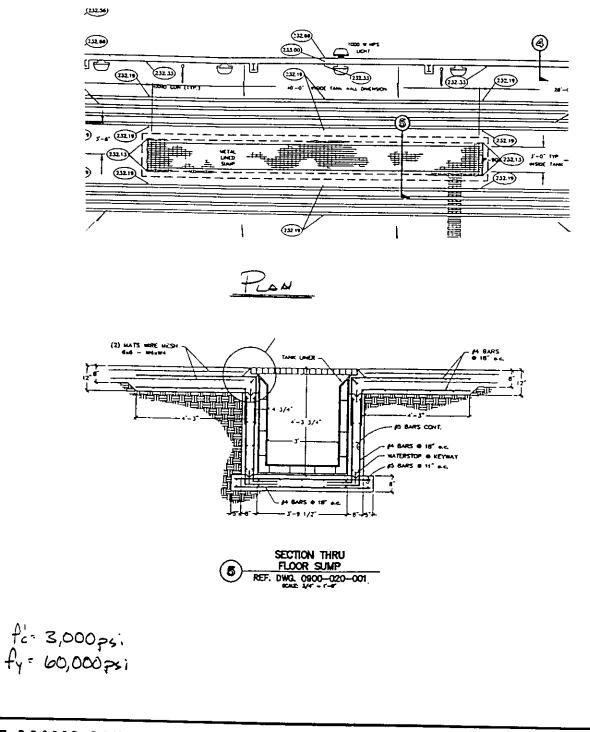
Exhibit C Page 6 of 11

$$\frac{Fource attoms For Tanks T-901; T-902}{CHECK PUNCHING SHEM}$$

$$\frac{Mer}{Pr} Cor Loso} (Drrut + EQ)$$

$$P = \frac{20,148 + 1700}{4} \frac{1208'(110')}{6.0'} = 5.037 + 9.914 + 7.757 + 170000 + 17000 + 170000 + 170000 + 170000 + 170000 + 170000 + 1700$$




Exhibit C Page 7 of 11

	CHEMICAL WASTE MANAGEMENT CO.														
			ЕМЕ	LLE, ALA	BAMA FAC	ILITY									
	<u> </u>		CAL	CULATION	COVER S	HEET									
UNIT:		900													
TANK NO	D.:	T-903 T-904													
DECRIPT	FION:	WHEEL WASH UNIT													
			FOU	JNDATION		TIONS									
PREPAR	ED BY:	_ 54	20111		DATE:	9-15-94									
REV. NO,	DATE	BY	СНК	APPVD.	PAGES	REMARKS									
			<u></u>												
				ONS HAVE	BEEN INC	CLUDED TO									
		SUPPLEM	ENTTHE	DATA USE	D IN THE	CALCULATIONS.									
						STATE OF TEL									
						SCOTTR. SMITH									
						SIONAL SOUT									
						10-3-94									

Exhibit C Page 8 of 11

1

FOUNDATION FOR TANK T-903 + T-904

	ROSSER BOVAY		
Ш	ROSSER FABRAP	PROJECT CHEM LASTE MANAGEMENT	PROJ. NO.
S			· · · · · · · · · · · · · · · · · · ·
	ROSSER LOWE	EMELLE, ALD	SHEET SK- OF
121	IHT ROSSER	DESIGNED 5. Smith 911519	CHECKED / /

Exhibit C Page 9 of 11

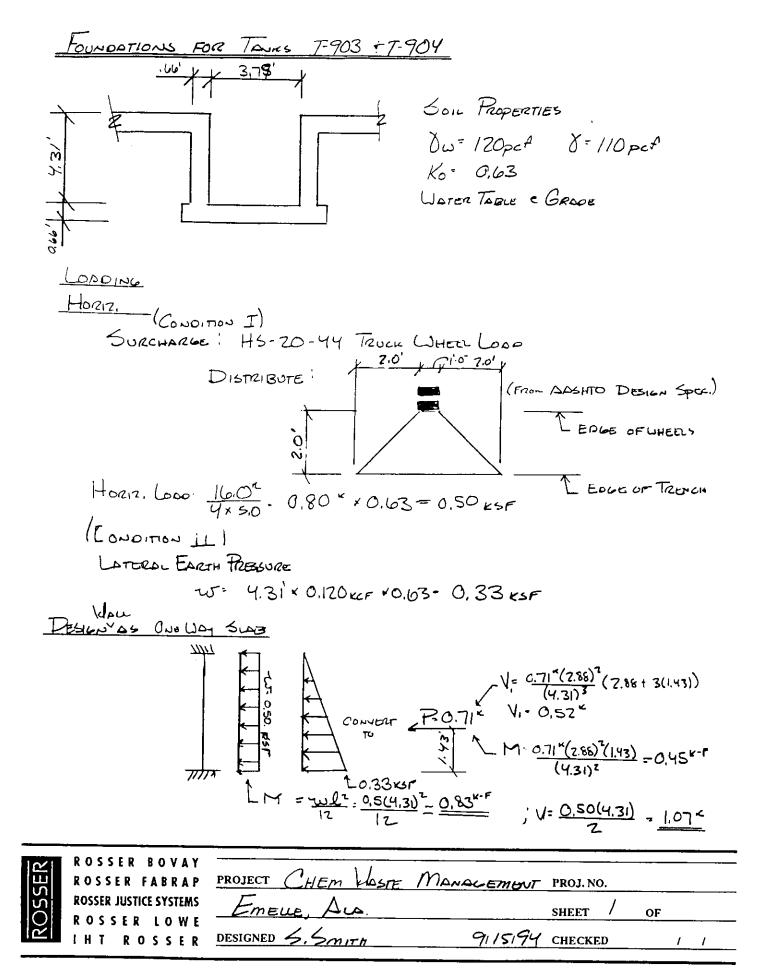


Exhibit C Page 10 of 11 FOUNDATIONS FOR TANKS T-903, T-904

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

 ピ	ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER		A (
	ROSSER FABRAP	PROJECT CHEM WASTE	MANA GEMENT	PROJ. NO.			
Š	ROSSER JUSTICE SYSTEMS	EMELLE, ALS					
	ROSSER LOWE		·	SHEET	OF		
	IHT ROSSER	DESIGNED S.SMITH	9115194	CHECKED		1	1

Exhibit C Page 11 of 11

....

EXHIBIT D

CALCULATIONS OF TANK VENTING REQUIREMENTS

EXHIBIT D TANK VENTING CALCULATIONS (PER API 2000) CHEMICAL WASTE MANAGEMENT, INC., EMELLE, ALABAMA FACILITY

		Length/	Depth/	Tank		Tank	Tank	Tank	Tank		With-		IN-BREATHING					OUT-	EMERGENCY					
	Width/	Shell	Cone	Wetted	Tank	Rated	Relief	Rated	Relief	Fill	drawal	Normal	Thermal	Total Vent	Min.	Min.	Normal	Thermal	Total Vent	Min.	Min.	Vent	Min.	Min.
	Diameter	Height	Height	Surf. Area	Capacity	Press.	Press.	Vac.	Vac.	Rate	Rate	Venting	Venting	Capacity	Area	Size	Venting	Venting	Capacity	Area	Size	Capacity	Area	Size
Tank Nos.	(ft)	(ft)	(ft)	(sf)	(gal)	(in WG)	(in WG) ¹	(in WG)	(in WG) ¹	(gpm)	(gpm)	(cfh) ²	(cfh) ³	(cfh)	(sq in) ⁸	(in)	(cfh) ⁴	(cfh)⁵	(cfh)	(sq in) ⁸	(in)	(cfh) ⁶	(sq in)7	(in)
WHEEL WASH	WHEEL WASH & TANK STORAGE UNIT 900																							
T-901 & T-902	6.00	8.00	3.00	191	1,903	6.00	3.00	3.00	1.50	250	250	2,000	45	2,045	3.95	3.00	2,143	27	2,170	2.97	2.00	NA	NA	NA
T-903 & T-904	3.00	40.00	3.46	NA	3,104	NA	NA	NA	NA	500	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

1. Pressure and vacuum relief is assumed to be set to relieve at 50% of the design rated pressure or vacuum, unless noted. Emergency relief is assumed to be set at 75% of design pressure.

2. Normal in-breathing at 5.6 scfh per 42 gal barrel per hour of withdrawal, as specified in API 2000, 4th Edition.

3. Thermal in-breathing at 1 scfh per 42 gal barrel of tank volume, up to 20,000 barrel (840,000 gal) volume, as in API 2000.

4. Normal out-breathing at 12 scfh per 42 gal barrel per hour of fill for volatile liquids (flash point <100 deg F), as in API 2000. For non-volatile liquids 6 scfh per 42 gal barrel may be used.

5. Thermal out-breathing at 1 scfh per 42 gal barrel of tank volume for volatile liquids, up to 20,000 barrel volume, as in API 2000. For non-volatile liquids 0.6 scfh per 42 gal barrel may be used.

6. From API 2000 Appendix B on Emergency Venting, for four ranges of tank surface area, heat absorption, Q, is calculated. Vent capacity in SCFH is then calculated from the heat absorption according to the equation:

SCFH = 70.5 * Q / [L * sqrt(M)] assuming a conservative "L * sqrt(M)" value of 1,337, that of hexane.

7. Formula for emergency vent area adapted from Protectoseal Technical Manual, on flow capacity of tank emergency venting devices for nozzles 8 in. and larger: CFH = 1,667 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank emergency relief setting and atmospheric conditions.

8. Formula for vent area for smaller nozzles such as normal breather vents, adapted from Crane Flow of Fluids, Eq. 2-24, very similar to, but more conservative, than Protectoseal equation: CFH = 845 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank relief setting and atmospheric conditions. The factor 845 was derived using unit conversion factors, a vapor density of 0.1875 lb/cf, and a conservative Y of 0.80 from charts on Crane p. A-21.

EXHIBIT E

TANK MATERIAL OF CONSTRUCTION COMPATIBILITY INFORMATION

Compatibility Information

•

Unit 900: T-901 to T-904

Carboline 191 Epoxy Polyamide coating Or Equivalent

· 1914 -

Exhibit E Page 1 of 9

GUIDE FOR SELECTION OF CARBOLINE LININGS AND HEAVY DUTY SYSTEMS

A tank lining performs a dual function in that it has to prevent product contamination and protect the tank itself from corrosion. For these reasons stricter procedures and standards must be followed than for any other type of coating application. In tank lining work a first class application with no compromise is required, therefore, only applicators experienced in lining tanks should be used.

This guide is designed to assist engineers, maintenance personnel, inspectors and applicators involved in tank lining work in the proper selection, application and inspection of Carboline Tank Lining Systems.

Carboline Company has over 40 years of experience in supplying coatings for lining tanks so we have tried to include much of the knowledge gained from this experience in this guide. We do realize, however, that unusual design problems or exposures not covered herein may occur. In these cases, please contact our Technical Service Department or your local Sales Representative for the necessary recommendations.

Carboline Company also has a wide range of protective coatings for the protection of tank exteriors covering many different types of exposures and service conditions. The Technical Service Department or your local Sales Representative can assist you in proper recommendations.

4/89 Replaces 2/85

USE OF CHART:

The recommendations shown in this chart should be used as a guide in selecting a tank lining system for a specific exposure. Additional factors such as existing condition of surface, other chemicals present, degree of agitation, presence of solids, temperature variations, vibration, rigidity of construction, conditions under which the lining must be applied, etc. must also be considered when making this selection.

EXPLANATION OF CHART:

Systems shown under each temperature are suitable for that service, and are for the most part listed in order of preference, with the first one being the preferred Carboline recommendation. All systems referenced, however, are suitable for that exposure. All systems shown as suitable for higher temperatures and/or concentration are also suitable for the lower ranges of both.

NR indicates Not Recommended.

A blank space indicates a lack of test data.

Cost, ease of application, field experience, etc., were taken into consideration in picking the systems order of preference.

For exposures not shown, cryogenic service or other questions, contact Carboline Technical Service Department.

CHART NOTES:

N 1. Additives

Because additives may change the chemical characteritics of the solution, check with Carboline Technical Service Department for specific recommendations.

N 2. Amines

Most amines which are free from moisture can be stored in CARBO ZINC® 11 lined tanks. When moisture is present, their alkalinity may increase to a pH of more than 10. To ensure freedom from water contamination, the product and tank must be completely dry to begin with and product must be stored under a dry nitrogen or carbon dioxide blanket.

N 3. Discoloration

Test results show a discoloration of the coating, but chemical resistance and durability of coating is not affected.

N 4. Zinc Pickup and pH

CAR80 ZINC® 11 is not resistant to strong acids or alkalies. It is suitable for products within the pH range of 5.5 to 10. For animal and vegetable oils, the free fatty acid content should be less than 2.5% or the acid value less than 5.0 Zinc pickup may occur when any zinc coating is used as a lining.

N 5. Hydrolyzable Solvents

Products such as esters, acetates, and halogenated compounds tend to hydrolyze in the presence of water and form organic or mineral acids. Chlorinated solvents should be properly stabilized. Water should not exceed 100 parts per million (0.01%). In the case of the products which are not dry or properly stabilized, material should be carried or stored in dry tanks and water leaks must be avoided. Temperatures must not exceed 105°F (40°C)

N 6. Non-Stable Liquid Chemicals

The linings are resistant to the chemical as shown. Since stability of this type of chemical may be affected by foreign contaminants from the lining, caution should be exercised to keep tanks clean. Each product should be checked for stability and compatibility with the lining.

N 7. Phenol

CARBO ZINC® 11 is resistant to Phenol (carbolic acid). Since phenol discolors if exposed to sunlight and/or trace alkalies, freedom from discoloration cannot be guaranteed.

N 8. Beverages and Potable Liquids

The listed coatings are unaffected by these liquids but no warranties can be made on effect of taste or odor imparted to the liquids from the linings.

	·····			RIPTION			
	SYSTEM		eel Tanks	Conc	crete Tanks	REMARKS	
		Product			Dry Film Thickness		
	1	CARBO ZINC* 11	Total 3 mils (75 micron		ver Concrete	Inorganic zinc, self-curing coating Excellent solvent re- istance. Meets FDA require- ments (21 CFR 175 390) in gray only.	
	3	CARBOGLAST 1601 S		<u>n</u>		Chemically resistant flake- glas filled polyester coaling Excellent for mineral and organic acids chlorine and hypochlorites	
_		vice Department. Not	recommended over steel	CARBOLINE * Surfacer See Use of Concrete Si CARBOLINE * 1340 Clear CARBOLINE * 1346 *CARBOLINE * 1346	20 mils (50 microns) 20 mils (50 microns) 20 mils (500 microns) 20 mils (500 microns) TOTAL 42 mils (1050 microns)	System has unique combina- tion of chemical resistance and elasticity Will bridge harrine cracks in substrate Outstanding resistance to fresh and salt water Excel- lent abrasion resistance on concrete	
	4	CARBOLINE® 187 Primer "CARBOLINE® 187 Finish	5 mils (125 microns) 5 mils (125 microns) TOTAL 10 mils (250 microns)	See Use of Concrete Su CARBOLINE® 187 Finish	ioptional) infacers-Sec. #4 5 mils (125 microns) 5 mils (125 microns) TOTAL 10 mils (250 microns)	EDOXY phenolic coating Excellent economical lining for many petrochemical ser- vices Carboline 187 meets FDA criteria (21 CFR 175 300) for direct food contact surfa- ces in appropriate color	
	5 5 A	COAL TAR EPOXY CARBOMASTIC® 14 *CARBOMASTIC® 14	8 mils (200 microns) 8 mils (200 microns) 70TAL 16 mils (400 microns)	CARBOMASTIC® 14 *CARBOMASTIC® 14	optional) rtacers-Sec. 44 8 mils (205 microns) 8 mils (205 microns) TOTAL 16 mils (410 microns)	Epoxy-coal far with excellent resistance to dilute acids and alkalies, salt and water Low material cost per square foot	
	58	CARBOMASTIC [®] 18	16 mils (400 microns)	CARBOLINE® Surfacer (See Use of Concrete Sur CARBOMASTIC® 18	optional) facers-Sec = 44 16 mils (400 microns) TOTAL 16 mils (400 microns)	High build epoxy coal far where single coal application is desired.	
	6		8 mils (200 microns) 8 mils (200 microns) 8 mils (200 microns) 70TAL 24 mils (600 microns)	CARBOLINE® Surfacer (o See Use of Concrete Surf PHENOLINE® 300 Drange PHENOLINE® 302 PHENOLINE® 302	optional) lacer-Sec. #4 8 mils (200 microns) 8 mils (200 microns) 8 mils (200 microns) 10TAL 24 mils (600 microns)	System has excellent overall chemical resistance and 20 years of field experience PHENOLINE® 300 Finish may be used as the last coat for light color, smoothness and gloss. Best phenolic system for combined acidic/Caustic service	
	7	PHENOLINE® 376 Primer "PHENOLINE® 376 Finish 1	S mils (125 microns) 5 mils (125 microns) 10TAL 10 mils (250 microns)	CARBOLINE® Surfacer (o) See Use of Concrete Surfa PHENOLINE® 376 Primer *PHENOLINE® 376 Finish	acers-Sec. #4 5 mils (125 microns) 5 mils (125 microns)	Modified phenolic coaling Best phenolic system for organic services. Meets FDA criteria (21 CFR 175300) for direct food contact surfaces in appropriate color.	
	8	CARBOLINE® 191 Primer CARBOLINE® 191 FinishT	5 mils (125 microns) 5 mils (125 microns) 0TAL 10 mils (250 microns)	CARBOLINE® Surfacer (op See Use of Concrete Surfa CARBOLINE® 191 Finish *CARBOLINE® 191 Finish	tional) icers-Sec. #4 5 mits (125 microns) 5 mits (125 microns) 17AL 10 mits (250 microns)	Epoxy polyamide system Excellent choice for fresh or salt water tanks and potable water sorvice. Fast dry time Hows short turn around Heets FDA criteria (21 CFR 175.300) for direct food con- act surfaces in appropriate	

"Two coat systems will provide adequate substrate protection to surfaces in reasonably good condition and give good service life. Three coat systems lextra intermediate or topcoat) should be considered if substrate is pitted, extremely rough, difficult configuration to properly protect, or exposed to a very corrosive environment.

CHART #18

EXPOSURES	1 00°F	130°F	160°F	EXPOSURES	100°F	1 30°F	160°F
Acetaldehyde	NR	NR	N8	Sutvi Lactate	8(N3)	**	
Acetic Acid, 5%	2	2	NA	Butyrzidetryde	에에 아이 분위	NA	NR
Acetic Anhydride	NR	M R	NR	Calcium Chioride, Saturated	5.7.8	NR 670	RK
Acetone	1	1	1	Calcium Hypochlorite, 15%	2	5.7.8	NR
Acetonitrile	1(MS)	NA	NR	Calcium Oxide (Ory)	4.5	2	NA
Acetophenone	I I	1	1	Culcium Sulfate (Ory)	4.5	4.5	4.5
Acetylene Tetrachloride	1 (NS)	NR	NA	Carbitol	4.5	4.5 1.7	4.5
Acrylic Acid	NA	MR.	NR	Carbolic Acid (Phenoi)	1,7	1.7	T
Acrylonitrile	1 (NG)	1 (N6)	1 <i>(N6</i>)	(Dryl, 100%	1(N7)		
Adiponitrile	4(M3),1(N5	NR	NA	Carbon Disulfide	1(NS),7	NR	NR
Aliphatic Esters	1(NS)	MR	NR	Carbon Dioxide (Gas),	(maj,/	NR	MA
Aliphatic Hydrocarbona	1.4.7	1.4.7	1	100% (0ry)	1.4	1.4	
Alkyi Benzene	1.7	1	1	Carbon Tetrabromide	I (NS),7	NA	1
Allyl Acetate	1 (NS).8	NR	NR	Carbon Tetrachioride	1(15).7	NR	XR NR
Aliyi Alcohot	1.7	1.7	1	Carbonic Acid, 10%	7.6	ин 7,6	NA
Alum Solution, 15%	5.4.7	NR	NR	Caustic Soda (NaOH), 20%	1	0, ۲ ۲	NA
Alum Solution, 35%	5	NR .	NR	Caustic Soda (NaOH), 50%	1	7	7
Aluminum Chloride, 30%	5.8.7(N3)	5.6	6	Cellosofve	1.7	-	1
Aluminum Hydroxide (Dry)	47	4.7	47	Califosolve Acetate		1.7	1
Aluminum Hitrate, 80%	4.7(13)	MR	NA	Chiorine Dioxide, 2%	1(NS).7 2	NA	MA
Aluminum Sulfate, 30%	4.5.3(N3)	NR	MR	Chlorine Water, Saturated	-	2	
Aluminum Suffice, 100% (Dry)	5	5	MA	Chierobenzene	2(N3)	2(N3)	
Ammonium Chloride (Dry)	4.5	4.5	4.5	Chieroethane	1(NS)	#IA	制計
Ammonium Nitrata, 20%	4.5	4.5	45		T(NS)	NR	NR
Ammonium Nitratu, 50%	4.5	4.5	4.5	Chloroethylene	1(NS)	NR	MA
Ammonium Kitrate, Dry	4.5	45	4.5	Chlorolorm Chlorolorm	1 (NS)	NR	NR
Ammonium Perchiorate, Dry	4.5	45	4.5	Chioresultonic Acid	NR	NA	MA
Ammonium Photohete	- . .		4.5	Chieroz	2	2	KR
Dibasic, Dry	4.5	45	45	Choline Chloride, 70%	7	NR	NA
Ammonium Phosphute	~	• .	4.5	Chronale Acid. 5%	2	2	MA
Monobasic, Dry	45	45		Chromic Acid. 10%	2	2	NR
Ammonium Sullaw, 40%	4.5	45	4.5	Chromic Sutlate, 40%	5	NR	NA
Ammonium Sulfate, Dry	4.5	45	4.5	Citric Acid. 5%	7	NA	ŴR
Amyl Acetate	 1 (NSL7	NA NA	4.5 NR	Coel Tar	7	7	7
Anillas	1(N2)	1(N2)		Coconut Oil	4.7	47	47
Atrazina, Technical	7	NA	1(112)	Copper Chieride (Dry)	5.6	5.6	6
Aviation Gas	41	мп 4.1.7	NA	Copper Settate (Dry)	5.6	5.6	6
Benzaldehyde	NR	NR	i MD	Cottenaeed Oil	1.4.7		
Benzene	1,7	1	NR ,	Creekate, 1.5% Weier	1	1	
Benzaic Acid. 10%	7/N3)	•	1	Cresylic Acid, 10%	NR	NA	MR
Benzyi Chieride	1(NSL7	NR		Cresytic Acid, 100%	1(#5)	KR	NA
	7(113)		NA Taura	Crotonaldehy de	NR	NA	NA
Bisach, Commercial	2	7(N3)	7(113)	Crude Oll, Seur	5.4.7	547	7
• · · · ·	45	2 4.5		Crude OII, Sweet	154	1.5.7	1.5.7
• • • •		-	-	Cumane	1.4	1	I
• •		5.7.8	1	Cumat	4		
B. A. JI	2(113) 1. ann	2(113)	2(143)	Cupric Sulfate (Dry)	56	5.6	6
	1.4(80) 1,4	1.4(165)	1 (116)	Cyclehexane	1.4	1,4	1
		1,4	1	Cyclehezanel	1,7	1.7	1
	1 (145),7 1 (145)	1(N5)	1 (145)	Cyclehexanene	1.7	1	1
	1 (NS) 1 4	NR 1.4	NER	Cyclohexylamine	I (N2.N3)		
	1,4 No	1.4	1	Detergent Alkylates	1,7	1	1
		NA.	NA	Detergent, Synthetic, 10%	1(84)		
	1 (NCZ)	1 (11(2)	1(112)	Discelene Alcehei	1.7	1	1
	1.7 Laure a	1	1	Di-Butyi Amine	1(02)	1 (11(2)	1(112)
	1 (NIS). 7	NA .	NA .	Olchieresthane	7.1(N5)	NR	NA
		1	ł	Dichlereethylene	1(115)	NA	NR
		1,7	1.7	Dichiereethyl Ether	1(NS)	K R	

-

٠

CHART #18

	EXPOSURES	1 00 ° F	130°F	160°F	EXPOSURES	1 00 ≤F	1 30 °F	160
-	Dichioraisopropyi Ether	1(NS)	NA	WR	Harrow			100
•	Dichioropropane	1(115)	NA	NA	Hexane	1.4,7	1.4,7	1,7
	Dicyclohexylamine	1(112)	1(N2)	KR	Kexylens Glycol	1.4.7	1.7	1.7
	Bicyclopentadiene	1.4(N6)	1(N6)	KA	Hydraulic Fluida	1(N1)	F(N1)	1(01)
-	Diesei Oil	1.4	1,4		Hydrazine, 5%	5		
	Diethanol Amine	1(112,113)		1	Hydrochloric Acid, 10%	2.6	2	2
	Diethyl Sulfate (Dry)	7			Hydrochloric Acid, 28%	2.8	2	2
	Dictiviene Glycol	1.4.7			Hydrochloric Acid, 37%	2	2	2
•	Olethylene Glycol Ethyl	1.4.1	1,7	1.7	Hydrofluoric Acid, 10%	NR	NR	NR
	Ether	17			Hydrogen Peroxide, 3%	2	2	
	Olethylene Triamine	1,7	1.7	1	Hydrogen Sulfide, Saturatud	5.6.2.7	5.6.2	2
	Disobutytene	1(K2)	NA	NA	Hypochlorite Bleach, 5%	2	2	4
	Diethyimaleate	1(W6),7			isobutyi Alcohoi	1.7	1	
		1(NS).7	NA	NA	Isobutyi Aldehyde	NR	NA	1
	Diethylphthalate	1,4,7	1.7	1	isobutyi Katona	1		NR
	Dimethylformamide	1 (N2)	i (N2)		isophorone	1	1	1
	Dimethylphthalate	1.4	1	1	Isoprene	•	1	t
	Olmethylsullaxide	1 (NS)	NR	NR	isopropanolamine	1.4(NG)	1 (NG)	1{ NG
	Gloctyl Phthelate	1.4	1.4	1	Isopropy! Alcohol	1(N2)		
	Dioxane	1.7	1	•	JP-4 Jet Fuel	1.4.7	1.7	1
	Olpropylene Glycol	1.4.7	1.7	1.7		4.1.7	4.1.7	1.7
	Olphenylene Oxide	1	1	1.7	Kerstane	3,1,4,7	31.4.7	1.7
	Bivinyi Acetate	1(NS.N6)	NA		Lactic Acid, 5%	4.6.7(N3)	7(N318	
	Dodecyl Benzene	1,4		NA	Lithium Chioride, Saturated	5.7.8	5.7.8	7
	Epichlorohydrin		1.4	1	Lube OH SAE 10-30	1.4.7	1.7	1.7
	Ethanolamine	1(N5)	NR	NA	Magnesium Chloride, Saturate	d 5.7.8	5.7 <i>B</i>	7.8
	Ethyl Acetate	NR			Magnesium Hydraxide, 20%	7	7	7.0
:	Ethyl Acrylate	1(N5),7	NR	NR	Maleic Acid (Dry)	7	,	
,		I (NS. N6)	MR	NR	Mateic Acid, 10%	2	2	•
	Ethyl Alcohai	I	1	1	Maxitylene	1(N5),7	2 MA	2
	Ethyl Amyl Katona	1.7	1	1	Mesitylexide	NA		NR
	Ethyl Benzene	1.7	I	1	Methacrylic Acid		NA	NR
	Ethyl Cellosolve	1.7	1	1	Methyl Acrylate	NR	NA	NR
	Ethyi Ether	1	1	I	Methyl Alcahol	1(05)	NR	NR
	Ethyl Ortho Silicatu	1,7	1	ì	Methyl Collegoive	1	1	1
	Ethylene Chloride (EDC)	1.7(NS)	NR .	NR		1.7	1	1
	Ethylene Chlorohydrin	1(145)	NR	NA	Methyl Cellosofve Acetete	1(115),7	MA	NR
	Ethylenediamine Tetraacetic				Methyl Ethyl Kalone, (NEK)	1	1	1
	Acid, 10%	7			Methylane Chloride, Bry	T(NS)	NB .	NA
	Ethylene Dibromide	1{N5}			Nethyl Isobutyl Carbinol	1,7	1,7	1
	Ethylene Dichloride (EDC)	1.7(NS)	NA	NR	Methyi Isabutyi Katana			
	Ethylene Glycot		NR	NA	(MHBK)	t	1	1
	Fatty Acids (Greater than Cal	1,4,7	1.7	1.7	Methyl Methacrylata			-
	Ferric Chloride, 20%	7	7	7	Menomer	1(NS.N6)	WR.	NR
	Ferric Suffate, 20%	5. 8.4(N3)	5.6.2	2	Methyl Kaphthalene	1.4.7	1,7	ł
		5.4.6	582	Z	Methyl Pyrrolidine	NR	NR	
	Ferrous Chioride, 40%	6.2	6.2	2	Mineral OII	1,4,7		NR
	Formaldehyde, 37%	2	2	z	Monachiersbenzene		1,7	1.7
	Formamide	1(N2)		-	Motor Dila	1 (NS) ,7	NR	NA
	Formic Acid, 10%	2	NA	NR	Naphitu	1.5.4	1.5.4	1,7
	Fvel Oli	1.5.7	1.5	1	Kiphikalene	1.4.7	1.7	1
	Furturyl Alcohol	1	1	1	•	1	1	1
	Sas. Aviation and		•	I I	Nitric Acid. 15%	2(N3)	2(113)	
	Commercial	1.4.7	17		Nikric Acid, 30%	2(N3)	NR	NR
	Gluconic Acid, 50%	1.4U 7.4	1.7	I		1(05),7	KR	KA
	Glycerine		1		Nitreprepane	1(115).7	RR .	NA
	Green Liquer	1.4.7	1.7	1.7	Manual Manual 1	1,7		
	Hegtane	7(N3)	7(N3)	7 (NI3)	A A	1		
	• •	1.4.7	1.4.7	1.7	0.01-01-0-0	1 (11.5)	NR	M D
	Hexachierocyclaperitadiene	I (NCS), 7	MR	NR	Bab	1,4,7	1,7	NR t
	Hexachiorepentacione	1(05),4,7	NR	NA	Octyl Chloride		1.F	Ŧ

.

-

CHART #18

EXPOSURES	1 00 ° F	130 F	1 60 °F	EXPOSURES	100°F	130°F	160
Oil Vegetable	1 (N4),4	1(84),7	1/041.7	Sodium Pentachiorophenate	6		
Oleic Acid	4,7	7		Sodium Silicata	7	•	-
Oxalic Acid, Dry	4.7	7		Sodium Suifate, 15%	•	7	7
P-Toluene Sulfanic Acid	NB	NR	NR	Sodium Sulfate (Saturated)	7.6	7.8	7
Paratlin Wax	1.4	1.4	1.4.7		7.8	7.8	7
Peanut Oll	1(84).4	1 (N 4).4	1(N4).8	Sodium Sulfide, 22.5%	4	NA	KR
Pentaerythritor	1.4	1.4	1	Sodium Tripolyphosphate Soybean Oli	5.7	7	7
Pantaerythritol, 10%	4	4	I.		7	7	7
Pentoxone	1.4.7	1.7	1	Soybean Oil, Crude, Degumme		7	7
Petrolatum	147		-	Starch, 10% Water	7	7	7
Petroleum Ether	1.4.7	1.4.7	1.7	Styrene Monomer	KR	NR	NR
Perchloric Acid	NB	1.4.7	1,7	Styrene Monomer			
Perchloroethylene				(inhibited)	1.7(NG)	1 (NG)	1/86
Phenol, 99.9% (Dry)	1 (NS),7	KR	NR	Sugar (Saturated)	7.6	7.8	7.6
Phenyglycidyl Ether	1(N7)	NA	NR	Sugar Syrup	7	7	
Phosphoric Acid, 20%	1	1	1	Sulturic Acid, 15%	3(#3).8.2	3(13).6.2	2
	2	2	2	Sulturic Acid, 30%	6.2	6.7	z
Phosphoric Acid. 30%	2	2	2	Sulfuric Acid, 65%	NR	MR	NR
Phosphoric Acid, 50%	2	2	2	Suffuric Acid, 95%	NR	NR	NA
Phosphoric Acid, 70%	2(N3)			Sulfurous Acid. Conc	2(113)	2(1(3)	NR
Phthalic Acid (Dry)	7			Taff Dif	7.4	7.4	NA
Phthalic Anhydrida (Dry)	7			Tail Dil, Crude Residue	7.4	7.4	
Pine Oll	1(N4),4,7	1(04).4.7	1 (814), 7	Tallow, Bleachable, Fancy	7	7	1
Pine Tar	1(144)_4,7	1(84).4.7	T(N4),7	Tallow, Top White	7	-	1
Pinene 80%	4		1	Tartaric Acid, 10%		1	7
Pluracol	1.4.7	1	t	Tert-Butylamine	7.64	7.6	7
Polyethylene Glycol	1.47	1.7	1.7	Tetraethylene Pentemine	1(KZ)	NR	用 目
Polyethylene Pellets (0ry)	1.4	1.4	1.4	,	1(N2)	KR	NR
Polypropylens (Dry)	1.4	1.4	1.4	Tetrahydroturan	1	1	1
Polypropylene Glycol	1.4.7	1.7	1.4 U7	Teluene	1.7	1.7	I
Potesh Slurry	7	1	1.7	Toluene Dileocyanate (TDI)	1{N6}	1 (NG)	
Polassium Bromide, 10%	, 5.7.8	5.7.B	•	Triacatin	1(N5),4,7	MA	NA
Potassium Hydroxide. 20%	7		1	Tribusic Sodium Phosphate			
Potassium Hydroxide, 50%		7	7	(Dry)	4,7(#3)	4.7(N3)	4.7(83
Polazzium Permangenate, 3M	7	7	7	Trichloresthans	1(115)	NR	NA
Procane	2			Trichlaroethylene	1 (NS).7	NA	NA
	1.4	1,4	1,4	Tricresylphospiluria	1.7	1.7	1.7
Propionic Acid. 50%	2	NR	NR	Triethanolamine	1(112),7	11821.7	NA
Propyl Alcohol	1.4,7	1.7	1	Triethyleneletramine (TETA)	1(112)	I (NZ)	NA
Propylene Dichloride	1(NS),7	NR	MA	Trisadium Palypheephata 55%	1	7	7
Propylene Glycol	1.4.7	1.7	1,7	Turpentine	17	1.7	ł
Propylene Oxide	1			Ures (Saturated)	6.7	6.7	6.7
Pyridene	1(NZ)	NR	MA	Vinegar	2	2	NR NR
Saa Weter	5.8.7.3	54.7.3	7	Vinyi Acetate Monomer	1(115,116)	KA .	
Sodium Bisulfite, 20%	6	0		Viny! Palleta (Dry)	4	4	NR
Sodium Borate, 10%	5.7.8	5.7.6	7	Water, Condensate	-	•	4
Sodium Bromide, 5%	5.8.7	5.8.7	7		6.7	L 7	NR
odium Carbonale			•	Water, Seionized	8	8	MA
(Seturated)	5.7.8	5.7	7.5	Water, Demineralized	8	1	MA
iedium Chlorete, 50%	5.8.7	5.8.7		Water, Clatified	6.7(NG)	7 .0(%8)	MA
iodium Chieride (Seturated)			7		8(N6)		NR
adium Bichremete, 10%	587 562	5.8.7	7	Max	3587	358 7	7
iodium Flueride (Saturaind)		2,6	2		3.6 48	70000	MA
iedium Fermale, 10%	5.6	6	-		1,7	1.7	1.7
adium Hydrazida, 10%	587	5.8.7	1	White Liquer	1	1	7
	5.7	1	1	Xylane	1.7	1,7	1
adium Hydraxide, 20%	7	7	1	Yellew Greese	7	1	
edium Hydraxide, 50%	7	7	7	Zinc Bremide (Ory)	4	4	4
odium Nydroxida, 70%	7	1	7		1	4	4
adium Hypochlerits, 5%	2	2	2	Zinc Suttern, 10%			•

.

1

.

.

CARBOLINE® 191 PRIMER AND FINISH

SELECTION DATA

GENERIC TYPE: Epoxy-polyamide. Part A and Part B mixed prior to application.

GENERAL PROPERTIES: A tank lining system for fresh water, including potable water service.

RECOMMENDED USES: CARBOLINE 191 Primer and Fin ish is recommended for use as a tank lining and heavy duty service system for protection of steel and concrete in water CARBOLINE 191 Primer and Finish complies with AWWA Standard for Painting Steel Water Storage Tanks. Inside Paint System No. 1, 3.2 (3).

NOT RECOMMENDED FOR Transmission of the

130 - E (54-C), strong mineral and organic acids, or solvent-

CHEMICAL RESISTANCE GUIDE:

Exposure*	Immersion	Splash and Spillage
Acids Alkahes Solvents Solt Water Sügar Solutions	NR Excellent to 150 F (66 C) NR Excellent to 150 F (66 C) Excellent to 130 F (54 C) Excellent to 150 F (66 C)	NR Excellent Pour Ean Excension Excension

TEMPERATURE RESISTANCE: Not affected by steam cleaning. See specific exposure for temperature resistance

FLEXIBILITY: Good WEATHERING: Very Good (chalks)

ABRASION RESISTANCE: Very Good

SUBSTRATES: CARBOLINE 191 Primer may be applied to properly prepared steel or concrete.

TOPCOAT REQUIRED: CARBOLINE 191 Primer may be topcoated with catalyzed epoxies, vinyls, modified phenolics, or others as recommended.

COMPATIBILITY WITH OTHER COATINGS: May be applied over CARBO ZINC* 11 or others as recommended. When applied over inorganic zincs such as CARBO ZINC 11, a mist coat is required to minimize bubbling.

March 87 Replaces July 86

SPECIFICATION DATA

THEORETICAL SOLIDS CONTENT OF MIXED MATERIAL: By Volume

C10001041 1010	and the second
CARBOLINE 191 Primer	71 - 2
	11 2 2
CARBOLINE 191 Finish	69% · 2%
	UD 10 - Z 10

RECOMMENDED SYSTEM: One coat CARBOLINE 191 Primer at 5 mils (125 microns) dry film thickness, plus one coat CARBOLINE 191 Finish at 5 mils (125 microns) dry film thickness. Service life is greatly increased with two coats of 191 Finish. An alternate system is one or two coats CARBO LINE 191 Finish over CARBO ZINC 11

THEORETICAL COVERAGE PER MIXED GALLON*

CARBOLINE 191 Primer 1239 Sectors 2014 signals of 25 Sectors CARBOLINE 191 Fineso 107 million III (27.6 sq. m.) at 25 microssa 221 sq. ft. at 5 mills (5.5 sq. m.) at 125 microssa

 NOTE: Material losses during mixing and application will any and must be taken into consideration when estimating job requirements.

SHELF LIFE: Twenty four months minimum when stored at 25 F (24 C).

COLORS CARBOLINE 391 Primer Brick Red Scill, CARBOLINE 191 Filiash White (S800) and Gray C203and C205) are standard. Other colors are available orspecial order.

GLOSS Clash and poss

BUE KING BE ORMAN PR

Prices may be obtained from your local Carboline Sales Representative or Main Office

APPROXIMATE SHIPPING WEIGHT:

	1-12 Gal. Kit	7-1-2 Gal Kit
CARBOLINE 191 Primer	20 lbs (19 kg)	94 95 - 43 kg
CARBOLINE 191 Finish	20 (hs. (9 kg)	94 (bs. (43 kp)
CARBOLINE Minner #76	8 lbs (4 kg) in 1's	37 Ibs 107 kg/ in 51s

FLASHPOINT: (Pensky-Martens Closed Cup)

CARBOLINE 191 Primer Part A	68 F (20 C)
CARBOLINE 191 Finish Part A	67 F (19 C)
CARBOLINE 191 Part 8	70 F (21 C)
CARBOLINE Thinner #76	
SHOOPENIE THIMBEL # 10	21 F f 6 Ci

To the best of our knowledge the technical data contained herein are true and accurate at the date of issuance and are subject to change without prior notice. User must contact Carboline to verify correctiness before specifying or ordering. No guarantee of accuracy is given or im plied, we guarantee our products to conform to Carboline quality control. We assume no responsibility for coverage, performance or injuries resoluting from use, Liability, if any, is limited to reolacement of projucts. Prices and cost data, if shown, are subject to change without prior notice, NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY CARBOLINE, EXPRESS OR IMPLIED, STATUTORY, BY OPERATION OF LAW OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exhibit E Page 8 of 9

APPLICATION INSTRUCTIONS

These instructions are not intended to show product recommendations for specific service. They are issued as an aid in determining correct surface, preparation, irrixing instructions, and application procedure of is assumed that the proper product recommendations have been made. These instructions should be followed afosely to obtain the recursion service from the materials.

SURFACE PREPARATION: Remove any oil or grease from surface to be coated with clean rags soaked in CARBOLINE Thinner #76 in accordance with SSPC-SP 1

Steel: Abrasive blast to a White Metal Finish in accordance with SSPC SP 5 to a degree of cleantiness in accordance with NACE #1 to obtain a 1-2 mil (25-50 micron) blast

g

091

Concrete: Do not coat concrete treated with hardening solutions unless test patch indicates satisfactory adhesion Do not apply coating unless concrete has cured at least 28 days at 70 F (21 C) and 50% R.H. or equivalent time. Apply to properly prepared dry concrete that was acid etched and neutralized or thoroughly and uniformly sweep sand blasted.

MIXING. Mix separately, their combine and mix is the following proportions:

14809 INF	.00 Franci h 84 Y	1 1 2 Gal. Kit	7-1 2 Gaf Kit
	o: 191 Envist: Part A 191 Part B	jados 12 gadon	li da lins 2012: La ant

May be thinned up to 20°, by volume with CARBOLINE Thinner #76.

NOTE. Use of thinners other than those supplied or ap proved by Carboline may adversely affect product performance and void product warranty, whether express or implied.

POT LIFE: Two hours at 75 F (24 C) and less at higher temperatures. Pot-life ends when coating loses body and begins to sag.

APPLICATION TEMPERATURES

	Material	Surfaces	Ambient	Humidity
Normai	65 85 F	65-85 F	65-85 F	50
	(18/29/C)	(18-29-C)	18 29 Cr	
M.nimum M	55 F (23 C)	50 F (10 C)	50 F (10 C)	<u>e</u>
Maximum	90 F 132 CI	110 F (43 CF	110 F (43 C)	40

Do not apply when the surface temperature is less than 5-F (or 2°C) above the dew point.

Special thinning and application techniques may be required above or below normal conditions.

SPRAY: Use sufficient air volume for correct operation of equipment.

Use a 50% overlap with each pass of the gun. On irregular surfaces, coat the edges first, making an extra pass later.

NOTE: The following equipment has been found suitable, however equivalent equipment may be substituted.

Conventional: Use a 3.8° minimum I.D. material hose Hold gun approximately 12-14 inches from the surface and at a right angle to the surface.

Mfr. & Gun	Fluid Tip	Air Cap
Binks #18 or #62 DeVilbiss P-MBC or JGA	66 E	63PB 704
	Approx070" I.D	

Airless. Use a 3.8° minimum I.D. material hose. Hold gun approximately 18-20 inches from the surface and at a right angle to the surface.

Mfr. & Gun	Pump*	
DeVilbiss JGB 507	QFA 514 or QFA 519	
Graco 205 591	President 30-1 or Bulldog 30-1	
Binks Model 700	Mercury 5C or 88-36-37-1	

*Techyn parckings ar en ei um menderd ar et aler dyaraat och och manufacturer

Use a :017 :021 tip with 2400 psi

BRUSH OR ROLLER. For touch up or small areas only. Use a natural bristle brush applying with full strokes. Avoid rebrushing. If rolled, use a short nap mohair roller with phenolic core. Avoid rerolling

DRYING TIMES

	CARBOLINE 191 Primer	CARBOLINE 191 Finish
Between Coats 50 F (10 C) 60 F (15 C) 75 F (24 C) 90 F (32 C)	-5 days -2 days 18 bours 12 nours	5 davs 2 davs 18 hogrs 12 hogrs
Final cure, 60 F (16 C) 75 F (24 C) 90 F (32 C)	3 weeks 10 days 7 days	3 weeks 10 days 7 days

Force curing at 150 F (66 C) is recommended for all tank hning service after an initial period of 18 hours at 75 F (24 C)

CLEANUP: Use CARBOLINE Thinner #76.

STORAGE CONDITIONS: (Store Indoors) Temperature: * 45-110 F (7-43 C) Humidity: 0-90%

*Return to minimum material temperature of 55 'F (13°C) before use

CAUTION: CONTAINS FLAMMABLE SOLVENTS, KEEP AWAY FROM SPARKS AND OPEN FLAMES IN CONFINED AREAS WORKMEN MUST WEAR FRESH AIRLINE RESPIRATORS HYPERSENSITIVE PERSONS SHOULD WEAR GLOVES OR USE PROTECTIVE CREAM ALL ELECTRIC EQUIPMENT AND INSTALLATIONS SHOULD BE MADE AND GROUNDED IN ACCORDANCE WITH THE NATIONAL ELECTRICAL CODE IN AREAS WHERE EXPLOSION HAZARDS EXIST. WORKNESS SHOULD BE RECURDED TO USE NONSERROUS TOOLS AND TO WEAR CONDUCTIVE AND EXPLOSION HAZARDS EXIST, WORKMEN SHOULD BE REQUIRED TO USE NONFERROUS TOOLS AND TO WEAR CONDUCTIVE AND

ATTACHMENT D-2-4-5 APPENDIX D-2-4 SECTION D-2

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 1200A

Revision No. 5.0

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 1200A TANKS T-1201A AND T-1202A

TABLE OF CONTENTS

I.	Introduction	1
II.	Tank Design	2
III.	Tank Foundation Design	2
IV.	Ancillary Equipment Design	3
V.	Secondary Containment System Design	3
VI.	Tank Venting Requirements	4
	Hazardous Characteristics of the Waste Managed /II.A. Tanks T-1201A and T-1202A	
VIII	. Certification of Tank System Design Assessment	5

LIST OF EXHIBITS

Exhibit A	Tank Data Sheets
Exhibit B	Tank Design Calculations
Exhibit C	Tank Foundation Design Calculations
Exhibit D	Calculations of Tank Venting Requirements

Exhibit E Tank Material of Construction Compatibility Information

LIST OF REFERENCED DRAWINGS

1200A-010-002A	Tank Management Unit 1200A - P&ID
1200A-020-001	Tank Management Unit 1200A - Plan View
1200A-020-002	Tank Management Unit 1200A - Plan View
1200A-030-005	Tank Management Unit 1200A – Details and Sections
1200A-040-001	Tank Management Unit 1200A – Ground Floor and Foundation Sections
	and Details
1200A-040-002	Tank Management Unit 1200A – Batch Stabilization Mixing Tanks
1200A-080-001	Tank Data Sheet - T-1201A & T-1202A
1200A-080-002	Tank Data Sheet - T-1201A & T-1202A

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 1200A TANKS T-1201A AND T-1202A

I. Introduction

This document provides the assessment and certification for the design of the hazardous waste storage tank system(s) at Tank Management Unit 1200A at the Chemical Waste Management, Inc. Facility in Emelle, Sumter County, Alabama. The assessment was performed to address the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), regarding the design of the system within Tank Management Unit 1200A which is comprised of the tanks (i.e., Tanks T-1201A and T-1202A), the tank foundation, the associated ancillary equipment and the secondary containment system.

Tank Management Unit 1200A is located to the south of existing Unit 1400 and to the east of Unit 2000 as shown on Drawing No. 0100-020-001 in Appendix D-1 to Section D of the RCRA
Part B Permit Application. The primary function of Tanks T-1201A and T-1202A within Unit 1200A is for waste storage and various waste treatment methods such as mixing, neutralization, chemical treatment, chemical and physical extraction, immobilization, separation of components, encapsulation, size reduction, and/or stabilization.

The following drawings were used in the preparation of this Assessment and Certification and are provided either in Exhibit A (Tank Data Sheets) or in Appendix D-1 to Section D of the RCRA Part B Permit Application:

	Drawing No.	Drawing Title
25	1200A-010-002A	Tank Management Unit 1200A - P&ID
	1200A-020-001	Tank Management Unit 1200A - Plan View
	1200A-020-002	Tank Management Unit 1200A - Plan View
	1200A-030-005	Tank Management Unit 1200A – Details and Sections
	1200A-040-001	Tank Management Unit 1200A – Ground Floor and Foundation Sections
30		and Details
	1200A-040-002	Tank Management Unit 1200A – Batch Stabilization Mixing Tanks
	1200A-080-001	Tank Data Sheet - T-1201A & T-1202A
	1200A-080-002	Tank Data Sheet - T-1201A & T-1202A

II. Tank Design

5

20

35

Tanks T-1201A and T-1202A have been designed in accordance with the design codes and standards indicated within the DESIGN DATA section of the Tank Data Sheets (i.e., Drawing Nos. 1200A-080-001 and -002) provided in Exhibit A to this tank system design assessment. The criteria utilized in the assessment of the design of the shell, structural support, and anchorage for Tanks T-1201A and T-1202A are also provided within the DESIGN DATA section of the Tank Data Sheets, as well as within the tank design calculations provided in Exhibit B to this tank system design assessment.

The calculations provided in Exhibit B to this tank system design assessment demonstrate that the tank shell, structural supports and anchorages are, as designed, adequate to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as applicable, at the design conditions indicated on the tank data sheets.

Each tank within Unit 1200A is a double-walled, steel tank that is recessed in a reinforced concrete foundation vault that is integral to the reinforced concrete foundation for the building. Each tank is supported within its foundation vault by a continuous steel frame that is integral to the building foundation. Each tank is bolted to the steel frame at its top perimeter, and therefore, continuity (i.e., grounding) of these tanks is inherent to their design. Since each tank is located completely within the metal building frame of Unit 1200A, the possibility of lightning striking the tanks or their contents is precluded.

III. Tank Foundation Design

The designs of the reinforced concrete foundations for Tanks T-1201A and T-1202A are indicated on the Tank Data Sheets (i.e., Drawing Nos. 1200A-080-001 and -002) and on Drawing Nos. 1200A-040-001 and 002 which are provided in Appendix D-1 to Section D of the RCRA Part B Permit Application. The criteria utilized in the assessment of the design of the foundation for Tanks T-1201A and T-1202A are provided within the tank foundation design calculations provided in Exhibit C to this tank system design assessment.

The tank foundation design calculations provided in Exhibit C demonstrate that the tank foundations are, as designed, adequate to support the load of the full tanks and to withstand associated environmental stresses at the design conditions indicated on the tank data sheets and provided within foundation design calculations.

AttachD-2-4-5Text.docx

IV. Ancillary Equipment Design

All tank system ancillary piping systems shall be designed, installed and tested in accordance with the American Society of Mechanical Engineers (ASME) Standard B31.3, "Chemical Plant and Petroleum Refinery Piping", or an equivalent nationally recognized standard, and in accordance with recognized good engineering practices to ensure that there are supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

10

5

All other ancillary equipment for the tank system shall be designed, installed and tested in accordance with appropriate recognized standards, if any, and in accordance with recognized good engineering practices to ensure that it is supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

In order for this tank design assessment and associated certification to be maintained, and prior
to the tank system being placed in use, the Facility shall ensure that the tank system ancillary equipment is properly installed and that all required inspections, tests and repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f). Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance
with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested.

25 V. Secondary Containment System Design

The design features of the secondary containment system for the tank systems within Unit 1200A are indicated on Drawing Nos. 1200A-020-001 and -002, and 1200A-030-005which are located in Appendix D-1 to Section D of the RCRA Part B Permit Application. As shown on these drawings and in accordance with the applicable requirements of 40 CFR 264.193(e)(3) and ADEM Administrative Code Rule 335-14-5-.10(4)(e)3., the secondary containment system design is equivalent to that for a double-walled tank, with containment by the secondary wall. Each tank is also equipped with a continuous monitoring device to detect a leak from the primary tank into the interstitial space between the tank walls. Further details on the secondary containment system design for Tanks T-1201A and T-1202A are provided in Section D-2 to this Application.

VI. Tank Venting Requirements

As indicated on the Tank Data Sheets (i.e., Drawing Nos. 1200A-080-001 and -002) provided in Exhibit A to this tank system design assessment and on the P&ID for Unit 1200A (i.e., Drawing No. 1200A-010-002A which is located in Appendix D-1 to Section D of the RCRA Part B Permit Application), Tanks T-1201A and T-1202A are designed as open top tanks and, therefore, do not require venting.

5

VII. Hazardous Characteristics of the Waste Managed

VII.A. Tanks T-1201A and T-1202A

In accordance with the requirements of 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., this section presents an evaluation of the compatibility of the wastes 10 managed within the Unit 1200A tank systems with the materials of construction of Tanks T-1201A and T-1202A and the ancillary equipment (i.e., pumps and piping) to determine their suitability for service in this unit.

The types of wastes managed within Tanks T-1201A and T-1202A will include virtually every 15 type of hazardous waste listed and identified in 40 CFR Part 261 and ADEM Administrative Code Rule 335-14-2, except for ignitable and reactive wastes. In addition, TSCA-regulated PCB wastes, non-hazardous wastes, and treatment residues from listed wastes are managed in tank systems in Unit 1200A. Certain wastes that contain volatile organic compounds in concentrations not in excess of 10% by volume may also be managed in tank systems in this 20 unit. Tanks T-1201A and T-1202A and the ancillary equipment that contact wastes within this system are primarily constructed of carbon steel without internal corrosion protection.

Exhibit E to this tank system design assessment presents information which provides an indication of the relative compatibility of carbon steel with a wide variety of chemical compounds 25 and other substances. The table in Exhibit E provides corrosion/compatibility information for carbon steel exposed to pure chemical compounds which, in general, tend to have a more severe corrosive effect than wastes which contain mixtures and complexes of these compounds. Although this table may not provide corrosion data and service recommendations for all of the potential constituents of the wastes or waste mixtures which may be managed 30 within the tank system in Unit 1200A, the table does demonstrate that carbon steel is generally compatible with and, under normal conditions, should not experience an accelerated rate of corrosion or deterioration when exposed to a majority of the types and classes of wastes which are managed within the Unit 1200A tank system. In addition to the compatibility/corrosion data provided in Exhibit E, the compatibility of carbon steel with the types of wastes managed within 35 Unit 1200A is further validated by the empirical data provided by many years of comparable service applications within a variety of units at the Facility.

AttachD-2-4-5Text.docx

VIII. Certification of Tank System Design Assessment

In accordance with the requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), this section provides a certification by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), that an assessment of the design of the following tank system(s) demonstrates that the tank system foundation, structural supports, seams, connections, and pressure controls are adequate, and that the tanks have sufficient structural strength, compatibility with the wastes to be managed and/or protection from corrosion so that they will not collapse, rupture or fail, if properly installed, operated within the design limits, and properly inspected and maintained:

10

15

20

25

30

35

5

Tank System Location:	Chemical Waste Management, Inc.
	Emelle, Alabama
Tank System Identification:	Tank Management Unit 1200A
Applicable Tanks:	T-1201A and T-1202A

At a minimum, the assessment of the tank system design, which is incorporated herein by reference, addresses and considers the following factors with respect to the intended use of the tank system:

- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tank designs have been evaluated for structural integrity with regards to the ability of the designed tank shell, structural supports and anchorages to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as applicable;
- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which piping and other ancillary equipment shall be designed and constructed to maintain this certification;
- In accordance with 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., the assessment of the tank system design considers the compatibility of the tank's materials of construction and/or internal coatings with the types of hazardous wastes to be managed;
- In accordance with the applicable requirements of 40 CFR 264.192(a)(5) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)5., the assessment of the tank

system design considers the ability of the designed tank system foundation to support the load of the full tanks and to withstand associated environmental stresses; and

 The assessment of the tank system design considers the adequacy of the capacity of the designed tank secondary containment system as required by the applicable requirements of 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e).

In order for this certification to be maintained, the Facility shall comply with the applicable requirements of 40 CFR 264 Subpart J and ADEM Administrative Code Rule 335-14-5-.10, and shall perform all routine management procedures, periodic inspections and reviews, and tank system functionality and integrity tests as required by the permit including, but not limited to, the following:

- The Facility shall ensure that the tank system is properly installed and that, prior to placing the tank system in use, all required inspections, tests and necessary repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f);
- Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment was properly designed, installed and tested;
 - Prior to placement of a waste into the tank system, the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the Unit 1200A tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components, including hazardous wastes that exhibit the characteristic of corrosivity as defined in 40 CFR 261.22 and ADEM Administrative Code Rule 335-14-2-.03(3);
 - Prior to placement of a waste into the tank system, the Facility shall verify the specific gravity of the waste in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit

5

30

35

Application. The Facility shall prohibit the placement into the tank system of any waste that has a specific gravity that exceeds the design maximum value specified within the tank system design assessment;

- Prior to placement of a waste into the tank system the Facility shall verify in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application that the treatment of the waste will not cause temperatures within the tank system to exceed the design maximum value specified within the tank system design assessment;
- The Facility shall perform a daily inspection of the visible aboveground portions of the tank exterior to detect excessive corrosion or deterioration;
- The Facility shall perform a daily inspection of the visible aboveground portions of the tank secondary containment system to detect leakable cracks or gaps, or excessive deterioration of the concrete base and/or chemical resistant concrete coatings;
- The Facility shall perform an annual inspection of the tank shells, as described in Subsection F-2-6 of Section F-2 of the RCRA Part B Permit Application, to ensure that minimum code thicknesses are maintained and that adequate corrosion allowance is available for continued service;
 - The Facility shall perform an annual inspection of the tank structural supports and anchorages to ensure that their integrity is maintained;
 - The Facility shall perform a periodic inspection of the tank level sensing, overfill control devices and associated interlocks to ensure that they are in good working order with the appropriate settings to prevent overfilling of the tanks. The frequencies and procedures for inspection of all tank level sensing and overfill control devices shall be as recommended by the manufacturer; and
 - The Facility shall perform a periodic inspection of any other operational controls for the tank system to ensure that they are in good working order with the appropriate settings to maintain the tanks within their design limits as specified within the tank system design assessment. The frequencies and procedures for inspection of other tank system operational controls shall be as recommended by the manufacturer.

35

5

10

15

20

25

30

Based on the information provided within the tank system design assessment and supporting documentation, the designs of Tanks T-1201A and T-1202A within Tank Management Unit 1200A meet the current RCRA requirements relative to the design of new hazardous waste tank systems. The design assessment addresses only the applicable requirements of 40 CFR 264.192 and 40 CFR 264.193, and ADEM Administrative Code Rules 335-14-5-.10(3) and (4),

and does not consider compliance with other codes or regulations, including, but not limited to, the requirements of the Occupational Safety and Health Act (OSHA).

With regards to the assessment and certification of the design of hazardous waste tank systems
in accordance with the applicable requirements of 40 CFR 264.192(a) and (g), and ADEM Administrative Code Rules 335-14-5-.10(3)(a) and (g), I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and

imprisonment for knowing violations.

15

Mark C. Christian, P.E Alabama P.E. No.: 20751 Principal ETI Corporation 6799 Great Oaks Road, Suite 100

20 6799 Great Oaks Road, Suite 100 Memphis, Tennessee 38138-2500

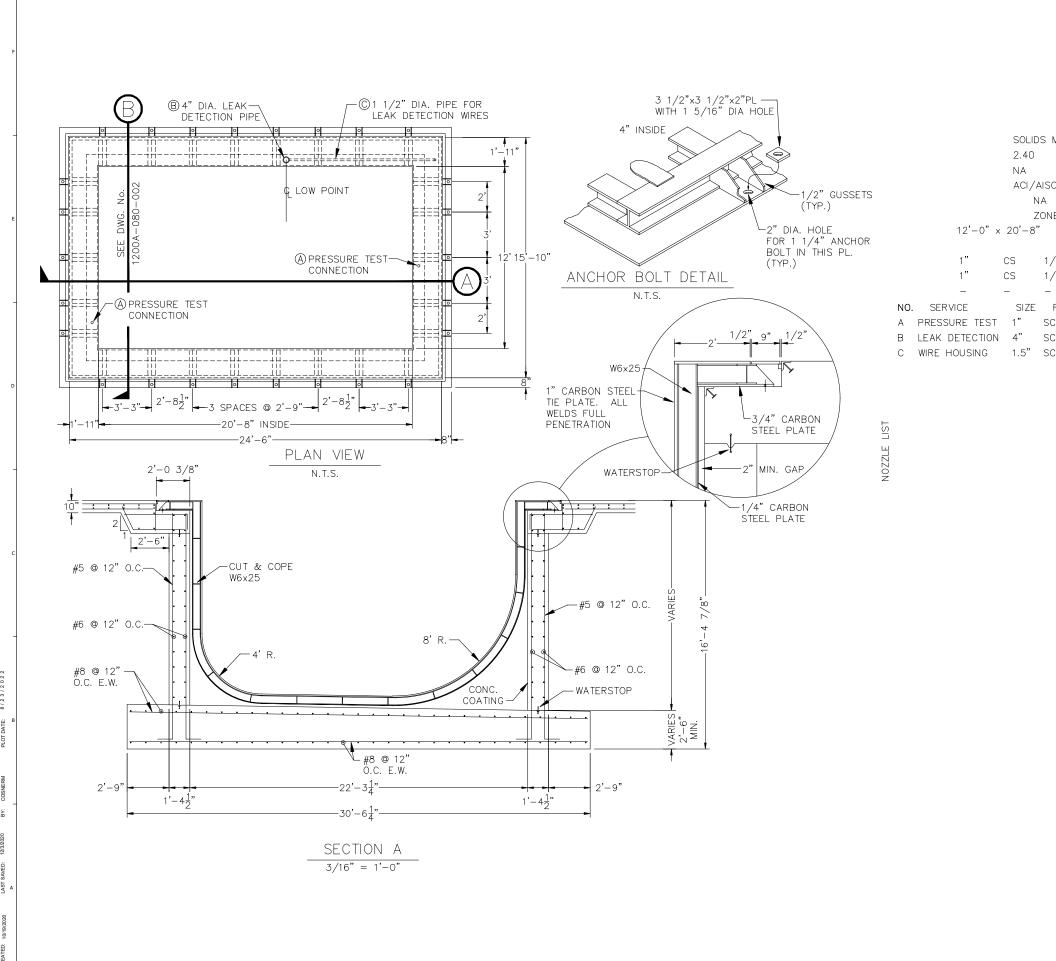
This certification was originally submitted in 1996. As part of the 2002 Part B Application
Renewal, revisions were made to the text in this attachment. These revisions consisted primarily of renaming the section for the Waste Analysis Plan to Section C to maintain consistency with the other Sections contained within this Part B Permit Application. As part of the 2009 Part B Application Renewal, additional revisions were made to the text in this attachment. These revisions consisted primarily of removing references to Tanks T-1203A and T-1204A, which were not built and are no longer proposed. During this Part B Permit Application renewal process (Revision 5.0), one revision was made to the secondary containment calculations for Unit 1200A in Section D-2.

35

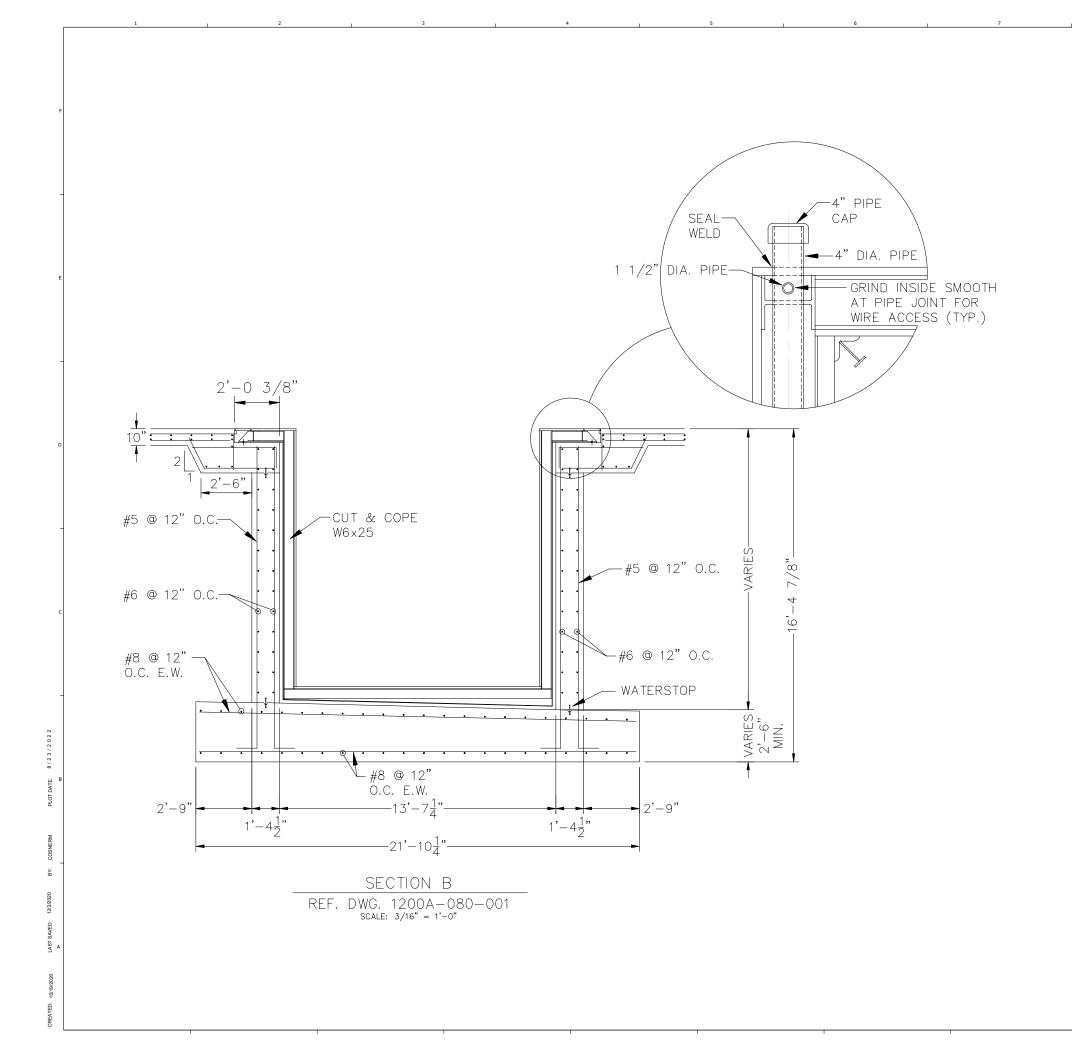
With regards to the revisions noted above, I certify under penalty of law that these modifications were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Michael T. Feeney, P.E.
 Alabama P.E. No.: 15895
 Jacobs Engineering Group Inc.
 Ten 10th Street NW
 Atlanta, Georgia 30309

10


15

[End of Attachment D-2-4-5 Text]


EXHIBIT A

TANK DATA SHEETS

	20,802 gal. ATM / 0°F	ATM 150*F
S MIXING		
		24"
		NA 0.70
AISC		0.70
A ONE 1		
UNE I	12'-0"	
1 /0"		
1/8" 1/8"	—	_
-	_	_
RATING	ORIENTATION	REMARKS
	AS SHOWN	_
	AS SHOWN	_
	AS SHOWN	LEAK DETEC.

						パコンノロン			10 Tenth Street	Sulfe 14.00 Allantia, GA 30309 1404.978.7600
									NUL RELEASED FOR	CONSTRUCTION
							WASTE MANAGEMENT			
	RCRA PART B PERMIT APPLICATION					CHEMICAL WASTE MANAGEMENT INC.	EMELLE, ALABAMA TREATMENT FACILITY			SUMTER COUNTY, AL
								RCRA PART B PERMIT RENEW AL		REVISION DESCRIPTION
								08/22		DATE
Q								5.0		REV
	THIS THIS (LINE LON DRAV	IG WI	HEN I MUS	PLOT T BE E OR	TED F USEC	FULL:	IS O SCAL	NE IN E JNCT:	ICH ION ICAL IENTS.
PR	OJE	CT N	INS A IO: GUS	D32	797		NTRA	CT D	DCUN	IENTS.
DA DI: M	5C. I	LEAD	D:	t 20 Des Rak	IGN	ER:			CKE B T	R:
	EET					ET 02/		-12	201	A &
SH	EET		120	04	۹-0	80	-00)1		\neg

	Jacobs	10 Tenth Street Suite 1400	Allantia, GA 30309 1404.978.7500
		NOT RELEASED FOR	CONSIRUCTION
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY		SUMTER COUNTY, AL
		CRA PART B PERMIT RENEW AL	REVISION DESCRIPTION
		08/22 R	DATE
\coprod		8	REV
THIS LINE LON THIS DRAV WITH THE A	S WHEN PLOTTED FULL S ING MUST BE USED IN CO PLICABLE OR GOVERNIN NS AND OTHER CONTRAC	S ONE INC CALE NUNCTION G TECHNB	JH DN CAL
PROJECT N DATE: AU	0: D3279702 UST 2022		
DISC. LEAD MTF SHEET TIT	RAK	SBT	2:
CUEFT	TA SHEET - T- T-1202A 200A-080-00		\$ 8.

EXHIBIT B

TANK DESIGN CALCULATIONS

	CHEMICAL WASTE MANAGEMENT CO.						
EMELLE, ALABAMA FACILITY							
	CALCULATION COVER SHEET						
UNIT:	1200 A						
TANK NO.:	T-1201 A & T-1202A						
DECRIPTION:	BATCH STABILIZATION MIXING TANKS						
	VESSEL CALCULATIONS						
PREPARED BY:	LANZ DATE: 9/26/94						
REV. DATE NO.	BY CHK APPVD. PAGES REMARKS						
ATTACHMENTS: F	PRIOR CALCULATIONS HAVE BEEN INCLUDED TO SUPPLEMENT THE DATA USED IN THE CALCULATIONS.						

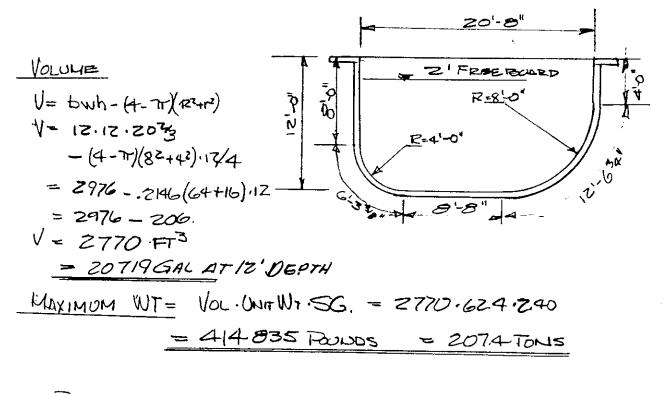
1.1.1.1.1

UNIT 1200 A

DESIGN CALCULATIONS

DESIGN DATA SHEET T-1201A, T-1202A Page 1 of 15 Service: Batch Stabilization Mixing Tanks

12' by 12' by 20 2/3' Batch Stabilization Tank - in Ground Chemical Waste Management, Emelle, AL Job No. 44228.00


Service Status Diameter/Length Shell/Heigth Bottom/Width Heads/Ends Top		Existing 20' - 8" 12' - 0" 12' - 0"
Legs	••••••••••••••••••	Inground - None
Operating Capacity	/	20 802 691
Material of Consti	ruction	Carbon Stool
Corrosion Allownce	2	1/8 inch
Joint Efficiency	•••••••••••••••••••••••••••••••••••••••	0.70
Design Spec. Grav.	•••••••••••••••••••••••••••••••••••••••	2 40
Design Pressure		2.40
Design Temperature	150 deg F. Max to Odeg F.	Min
Roof Live Load psf	reading the second seco	
Wind Load	· · · · · · · · · · · · · · · · · · ·	NA
Seismic Zone		NA
Agitator	•••••••	
Location	•••••••••••••••••••••••••••••••••••••••	No
200001011		Indoors

ROSSER BOVAY	······································		· · · · · · · · · · · · · · · · · · ·
ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET	OF
ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER	DESIGNED LANZ	/ / CHECKED	11/29/94
CALINI KUSSER			

Exhibit B Page 2 of 17

24

UNIT 1200A - TANKS T-1201A, T-1202A

PBUT = 12.433.2.4 = 12.47PS1 = 1716PSF LENGTH OF INNER SHELL レ= 8'+ 至.4+(203-4-8)+ 至.8+4' -=8+83+4+7(4.12) = 203+47 = 33.23'LENGTH OF OUTER SHELL = 2033 + 4.29 7 = 2033 + TT 4.604 35.13 USE 3'X3' MAY SIZE DANELS TO FOR SQUARE GUD STEUCTURE = I"LINEE 36" USE 12' DEPTH FOR - & Caression DESIGN Persoule ON FLOR = 12471251

E		PROJECT CHEM	WASTE MET PROJ. NO.	44228.00
	ROSSER JUSTICE SYSTEMS ROSSER LOWE	UNIT 1200A	TANK T-1201AS OZA SHEET	20F 15
ы М	IHT ROSSER	DESIGNED	9,25,94 CHECKED	1 1

Exhibit B Page 3 of 17

TANKS T-1201A, T-1201B

USE ROALL (JH ED TABLE 26 CASE 1 & CASE 8 1. RETANGULAR PLATE ALL EDGES SMOLY SUPPORTED & RECTANGULAR PLATE ALL EDGES SMOLY SUPPORTED.

CASE I SIMPLE SUPPORT
HAXG =
$$C_{0} = \frac{D_{0}}{E_{1}} \frac{D^{2}}{E_{2}}$$
M4 $Y_{ij} = -\frac{C_{0}}{E_{3}} \frac{D^{2}}{E_{3}}$
 $S = \frac{2874(12+1)}{875^{2}} \frac{D^{2}}{E_{1}}$
 $S = \frac{2874(12+1)}{875^{2}} \frac{D^{2}}{E_{1}}$
 $S = \frac{C0666}{181}$
 $Y = \frac{-00444(1247)}{8700} \frac{D^{2}}{E_{1}}$
 $S = 0.2374$
 $S = 0.0444$
 $\frac{D^{2}}{2} \frac{D^{2}}{E_{1}}$
 $S = 0.0444$
 $\frac{D^{2}}{2} \frac{D^{2}}{E_{1}}$
 $\frac{D^{2}}{E_{1}} = 0.0444$
 $\frac{D^{2}}{2} \frac{D^{2}}{E_{1}}$
 $\frac{D^{2}}{E_{1}} = 0.0444$
 $\frac{D^{2}}{2} \frac{D^{2}}{E_{1}}$
 $\frac{D^{2}}{E_{1}} = 0.0444$
 $\frac{D^{2}}{E_{1}} \frac{D^{2}}{E_{1}}$
 $\frac{D^{2}}{E_{1}} = 0.0444$
 $\frac{D^{2}}{E_{1}} \frac{D^{2}}{E_{1}} = 0.0306$
 $\frac{D^{2}}{E_{1}} \frac{D^{2}}{E_{1}} = 0.0306$
 $\frac{D^{2}}{E_{1}} \frac{D^{2}}{E_{1}} = 0.0306$
 $\frac{D^{2}}{E_{1}} \frac{D^{2}}{E_{1}} = 0.0306$
 $\frac{D^{2}}{E_{1}} \frac{D^{2}}{E_{1}} = 0.038(2607)$
 $\frac{D^{2}}{E_{1}} \frac{D^{2}}{E_{1}} = 0.038(2607)$
 $\frac{D^{2}}{E_{1}} \frac{D^{2}}{E_{1}} = 0.0149$
 $\frac{D^{2}}{E_{1}} \frac{D^{2}}{E_{1}}

9125194

CHECKED

Exhibit B Page 4 of 17

I H T

ROSSER

DESIGNED

$$\frac{\text{TANKS T-1201A, T-1202A}}{\text{MINIMUM TAKENESS}}$$

$$CASE 1 SIMPLE SUPPORT G = \frac{B g b^{2}}{-t^{2}}, t = \left(\frac{B b^{2}}{5}\right)^{t}$$

$$t = \left(\frac{.2874 (12.47) 3 c^{2}}{27.000}\right)^{\frac{1}{2}}$$

$$t = 0.445 \text{ INCMES}$$

CASE & ALL EDGES FIXED
$$S = \frac{B_{0}b^{2}}{E^{2}} \frac{t}{t} = \left(\frac{B_{0}b^{2}}{27,00}\right)^{\frac{1}{2}}$$

 $t = \left(\frac{3078 \cdot 12.47 \cdot 36^{2}}{27,00}\right)^{\frac{1}{2}}$
 $t = 0.429 \text{ INCHES}$

116" PLATE READ W/O CORROSION AUON

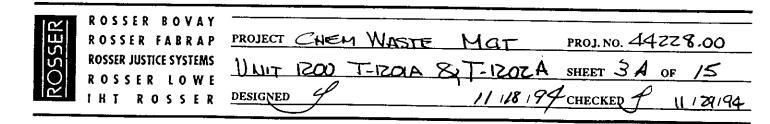
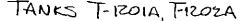


Exhibit B Page 5 of 17


TANKS T. IZOIA & FIZOZA
BACHNOE LOADING
ASSUME LOAD IS ADPLIED TO A d'' xZd'' AREA.
USE ROARE,
$$G^{TH}ED$$
, TOLZG, CASE IC.
MAXG = $G_{D} = \frac{\beta W}{t}$ $W = ga, b_{1}$
IF G = ZT.000 PS
 $W = G = \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$

THE BACKHOE WILL NOT LOAD A PLATE LIKETHIS IF MORE THAN 1-2' OF FRODUCT IS IN THE TANK

	PANEL LA	AYOUT		,	.—	
	COUSIDER . ONE WAY BI	EAMS	-	61,32	4 	
		8'0' G'-3'5'	11'-8"	6', 3' 1 8'-8" 8'RAD SEC 9'-674"	4	
SER	ROSSER BOVAY ROSSER FABRAP		4 WASTE MGT	11	DJ. NO. 44228,00	-
ROSSER	ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER	UNIT 1200A DESIGNED	T-12014 & T-120		<u>et 40f/5</u>	-

S Exhibit B Page 6 of 17

Source (Lawy Con-

BOTTOM DEAMS

LIVE LOAD = 12,47 PSI = 1796 PSF DEAD LOAD - RIS+ SCEBRAM = 35.7+10.2 + 25/3 = 54.73 PSF TOTAL LOAD = 1850 PSF

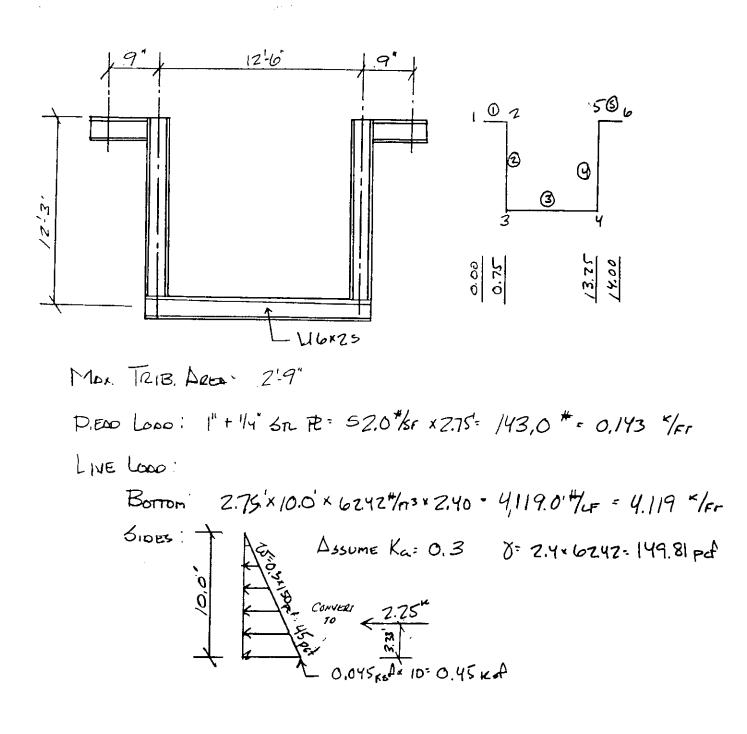
HYDROSTATIC PRASSURE -M= 42.88K' M= - 42.68K1

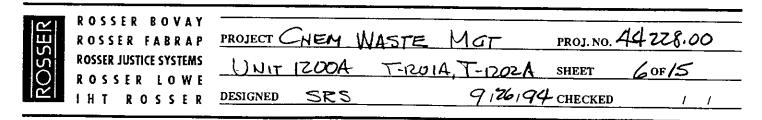
(III- DAATZ)

THE BOTTOM MEMBER HAS

THE MOMENTS SHOWN ABOUTE

ATTACHED

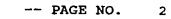

USE WG 25 BEAMS 4-734 d = 6.38 INNERSHELL 1"-CA = 78" I = 53.4 OUTER SHELL 14" 5 = 16.7 18" -1"72 -CA 7.505" WGX25 12" AR

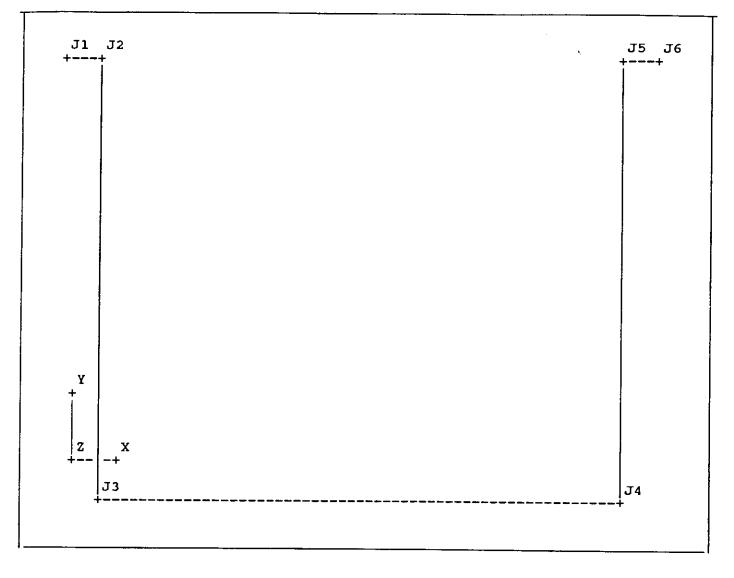

MOMENT OF INFERTIA R= 7.34. 3.14+18.3(13+1)-124.6 7.34+18.3+12/4 = 23.41+107.3 - .375 7.34+154 +3 $= \frac{130.34}{26.09} = 4.975''$ $I = 53.4 + \frac{3^{3}.18}{12} + \frac{4^{3}.12}{12}$ + 7.34(5-3A)+1534.(61885)+3.(5-6)2 = 534+ 1.0+.02+5202+241+788 = 209.3 IN4 MOMENT CALCULATIONS ARE $D_1 = \frac{209.3}{2.27} = 92.61 \text{ in}^3$ Jzz 209.3 = 39.87 IN? STRESS @ OKNER = 42.88 012/5, = 5.56KS1 TOP RATE 1 52 = 12.91 KSI BOTTOMPLATE STRESS @ GENTER = - 92.68 12/51 = 5.53KSI TOP APTE 152 = 12.85 KSI BUTTOM PLATE

ALL STRESS OK

 た	ROSSER BOVAY				
JSSER	ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJECT CHEM WAST		PROJ. NO. 44228,00	
O O	ROSSER LOWE IHT ROSSER	UNIT 1200A T	ASOSI-T, ALOSI-		50F 15
	IHT ROSSER	DESIGNED	9126194	CHECKED	<u> </u>

L





S Exhibit B Page 8 of 17

***************** * * STAAD-III * REVISION 15.0 (VERSION 15 LEVEL 0) × * PROPRIETARY PROGRAM OF * RESEARCH ENGINEERS, INC. * DATE= SEP 26, 1994 * TIME= 10:29:40 ÷ ÷ ÷ 1. STAAD PLANE 2. * CHEMWASTE MANAGEMENT 3. * EMELLE, ALABAMA UNIT 1200 TANK 1201A 4. * 5. * 6. *FILE NAME"ETI1200" 7. *DESIGNED BY SCOTT SMITH 8. * 9. *CHECKED BY: DATE: 11. UNITS KIP FEET 13. JOINT COORDINATES 14.10.0012.25;20.7512.25;30.750.0015.413.250.00;513.2512.25;614.0012.25 17. MEMBER INCIDENCES 1 2; 2 2 18. 1 3; 3 3 4;44 -5 19. 5 5 6 21. SUPPORTS 22. * 23. 1 6 FIXED BUT MZ 25. UNITS INCH 27. MEMBER PROPERTIES 28.123456 TA ST W6X25 **** WARNING - PROPERTY FOR MEMBER** 2 DUPLICATED. LAST VALUE USED 30. CONSTANTS 31. E 29000.0 ALL 32. DENSITY 0.000283565 ALL 34. DRAW SECTION XY 0.0 0.0 JOINTS ALL

7/15

STAAD PLANE -- PAGE NC. 3 * CHEMWASTE MANAGEMENT 36. UNITS FEET 40. * 41. MEMBER LOAD 42. 3 UNI GY -0.143 43. 2 4 UNI GY -0.143 44. * 46. LOADING 2 (LIVE LOAD) 47. * 48. MEMBER LOAD 49. 3 UNI GY -4.119 50. 2 CON GX -2.25 8.67 51. 4 CON GX 2.25 8.67 52. *********** 53. SECTION 0.25 .5 .75 MEMB 1 TO 5 54. PERFORM ANALYSIS PRINT STATICS CHECK PROBLEM STATISTICS ------

NUMBER OF JOINTS/MEMBER+ELEMENTS/SUPPORTS = 6/ 5/ 2 ORIGINAL/FINAL BAND-WIDTH = 1/ 1 TOTAL PRIMARY LOAD CASES = 2, TOTAL DEGREES OF FREEDOM = 14 SIZE OF STIFFNESS MATRIX = 84 DOUBLE PREC. WORDS TOTAL REQUIRED DISK SPACE = 12.01 MEGA-BYTES

9/15

STAAD PLANE * CHEMWASTE MANAGEMENT	PAGE NO. 4
***TOTAL APPLIED LOAD (KIP FEET) SUMMARY (LOADING SUMMATION FORCE-X = 0.00 SUMMATION FORCE-Y = -6.25 SUMMATION FORCE-Z = 0.00	l)
SUMMATION OF MOMENTS AROUND THE ORIGIN- MX= 0.00 MY= 0.00 MZ=	-43.77
***TOTAL APPLIED LOAD (KIP FEET) SUMMARY (LOADING SUMMATION FORCE-X = 0.00 SUMMATION FORCE-Y = -51.49 SUMMATION FORCE-Z = 0.00	2)
SUMMATION OF MOMENTS AROUND THE ORIGIN- MX= 0.00 MY= 0.00 MZ=	
++ PROCESSING GLOBAL STIFFNESS MATRIX. 10 ++ PROCESSING TRIANGULAR FACTORIZATION. 10 ++ CALCULATING JOINT DISPLACEMENTS. 10	0:29:43 0:29:43 0:29:44 0:29:44 0:29:44
LOADING 1	
SUM-X= 0.00 SUM-Y= 6.25 SUM-Z=	0.00
SUMMATION OF MOMENTS AROUND ORIGIN-	
MX= 0.00 MY= 0.00 MZ= 4	43.77
LOADING 2	
SUM-X= 0.00 SUM-Y= 51.49 SUM-Z=	0.00
SUMMATION OF MOMENTS AROUND ORIGIN-	
MX= 0.00 MY= 0.00 MZ= 37	1.87
*********** END OF DATA FROM INTERNAL STORAGE ******	****

55. PRINT MEMBER FORCES

14.

STAAD PLANE * CHEMWASTE MANAGEMENT

MEM	BER EN	D FOI	RCES STR	RUCTURE TY	PE = PLAN	E		
ALL	UNITS	ARE	KIP FI	ET			ν.	
MEMB	LOAD	JT	AXIAL	SHEAR-Y	SHEAR-Z	TORSION	MOM-Y	MOM-2
1	1	1 2	-0.34 0.34	3.13 -3.11	0.00	0.00	0.00	0.00 2.34
	2	1 2	-3.53 3.53	24.93 -24.93	0.00	0.00	0.00	0.00 18.69
2	1	2 3 2 3	-3.11 1.05	-0.34 0.34	0.00	0.00	0.00	-2.34 -1.77
	2	2 3	-24.93 24.93	-3.53 5.78	0.00	0.00	0.00	-18.69 -32.65
3	1	3 4	-0.34 0.34	1.05 1.05	0.00	0.00	0.00	1.77 -1.77
	2	3 4	-5.78 5.78	24.93 26.56	0.00 0.00	0.00	0.00	32.65 -42.88
4	1	4 5	-1.05 3.11	0.34 -0.34	0.00	0.00	0.00	1.77 2.34
	2	4 5	-26.56 26.56	5.78 -3.53	0.00	0.00	0.00	42.88 19.92
5	1	5 6	-0.34 0.34	-3.11 3.13	0.00	0.00 0.00	0.00	-2.34
	2	5 6	-3.53 3.53	-26.56 26.56	0.00 0.00	0.00	0.00	-19.92 0.00

56. PRINT SECTION FORCES

11/15

٩.

MEM	BER	FO	RCES	AT	INTI	ERME	DIA	TE SE	ECTIC	NS			
ALL	UN	ITS	ARE		KIP	FE	ET						
MEMB	LO.	AD	SEC	S	HEAF	₹ −¥	SH	EAR-2	Z	MOM-Y	!	MOM-	Z
1	1	0.	.25 .50 .75		3.1 3.1 3.1	.2		0.00 0.00 0.00		0.00)	-0.5	7
	2	0.	25 50 75		24.9 24.9 24.9)3)3		0.00		0.00 0.00 0.00)	-1.7 -4.6 -9.3 -14.0	7 5
2	1	0.	25 50 75		-0.3 -0.3 -0.3	4		0.00 0.00 0.00		0.00 0.00 0.00		-1.3 -0.2 0.7	B
	2	0. 0.	25 50 75		-3.5 -3.5 -5.7	3 3	(0.00		0.00		-7.8	7 5
3	1	0.	25 50 75		0.5 0.0 -0.5	0		0.00		0.00		-0.69 -1.53	L
	2	0. 0.	25 50 75	-	-0.5 12.0 -0.8 13.6	5 2	(0.00 0.00 0.00		0.00 0.00 0.00 0.00	-	-0.69 -25.13 -42.68 -20.02	3
4	1	0.	25 50 75		0.3	4	0).00).00).00		0.00 0.00 0.00		0.74 -0.28 -1.31	} 3
	2		25 50		5.74 5.74 3.5	8 8	C).00).00).00		0.00 0.00 0.00		25.16 7.45 -9.10	5
5	1	0. 0. 0.	50 75	-	-3.1 -3.1 -3.1	2	C	0.00		0.00		-1.75 -1.17 -0.59	•
	2	0. 0. 0.	50	-2	26.50 26.50 26.50	5	0	.00		0.00 0.00 0.00	-	14.94 -9.96 -4.98	I

57. PRINT SUPPORT REACTIONS

.

STAAD PLANE

ţ

CHEMWASTE MANAGEMENT

SUPP	ORT RE	ACTIONS -UN	NIT KIP FE	ET STRUC	TURE TYPE		
JOINT	LOAD	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM Z
1	1 2	-0.34 -3.53	3.13 24.93	0.00	0.00	0.00	0.00
6	1 2	0.34 3.53	3.13 26.56	0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

58. PRINT JOINT DISPLACEMENTS

STAAD PLANE

* CHEMWASTE MANAGEMENT

JOIN 	JOINT DISPLACEMENT (INCH RADIANS) STRUCTURE TYPE = PLANE											
JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN					
1 2 3 4	1 2 1 2 1 2 1 2	0.00000 0.00001 0.00015 -0.00012 -0.40153 0.00012 -0.39746	0.00000 0.00000 -0.00651 -0.05798 -0.00794 -0.07519 -0.00794 -0.01933	$\begin{array}{c} 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\end{array}$	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	-0.00065 -0.00582 -0.00056 -0.00517 -0.00024 -0.00987 0.00024 0.00858					
5 6	1 2 1 2	-0.00001 -0.00015 0.00000 0.00000	-0.00651 -0.00099 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00056 -0.00125 0.00065 -0.00056					

**************** END OF LATEST ANALYSIS RESULT ***************

59. FINISH

****** DATE= SEP 26,1994 TIME= 10:29:45 *****

T-1201A, T-1202A

ATERAL LOADING

THIS FORCE IS RESISTED BY THE I'S JA" PLATES AT EACH END SLEAK) AND BY THE HORE & VERT MEMBERS IN EACH SIDE.

CONSIDER A SUR RESISTING WITH A PLATE OF THICKNESS REQUAL TO THE CALCULATED COMPOSITE STRENGT

FOR
$$3' = J = 39.87 i u^3$$

 $39.87 = \frac{bh^2}{6} \cdot \frac{36 \cdot h^2}{6} \cdot \frac{h^2}{6} = 6.645$
 $h = 2.58''$

POARK G^{H} ED CHAP 26 CASE Id $G_{m} = \frac{Bq}{2.58^{2}} \frac{b^{2}}{v}$

$$= \frac{0.28.814.144}{2.582} = \frac{2150\,PS/}{014}$$

$$= \frac{0.049.894}{E\,258^3} = \frac{0.035\,IN}{0.035\,IN} 014$$

EARTHQUAKE FORCE IS 2819 = 0.1313 13% OFLIVE LODO

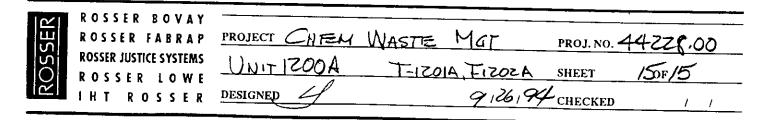
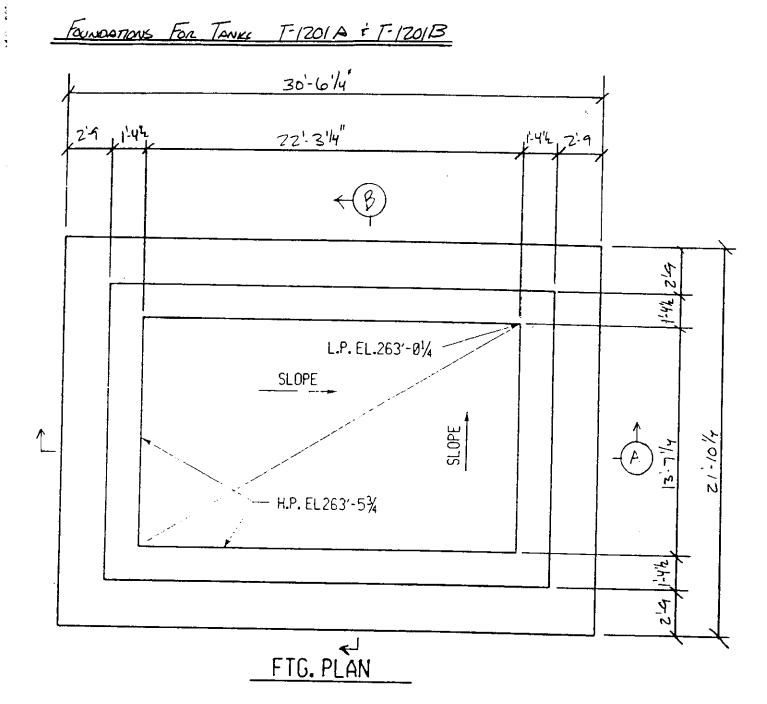


Exhibit B Page 17 of 17

$$UHERE LL = 414.8 \text{ KIPS} \\ DL = 57.0 \text{ KIPS} \\ WC = 478.820 \text{ BUNDS} \\ Au = 0.06 \\ Cc = 2.0 \\ P = 0.5 \\ Ac = 1.0 \\ \end{bmatrix}$$


H
$$DL = 40.8 \cdot 12 \cdot (33 \cdot 4 + 2 \cdot 20^{2} \cdot 3 + 4 \cdot 2)$$

 $+ 10.7 \cdot 12(35 \cdot 4 + 2 \cdot 20^{2} \cdot 3)$
 $+ 30.6 \cdot 2 \cdot 74$
 $+ 30.6 \cdot 2 \cdot 74$
 $+ 25(13 \cdot 12 + 5(34 + 21))$
 $= 40731 + 9358 + 9529 + 12025$
 $-6.645 = 56.785$
 $2.58''$
 $q = \frac{F = 0}{20 \cdot 12 \cdot 144} = 0.819 \text{ PSI}$
 $1d$
 $\frac{\pi}{6} = 733$
 $\beta = 0.28$
 $\chi = .00479$ 12
 27

EXHIBIT C

TANK FOUNDATION DESIGN CALCULATIONS

			CHEM	IICAL V	VASTE	MANAG	GEMENT CO.
				EM	ELLE, ALA	BAMA FAC	CILITY
				CAL	CULATIO	V COVER S	SHEET
UNIT	:		1200	\mathcal{A}			
TANH	(NC	D.:		410	- T- 1-	LOZA	
DECF	רפור	TION:	BOR	н 5та	BILIZA	TION M	1IXING TANKS
				FO	UNDATION		
PREP	'ARI	ED BY:	_ 5.5	<u>יודו אי</u>	<u></u>	DATE:	9-15-94
RE\ NO		DATE	BY	СНК	APPVD.	PAGES	REMARKS
 				·····			
	_						
ATTAC	нм	ENTS:	PRIOR CA	LCULATIC	ONS HAVE		CLUDED TO CALCULATIONS.
							CALCULATIONS.
							SCOTTIR. SKUPH
							GISTE SIGNAL
							9.26-94
							}

.

	ROSSER BOVAY						
E	ROSSER FABRAP	PROJECT CHEM LOSTE	MONALEMENT	PROJ. NO.			
250	ROSSER JUSTICE SYSTEMS	EMELLE, ALA.		SHEET SK-	OF		
N N N	ROSSER LOWE IHT ROSSER	PROJECT CHEY LASTE EMELLE, ALA. DESIGNED S.SMITH	9,15,94	CHECKED		1	1

Exhibit C Page 2 of 13

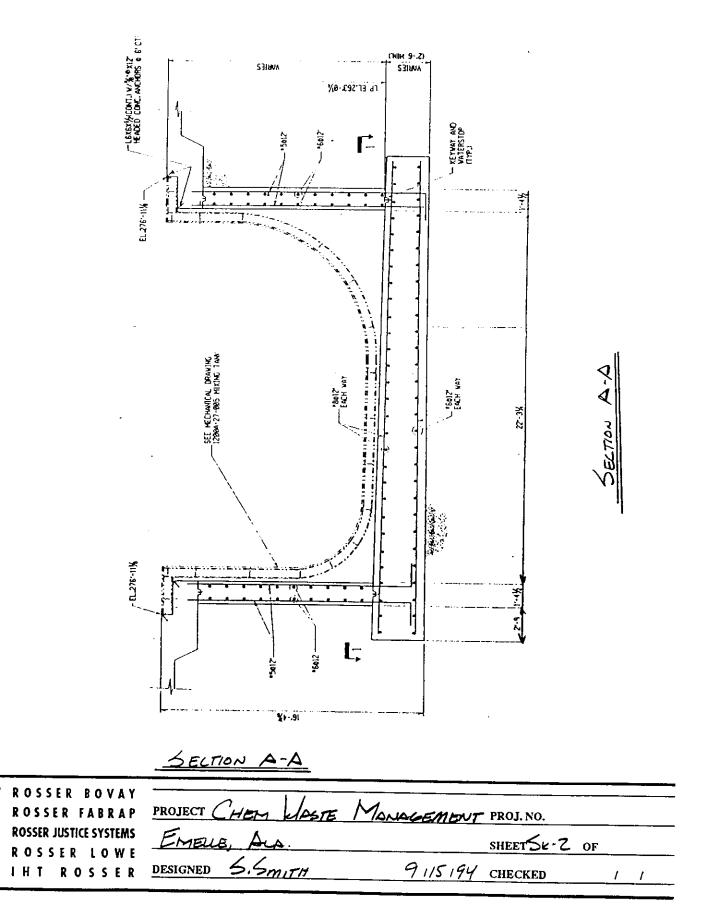
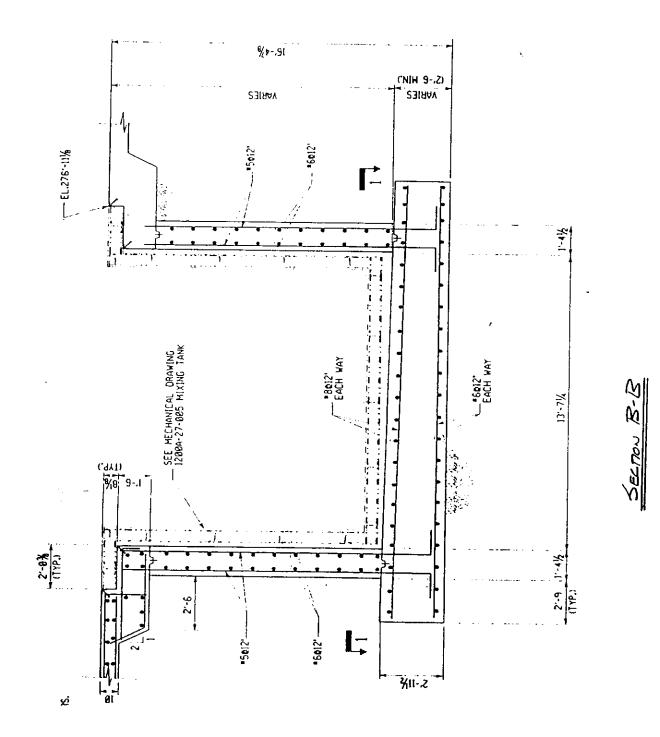
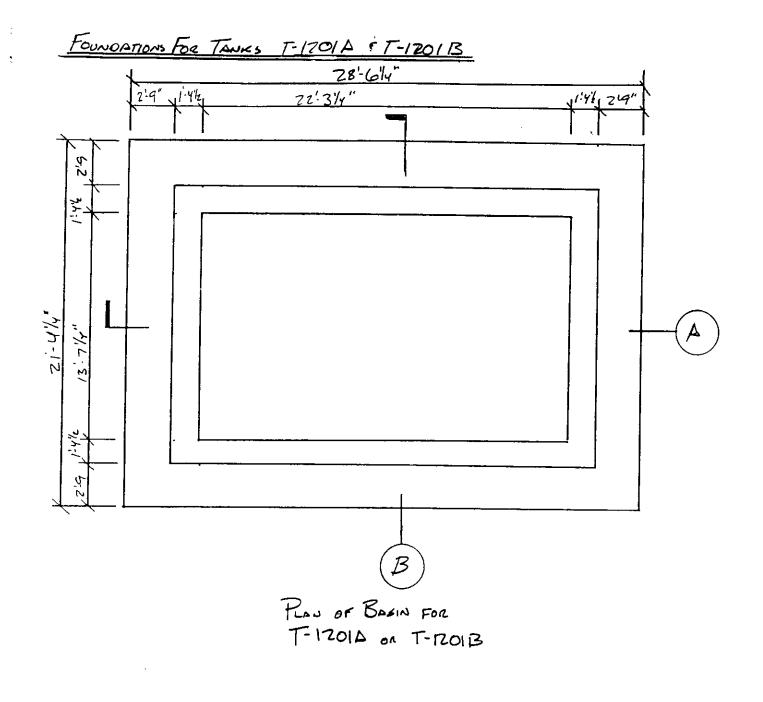




Exhibit C Page 3 of 13

SER	ROSSER BOVAY ROSSER FABRAP	PROJECT CHEM HALTE EMELLE, ALA DESIGNED 6, SMITH	MANAGEMOUT	PROJ. NO.		
50	ROSSER JUSTICE SYSTEMS	EMBLE, ALA.		SHEET SK-3 OF		_
Т М	IHT ROSSER	DESIGNED 6, SMITH	9115194	CHECKED	1	1

Exhibit C Page 4 of 13

	ROSSER BOVAY				
Ш	ROSSER FABRAP	PROJECT CHEM LOSTE	MANAGEMENT	PROJ. NO.	
ROSSER	ROSSER JUSTICE SYSTEMS	EMELLE, ALD.		SHEET /	OF
Ř	HT ROSSER	EMELLE, ALA. DESIGNED S. SMITH	9115194	CHECKED	1 1

Exhibit C Page 5 of 13

FOUNDATIONS FOR TANKS T-1201A : T-1201B

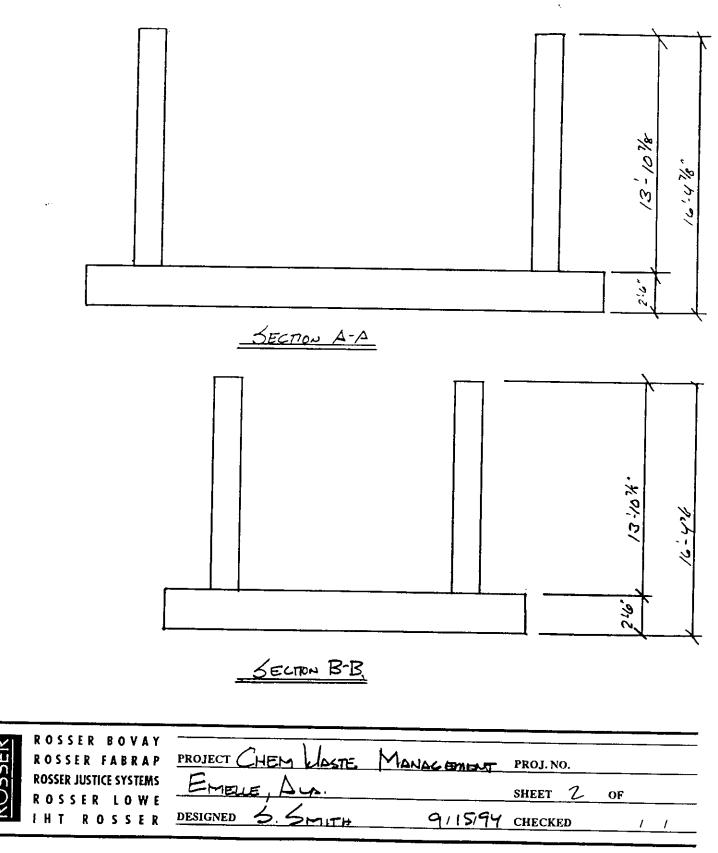


Exhibit C Page 6 of 13 FOUNDATIONS FOR TANKS T-12013 + T-12013

Soil PORAMETERS Ju= 110pef 8= 105pcf Ka: 0.45 Ko. 0.63 USE WATER TABLE & GRADE (CONSU.) LOADINGS How: 300 pst SURCHARGE BASE : BOCKINE MINING LOOD & 10" TANK & CONTONTS TANK Wr. LINER I"THE STER P 41-0"x 12:0" x 40.8%r= 20,073" 2 × 20'0' *12'0" × 40.8% = 19,584" 5 × 41-0 × 25 % = 5,125# 8× 37-0"x 25 1/1 == 7,400" 52,182# SUBTOTIL Misc (+10%) 5,218# 57,400 # CONTENTS VOLUME 103 CY (REF. VESSEL DUG 01-27-005) Specific GRAVITY = 2.4 ICY OF WATER + 202 GALLOW OF WATER 1 dr.= 103 cyx 202 00 / yx 8.34 #/ Gal × 2.4 = 416, 452 #

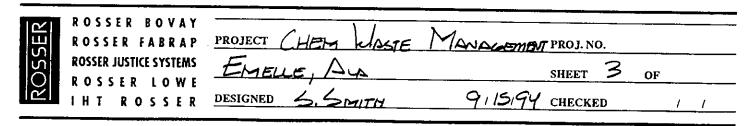
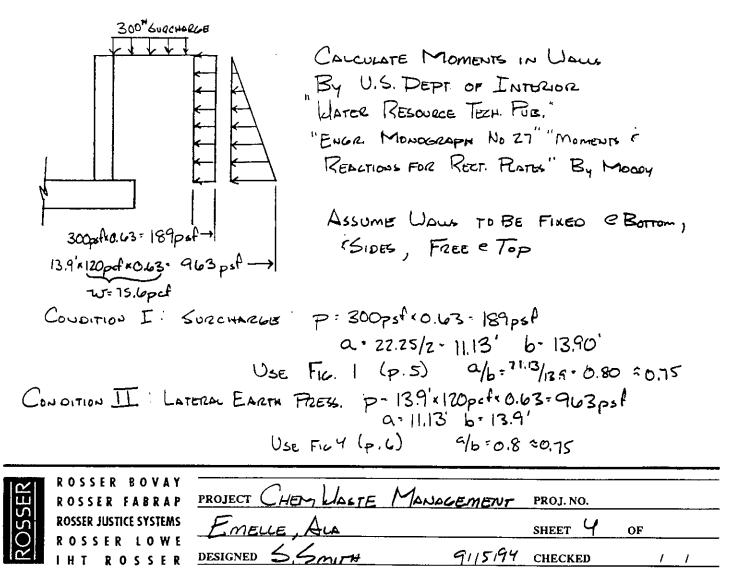
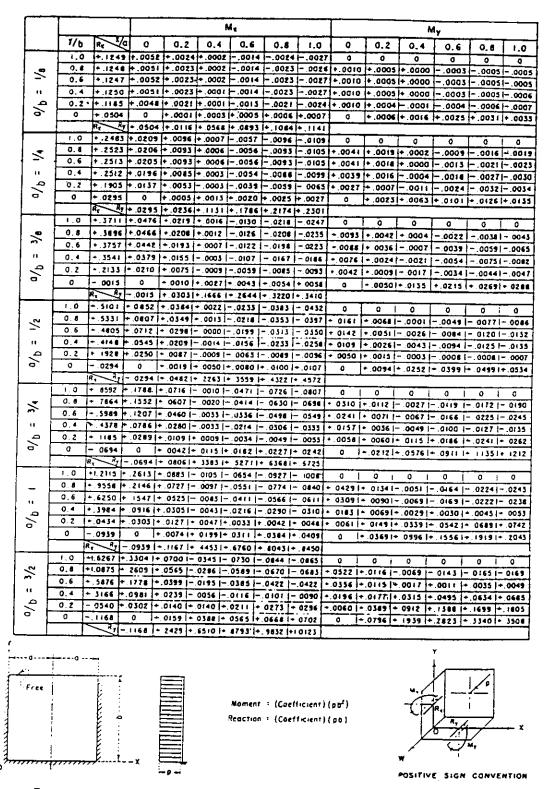
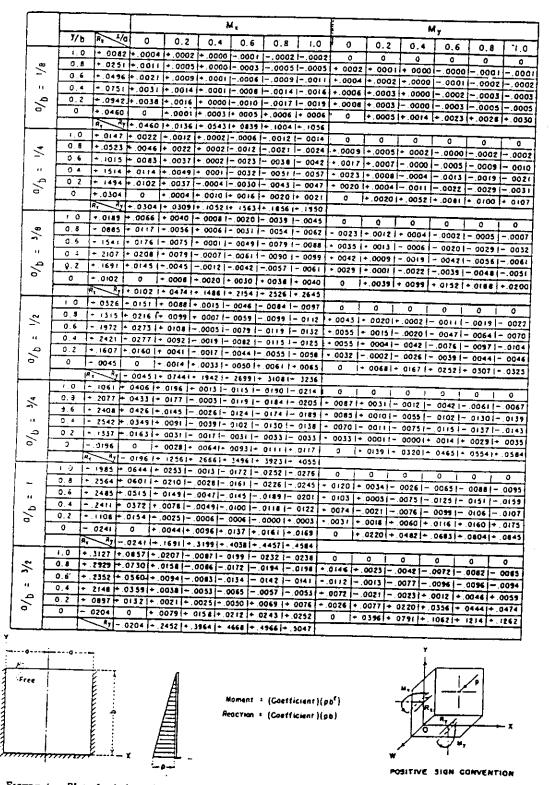


Exhibit C Page 7 of 13

LATERAL LOSO


Exhibit C Page 8 of 13

\sim	ROSSER BOVAY				
	ROSSER FABRAP	PROJECT CHEM WASTE	MANAGMENT	PROJ. NO.	
KO55ER	ROSSER JUSTICE SYSTEMS	EMELLE, ALS		SHEET 5	OF
진	ROSSER LOWE IHT ROSSER	DESIGNED 5,5MITH	9115194	CHECKED	

Exhibit C Page 9 of 13

SER	ROSSER BOVAY ROSSER FABRAP	PROJECT CHEM UNSTE MANDLEMENT EMELLE, ALS DESIGNED S. SMITH 9715194	PROJ. NO.			
S	ROSSER JUSTICE SYSTEMS	Fare An				
	ROSSER LOWE	L'IMELLE, POUS	SHEET O	OF		
	IHT ROSSER	DESIGNED 5. 5MITH 9115194	CHECKED		1	1

Exhibit C Page 10 of 13

o

FOUNDATIONS FOR TANKE 1201A + 1201B

John DESIGN MAX MOMENT (CONDITION I) (@ Y/6.1.0 + x/4.0) (D.S) Mx · 0.1788 (189psf)(13.9)2= 6.529 FT-165 MAR MOMENT (CONDITION II) (@ Y/b= 1.0 F 1/g=0) (D.6) Mx= 0.0406(963psf)(13.9)2. 7,554.0 FF-16. Torac Moment' 6.52"F+7.55"F- 14.07 K-F MAR SHERR (COND. I) (4/6=1.0) R= 0.8592(189psf)(13.9)- 2,257* MAX SHEAR (COND. II (Y/6=1.0) 12 · 0,1061 (963psf)(13.9) - 1,420 # TOTAL SHEDR= 2,257++1,420+- 3,677+ <u>CHECK BENONE</u> 2 = 16/2 - Z". 0.625/2 - 14.18" As= #5e12"% As-0.31," $a = \frac{A_{s} f_{y}}{a = 0.31 (60)} = 0.61''$ ØMn= ØAsfy (d- %)= 0.9(0.31)(60)(14.18"- 0.6/2) - 232"-19.35" Mu= 1.4x 14,07 K.F. 19.69 K.T ØMn · 19.35 K-F 7 Mu · 19.69 ** SUGHRY OVER BUR OK CHEER SHENR V1. 3,677 * - Vu- 1.4×3,677- 5,147* QVc. Ø 2FE bol. 0.85(2) 13,000 (12)(14,18") = 15,844# QVC. 15,844" = VIL= 5,147" 1. SHEAR OK

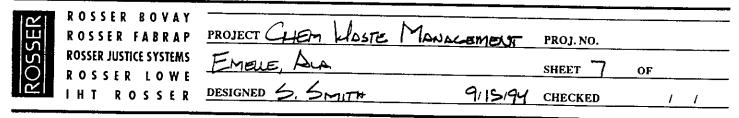
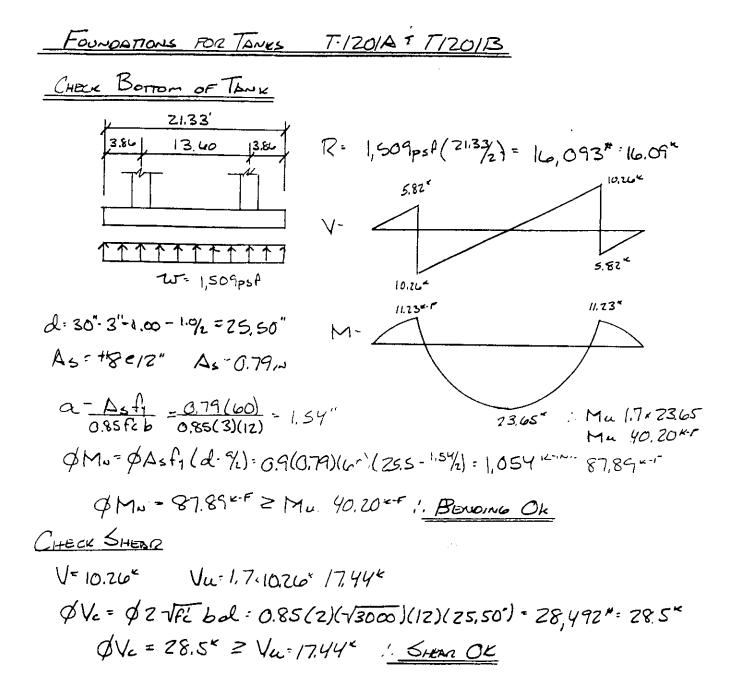



Exhibit C Page 11 of 13

FOUNDATIONS FOR TANKS 1201A E1201B CHECK Son BEDRING UT. OF CONC. TANK Walls 2x 24.02'x 13,90'x 1.375 x 150 /2r ~ 137,724 # 28,5' × 21,33' × 2,5' × 150 %/ ~ · BOSE 227,964 WIT conc. 443,667" Wr. Contours = 416,452* Wr. STELL TAME ST,400" Lt.: 443,667"+416,452"+ 57,400"- 917,519" 5.B. P. 917, 519# A 170 s'k 2122') - 1,509 psf = 3,000 psf : S.B. OK CHECK BOUYENCY (JUST CONC. TANK) DISPLACED VOLUME Wous 24.02'x 13.60' 13.90' = 4.540 cr BOSE 28.50 × 21.35 × 2.5'= 1519cF 6,059cr BOUYOUT FORCE: 6,059 = K62.42 1/4 = B78,249 #1 HT CONC. TK = 443,667" S.F. = 1.17 .. OK BOUYAUF FORCE 378,249"

ROSSER	ROSSER BOVAY ROSSER FABRAP	PROJECT CHEM LASTE	Management-PROJ. NO.	-
550	ROSSER JUSTICE SYSTEMS	EMELLE, ALS	SHEET S OF	
R N	ROSSER LOWE IHT ROSSER	DESIGNED 5, 5mith	9115194 CHECKED 1 1	_

Exhibit C Page 12 of 13

ROSSER	ROSSER BOVAY ROSSER FABRAP	PROJECT CHEM LASTE	MANALEMENT	PROJ. NO.	
25	ROSSER JUSTICE SYSTEMS	EMELLE, ALS		SHEET 9	OF
ы М	IHT ROSSER	DESIGNED S. SMITH	9115194	CHECKED	//

Exhibit C Page 13 of 13

EXHIBIT D

CALCULATIONS OF TANK VENTING REQUIREMENTS

EXHIBIT D TANK VENTING CALCULATIONS (PER API 2000) CHEMICAL WASTE MANAGEMENT, INC., EMELLE, ALABAMA FACILITY

		Length/	Depth/	Tank		Tank	Tank	Tank	Tank		With-		IN-B	REATHING	i			OUT-I	BREATHIN	G		EME	RGENC	Y
	Width/	Shell	Cone	Wetted	Tank	Rated	Relief	Rated	Relief	Fill	drawal	Normal	Thermal	Total Vent	Min.	Min.	Normal	Thermal	Total Vent	Min.	Min.	Vent	Min.	Min.
	Diameter	Height	Height	Surf. Area	Capacity	Press.	Press.	Vac.	Vac.	Rate	Rate	Venting	Venting	Capacity	Area	Size	Venting	Venting	Capacity	Area	Size	Capacity	Area	Size
Tank Nos.	(ft)	(ft)	(ft)	(sf)	(gal)	(in WG)	(in WG) ¹	(in WG)	(in WG) ¹	(gpm)	(gpm)	(cfh) ²	(cfh) ³	(cfh)	(sq in) ⁸	(in)	(cfh)⁴	(cfh)⁵	(cfh)	(sq in) ⁸	(in)	(cfh) ⁶	(sq in) ⁷	, (in)
CONTAINMEN	CONTAINMENT BUILDING/CONTAINER & TANK MANAGEMENT UNIT 1200A																							
T-1201A & T-																								
1202A	20.67	12.00	12.00	NA	20,802	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NOTES:

1. Pressure and vacuum relief is assumed to be set to relieve at 50% of the design rated pressure or vacuum, unless noted. Emergency relief is assumed to be set at 75% of design pressure.

2. Normal in-breathing at 5.6 scfh per 42 gal barrel per hour of withdrawal, as specified in API 2000, 4th Edition.

3. Thermal in-breathing at 1 scfh per 42 gal barrel of tank volume, up to 20,000 barrel (840,000 gal) volume, as in API 2000.

4. Normal out-breathing at 12 scfh per 42 gal barrel per hour of fill for volatile liquids (flash point <100 deg F), as in API 2000. For non-volatile liquids 6 scfh per 42 gal barrel may be used.

5. Thermal out-breathing at 1 scfh per 42 gal barrel of tank volume for volatile liquids, up to 20,000 barrel volume, as in API 2000. For non-volatile liquids 0.6 scfh per 42 gal barrel may be used.

6. From API 2000 Appendix B on Emergency Venting, for four ranges of tank surface area, heat absorption, Q, is calculated. Vent capacity in SCFH is then calculated from the heat absorption according to the equation:

SCFH = 70.5 * Q / [L * sqrt(M)] assuming a conservative "L * sqrt(M)" value of 1,337, that of hexane.

7. Formula for emergency vent area adapted from Protectoseal Technical Manual, on flow capacity of tank emergency venting devices for nozzles 8 in. and larger: CFH = 1,667 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank emergency relief setting and atmospheric conditions.

8. Formula for vent area for smaller nozzles such as normal breather vents, adapted from Crane Flow of Fluids, Eq. 2-24, very similar to, but more conservative, than Protectoseal equation: CFH = 845 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank relief setting and atmospheric conditions. The factor 845 was derived using unit conversion factors, a vapor density of 0.1875 lb/cf, and a conservative Y of 0.80 from charts on Crane p. A-21.

EXHIBIT E

TANK MATERIAL OF CONSTRUCTION COMPATIBLITY INFORMATION

Compatibility Information

Unit 1200A: T-1201A & T-1202A

Carbon Steel

Or Equivalent for Unconstructed Tanks

Exhibit E Page 1 of 9

1

-

(From Grinnell value catalog)

		SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel Steel	JOALS	A = Excellent	Sleel Sleel Sleel	SEALS
8 = Good			B = Good	<u>ມູນ ທີ່ ທີ່</u> ທີ່ ທີ່ ທີ່	4
C ≂ Poor	rze oon Steel Stainless Stainless Stainless el	1	C ≈ Poor	Stee nies nies	
D = Do Not Use	Bronze Bronze Carbon Steel 303 Stainless 316 Stainless Monel	Buna N Delrin EPDM Tefton	D = Do Not Use	ze Staii Staii	ZCZC
	Bronze Carbor 303 Sti 304 Sti 316 Sti Monel	Buna h Delrin EPDM Tefton		Bronze Bronze Carbon Steel 303 Stainless 304 Stainless 316 Stainless Monel	Buna N Delrin EPDM Teflon
Acetaldehyde	ВСАААВ	DCBA	Ammonia, Alum	AA	
Acetamine	B BBBB	AAA	Ammonia, Anhydrous		ΒΑΑ
Acetate Solvents	СВАААВ	DDDA	Liquid	САВВАВ	ВАА
Acetic Acid,			Ammonia, Aqueous	CABBAB	BAAA
aerated	DDAAAA	CDDA	Ammonia Gas, hot	DCAAAD	DBA
Acetic Acid,			Ammonia Liquor	AAA	A
Air Free	DDBBAA	CD A	Ammonia Solutions	DBAAAB	B B A
Acetic Acid, crude	ССВВАВ		Ammonium Acetate	D BBBB	DAA
Acetic Acid, glacial		C DA	Ammonium Bicar-		<i>C NN</i>
Acetic Acid, pure	CDBBAD	CD A	bonate	всвввв	ВААА
Acetic Acid, 10%	ССВААВ	BDBA	Ammonium		
Acetic Acid, 80%	CCBBAB	СДВА	Bromide 5%	D CBB	ΑΑ
Acetic Acid Vapors	D DDDC	DA	Ammonium		
Acetic Anhydride	CCCCCC	DDCA	Carbonate	DBBBBB	DAAA
Acetone		DAAA	Ammonium Chloride	CDDDDB	AAAA
Other Ketones	AAAAAA	DADA	Ammonium		
Acetyl Chloride	DCCCBB	D DA	Hydroxide 28%	DBBBBD	ΒΑΑ
Acetylene	DBAAAB	AAAA	Ammonium		0
Acid Fumes	DDBBB	C A	Hydroxide		
Acrylonitrite	BBBBBB	DDDA	Concentrated	БВВВВД	DAAA
Air (Oil Free)	AAAAAA	AAAA	Ammonium Nitrate	DDAAAD	AAAA
Alcohol, Amyl	BBBBAB	BAAA	Ammonium		
Alcohol, Butyi	ABAAAB	BBCA	Oxalate 5%	DBBBB	А
Alcohol, Diacetone	888888	DAA	Ammonium		
Alcohol, Ethyl	BBBBBB	AAAA	Persulfate	DDDDBD	DAA
Alcohols, Fatty	BBAAA	B A	Ammonium		
Alcohol, Isopropyl	888 8 88	BAAA	Phosphate	DDCBCC	АВАА
Alcohol, Methyl	888888	AAAA	Ammonium Phos-		
Alcohol, Propyl	BBAAAB	A A A	phate Di-basic	CDCBCC	A A A A
Alumina	A	A AA	Ammonium Phos-		
Aluminum Acetate	D BBAC	C A A	phate Tri-basic	СДСВСС	ΑΑΑΑ
Aluminum			Ammonium Sulfate	CDDDBB	A A A A
Chloride dry	DDCCCD	BAAA	Ammonium Sulfide	DD BBB	A A A
Aluminum Chloride			Ammonium Sulfite	СDССВС	вава
solution	DDDDDD	B A A	Amyl Acetate	BCAAAA	DBBA
Aluminum Fluoride	DDDCC	A A A	Amyl Chloride	B B B B B B	DDA
Aluminum			Aniline	BCAAAB	DACA
Hydroxide	BDAAAB	A A A	Aniline Dyes	CCAAAA	DACA
Aluminum Nitrate	DD CCC	A AA	Apple Juice	CDBBBA	AABA
Alum (Aluminum			Aqua Regia		DDA
Potassium			Aromatic Solvents	ACAAAB	DDA
Sulfate)	CCDDCC	B AA	Arsenic Acid	BDBBBD	ΑΑΑΑ
Aluminum Sulfate	СОВСВВ	AAAA	Asphalt Emulsion	ABAAAA	DADA
Amines	СОВВВВ	DACA	Asphalt Liquid	ABAAAA	CADA

Exhibit E Page 2 of 9

į

ંગ

	VALVE MATERIAL	SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel Steel	JEALS	A = Excellent	Steel Steel Steel	SEALS
B = Good			B = Good	ស៊ីស៊ីស៊ី - ទំទំទំ	
C = Poor	Bronze Carbon Steel 303 Stainless 316 Stainless 316 Stainless		C = Poor	Bronze Bronze Carbon Steel 303 Stainless 304 Stainless Monel	
D = Do Not Use	Zta Stai Stai	Z a.⊆∑⊆	D = Do Not Use	on Stair Stair Stair	Z
	Bronze Bronze 303 Stai 304 Stai 316 Stai Monel	Buna N Delrin EPDM Tefton		Bronze Bronze Carbon 303 Stai 304 Stai 316 Stai Monel	Buna N Detrin EPDM Tefton
Barium Carbonate	BBBBBB	BAAA	Cane Sugar Liquors	ABABAB	
Barium Chloride	ССООВВ	AAAA	Carbolic Acid	DDBBBB	A AA DDBA
Barium Cyanide	C BBBD	ВВА	(phenol)		
Barium Hydroxide	DCBBBB	AAAA	Carbonate Beverages	вовввс	в ва
Barium Nitrate	ввв	A A	Carbonated Water	BBAAAB	AAAA
Barium Sulfate	всвввв	AABA	Carbon Bisulfide	BBBBBC	DADA
Barium Sulfide	DCBBBC	AAAA	Carbone Dioxide, dry	BBBBAA	AABA
Beer-Alcohoi	BCAAAA	AAAA	Carbonic Acid	ССВВВС	BABA
Industry			Carbon Monoxide	A A A A A	BAA
Beer-Beverage	BCAAAA	ΒΑΑΑ	Carbon Tetra-	BBBBBA	CADA
Industry			chloride, dry		
Beet Sugar Liquors	ABAAAA	AABA	Carbon Tetra-	DDCCBB	CADA
Benzaldehyde	ADABAB	DAAA	chloride, wet		
Benzene (Benzol)	BBBBBB	DADA	Casein	С СВС	B BA
Benzoic Acid	BDBBBB	D DA	Castor Oil	ABBBBA	AABA
Berryllium Sulfate	B B B B B	B BA	Caustic Potash	CD BB	B A
Blood (Meat Juices)	B BBBB	B C A	Caustic Soda	СВ ААА	C BA
Borax (Sodium	ССАААА	ВААА	Cellulose Acetate	B BBB	D BA
Borate)			China Wood Oil	ССАААА	AADA
Bordeaux Mixture	DCAAAA	ΒΑΑΑ	(Tung)		
Borax Liquors Boric Acid	CCBBBA	ΒΑΑΑ	Chlorinated Solvents	ССВВВВ	DADA
Brake Fluid (Non Pet)	CDBBBB B BBB		Chlorinated Water	DDDCD	ВААА
Brines, saturated	В ВВВ С D В В В В		Chlorine Gas, dry	BBBBBA	DADA
Bromine, dry	BDDDDA	AAAA D DA	Chlorobenzene, dry	СВАВВВ	DADA
Bunker Oils (Fuel)	ввввв	AADA	Chloroform, dry Chlorophyll, dry	BDAABA	DADA
Butadiene	ССВВВВ		Chlorosulfonic	B BBB	B B A
Butane	ВАВВВВ	AADA	Acid, dry	CCDDDC	D D A
Butter	A	в а	Chrome Alum	сввввв	
Buttermilk	DDAAAD	AABA	Chromic Acid<50%	DDCCBB	A AA DDBA
Butyl Acetate	ВСССВВ	DDA	Chromic Acid≥50%		DCCA
Butylene	BBBBAA	C DA	Chromium Sulfate	С ВВВ	B B A
Butyric Acid	DDCCBC	DACA	Cider	A A A A	
Calcium Bisulfite	DDDDCD	AADA	Citric Acid	DDCCAB	
Calcium Carbonate	BBBABB	AAAA	Citrus Juices	BDBBBA	ÂÂÂ
Calcium Chlorate	DDBBBB	A A	Coca-Cola Syrup	AAA	B A
Calcium Chloride	ССВВВВ		Coconut Oil	всвввв	AACA
Calcium Hydroxide	СВВВВВ	AAAA	Cod Liver Oil		A A A
Calcium Nitrate	СВ	B B A	Coffee	ΑΑΑΑΒ	A AB
Calcium Phosphate	С СВ	BBA	Coffee Extracts, hot	BCAAAA	A
Calcium Silicate	С СВ	BBA	Coke Oven Gas	СВВВВВ	DDA
Calcium Sulfate	CDBBBC	AABA	Cooking Oil	BBAAAA	AADA
Caliche Liquor	BAAB	BAA	Copper Acetate	DDBBBC	CBA
Camphor	c ccc	B B A	Copper Carbonate	BBBD	D A

Exhibit E Page 3 of 9

		SEATS &			
6 5 1 1 1 1 1		SEALS			SEATS & SEALS
A = Excellent	Steel Steel		A = Excellent	Steel Steel Steel	
B = Good	10 S S S S S S S S S S S S S S S S S S S	1	B = Good		
C = Poor	Bronze Carbon Steel 303 Stainless 5 304 Stainless 5 316 Stainless 6 Monel		C = Poor	Bronze Carbon Steel 303 Stamless 5 304 Stainless 5 316 Stainless 5 Monel	
D = Do Not Use	Bronze Bronze 303 Stai 304 Stai 316 Stai Monel	Buna N Delrin EPDM Teflon	D = Do Not Use	Bronze Bronze 303 Star 304 Star 316 Star Monel	Buna N Detrin EPDM Tefton
	Bron Carb 303 304 316 Mon	Buna h Delrin EPDM Teflon		Mor Mor	Buna h Detrin EPDM Tefton
Copper Cyanide	D BBBD	A A A	Ethylene Oxide	Сввввс	DADA
Copper Nitrate	DDBAAD	AABA	Ethyl Ether	В АА	DDA
Copper Sulfate	DDBBBC	AAAA	Ethyl Silicate	В ВВВ	В ВА
Corn Oil	BBBBBB	BADA	Ethyl Sulfate	B BBB	CACA
Cottonseed Oil	BBCCBB	AACA	Fatty Acids	CDBBAB	BADA
Creosol	С ВВ	DDA	Ferric Hydroxide		В А
Creosote Oil	BBBBBB	BDDA	Ferric Nitrate	DDCBBD	AAAA
Cresylic Acid	DCBBBC	DDDA	Ferric Sulfate	DDCCBD	AAAA
Crude Oil, sour	СВАААВ	B DA	Ferrous Chloride	CDDDDD	AAAA
Crude Oil, sweet	ВВАААА	A DA	Ferrous Sulfate	CDCBBB	ΑΑΑΑ
Cutting Oils, Water Emulsions	ΑΒΑΑΑ	AADA	Ferrous Sulfate, Saturated	ССАВАВ	СВА
Cyanide Plating	D BBD	В ВА	Fertilizer Solutions	СВВВВВ	BDBA
Solution			Fish Oils	BBAAAA	ABDA
Cyclohexane	ABABAB	BADA	Flue Gases	B BAB	CCDA
Cyclohexanone	BDBBBB	D BA	Fluoboric Acid	ВВВ	A A A
Detergents,	B BAB	B BA	Fluorosilicic Acid	BDDDBA	B C A
synthetic			Food Fluids	BCAAAB	BBA
Dextrin	B BBC	В ВА	& Pastes		
Dichloroethane	DC BBA	D DA	Formaldehyde, cold		ВАВА
Dichloroethyl Ether	B BB	D DA	Formaldehyde, hot	BDCCCB	BABA
Diesel Oil Fuels	ABAAAA	AADA	Formic Acid, cold	CDCCBB	DD A
Diethylamine	DDBBAB	C CA	Formic Acid, hot	СDССВВ	DD A
Diethylene Glycol	В ААВ	A AA	Freon Gas, dry	BBAAAA	CBCA
Diethyl Sulfate	B BBB	CACA	Freon 11, MF,	BDBBAB	BBD (
Dimethyl Formamide	Β ΑΑΒ	B DA	112, BF		
Dipentane (Pinene)	A A A	B D A	Freon 12, 13, 32,	ADBBAB	ввс
Disodium Phosphate	СВВВВС	B A	114,115		
Dowtherm	ABAAAA	DADA	Freon 21, 31	В АВ	DBD
Drilling Mud	BBABAB		Freon 22	ADBBAB	DBD
Dry Cleaning Fluids	CBAAAB	DADA	Freon 113, TF	B AB	BD
Drying Oil Enamel	ССВВВВ	AADA	Freon, wet	D BCCB	BBA
Epsom Salts	A AA BCBBBBB	B D A	Fruit Juices	CDBBAB	AAAA
Ethane		AA A	Fuel Oil	вввввв	AADA
Ethers	BCBBBB	AADA	Furnaric Acid		B A
Ethyl Acetate	8 8 8 8 8 8 8	DCCA	Furfural	BCBBBB	DACA
Ethyl Acrylate	BCBBBBB	DACA D CA	Gallic Acid 5%	BDBBBB	BABA
Ethyl Bromide	A BBBB	B DA	Gas, Manufactured	BBBBBA	A A A
Ethyl Chloride, dry	BBAAAB	BABB	Gas, Natural	BBBBBB	
Ethyl Chloride, wet	CDBCBB	B B A	Gas, Odorizers	ABBBBB	BA A
Ethylene Chloride	BBBBB		Gasoline, Aviation	A A A A A A A A A A A A A A A A A A A	
Ethylene Dichloride	DBBBBA		Gasoline, Leaded Gasoline, Motor	AAAAAB	
Ethylene Glycol	BBBBBB	ACAA	Gasoline, Motor Gasoline, Refined		CADA
				BBBBBB	C D A

-

÷

.

5 6

		SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel		A ≖ Excellent	Steel Steel Steel	SEALS
B = Good			8 = Good	ភូស្ល្ន 	
C = Poor	rze xon Steel Stainless Stainless Stainless ef		C = Poor	Steel inless inless inless	
D = Do Not Use	Bronze Bronze Carbon Steel 303 Stainless 304 Stainless 316 Stainless Monel	Buna N Detrin EPDM Tefton	D = Do Not Use	nze bon Steel Stainless Stainless Stainless Staintess	z
	Bronze Bronze Carbor 303 Sti 304 Sti 316 Sti Monel	Buna h Detrin E PDM Tefton		Bronze Bronze 303 Stain 304 Stain 316 Stain Monel	Buna N Detrin EPDM Teflon
Gasoline, Sour	BBBBBC	CADA	Lacquer (and	a o a a a a	۳Ő۳۴
Gasoline, Unleaded	BBBBBB		Solvent)	ACAAAA	
Gelatin	BDAAAB		Lactic Acid	ACAAAA	DADA
Glucose	BBBBAB		Concentrated cold	DDBBAD	
Glue	ВВВВВВ	A BA	Lactic Acid	UUBBAU	BDBA
Glycerine (Glycerol)	ВСАААА	ACAA	Concentrated hot	ррссвр	
Glycols	ВСВВВВ	BCAA	Lactic Acid	DUCCBU	DDDA
Graphite	В ВВВ	ВВА	Dilute cold		
Grease	СААААВ		Lactic Acid	CDBBAC	BDBA
Helium Gas	В ВВВ	B B A	Dilute hot		
Heptane	ABAAAB	AADA	Lactose		
Hexane	BBBAAB	AADA	Lard	1 1	B B A
Hexanol, Tertiary	BBBBAB	A DA	Lard Oil	1 1	B C A
Hydraulic Oil,	000000		Lead Acetate	BCABBB	AABA
Petroleum Base	ВААААА	AADA	Lead Sulfate	DDBBBB	BABA
Hydrazine	DB BBD	C BA	Lecithin	CD BBB	B B A
Hydrocyanic Acid	DCBBBC	BDBA	Linoleic Acid	СВВВ	D DA
Hydrofluosilicic		DDDA	Linseed Oil	CDABAB	BADA
Acid	ррсрсв	ВАА	Linseeu Oli Lithium Chloride	AABBBB	AADA
Hydrogen Gas, cold		A AA	LPG	D BBB	B B A
Hydrogen Gas, hot	вв	A AA		ABBBBB	AADA
Hydrogen Peroxide,			Lubricating Oil Petroleum Base		
Concentrated	СОВВВС	D B A	Ludox	BAAAAB	AADA
Hydrogen Peroxide,		UDA		D BBB	BBA
Dilute	СОВВВВ	вваа	Magnesium Carbonate		
Hydrogen Sulfide,				B A B A B	BBA
Dry	СВВВАВ	CAAA	Magnesium Chloride	ВСССВВ	ΑΑΑΑ
Hydrogen Sulfide,	COBBAD		Magnesium		
Wet	рвссвр		Hydroxide	BBBAAB	ΒΑΑΑ
Hypo (Sodium		DABA	Magnesium		
Thiosulfate)	СДАААВ		Hydroxide, Hot	DBBAAB	BAAA
Illuminating Gas		C DA	Magnesium Nitrate	BBBBAB	BAA
Ink - Newsprint	BDBAAB	AABA	Magnesium Sulfate	BBBBAA	AAAA
lodoform			Maleic Acid	CDBBBB	DADA
Iso-Butane	BDAAAC	AAA	Maleic Anhydride	С ВВВ	DDA
Iso-Octane	В	B D A	Malic Acid	DDBBAB	AADA
	A A A A A A	AADA	Manganese Car-		
Isopropyl Acetate	В	D A A	bonate	ВВ	B A
Isopropyl Ether	BBBBBB	C D A	Manganese Sulfate	B BBBB	BBA
J P-4 Fuel	ABBBAB	AADA	Mayonnaise	DDAAAB	A A A
J P-5 Fuel	ABBBAB	BADA	Meat Juices	D BBBB	B D A
J P-6 Fuel	ABBBAB	AADA	Melamine Resins	C	B A
Kerosene	ABAAAB	AADA	Menthol	B BBB	B D A
Ketchup	DDAAAB	A A A	Mercuric Chloride	DDDDBD	A A A
Ketones	BBBBBB	DADA	Mercuric Cyanide	DDBBBC	A A A

Exhibit E Page 5 of 9

. •.

	VALVE MATERIAL	SEATS & SEALS		VALVE MATERIAL	SEATS &
A = Excellent	Steel Steel Steel	50405	A = Excellent	Steel Steel Steel	SEALS
B = Good	 ഗഗഗ		B = Good		
C = Poor	nze bon Steel 3 Staintess 1 Staintess 5 Staintess 1		C = Poor	Bronze Bronze Carbon Steel 303 Stainless 316 Stainless 316 Stainless Monel	
D = Do Not Use	Bronze Bronze Carbon (303 Stait 304 Stait 316 Stait Monel	Z m S Z S	D = Do Not Use	stair Stair	z
	Bronze Bronze 303 Stai 304 Stai 316 Stai Monel	Buna N Delrin EPDM Tefton		Bronze Carbon 303 Stai 316 Stai Monel	Buna N Delrin EPDM Teflon
Mercurous Nitrate	D BBAD	BBA	Nitrous Gases		
Mercury	DBAAAA	AAAA	Nitrous Oxide	DBCCBD	A
Methane	ВВВВВВ	AADA	Oils & Fats	DBBBBD	BA A
Methyl Acetate	BBABAB	D BA	Oils, Animal	BBB	B D A
Methyl Acetone	AAAAAA			BBBBAB	A BA
Methylamine	DBAAAC	D BA	Oils, Petroleum		
Methyl Cellosolve	BCBBAB		Refined	BAAAAA	AADA
-			Oils, Petroleum		_
Methyl Chloride	BDBAAB	DADA	Sour	CBAAAA	B D A
Methyl Ethyl			Oils, Water Mixture	ABAAA	A A A
Ketone Mathulana Chlavida			Oleic Acid	ВСВВВВ	ΒΑΒΑ
Methylene Chloride	ABABAB	D D A	Oleum	DBBBBD	DDDA
Methyl Formate	ACBBBB	DBA	Oleum Spirits	D BBBD	C DA
Methyl Isobutyl		D (Olive Oil	CBAAAA	ΑΑΒΑ
Ketone	ABBBAB	D A	Olalic Acid	BDDDBB	DCBA
Milk & Milk	0.0.4.4.0		Oxygen	ABBBAB	BDAA
Products	CBAAAC	AAAA	Ozone, Dry	ACAAAA	D A A
Mineral Oils	BBBBBB	AADA	Ozone, Wet	BCBAAA	DBA
Mineral Spirits	BCBAAB	AADA	Paints & Solvents		DDA
Mine Water (Acid)	DDBBBC	AABA	Palmitic Acid	BCBBBB	ВАВА
Mixed Acids (cold)	DDBBBD	DDDA	Palm Oil	BCBBBA	BADA
Molasses, crude	ABAAAB	AAAA	Paper Pulp	B BBB	ВВ
Molasses, Edible	ABAAAB	AAAA	Paraffin	ABAAAA	AADA
Monochloro Ben-			Paraformaldehyde	BBBBBB	BADA
zene, Dry	В	D A	Paraldehyde		B DA
Morpholine	BBBBBB	DDA	Pentane	ABAAAB	AADA
Mustard	ABAAAA	A A A	Perchlorethylene,	ĺ	
Naptha	ABBBBB	BADA	dry	BBBBBB	DDA
Napthalene	888888	DADA	Petrolatum (Vaseline		
Natural Gas, Sour	B DDD	A DD	Petroleum Jelly)	BCBBBB	AADA
Nickel Ammonium			Phenol	BDABAA	DDDA
Sulfate	DDBBBC	A B A	Phosphate Ester 10%	DBAAAA	DAA
Nickel Chloride	CDBBBB	AABA	Phosphoric Acid		
Nickel Nitrate	DCBAAB	AAAA	10%	DDCBBD	DDBA
Nickel Sulfate	CDBBBB	AABA	Phosphoric Acid		
Nicotinic Acid	BBBBAB	D BA	50% Cold	DDBBBC	DDBA
Nitric Acid 10%	DDAAAD	CD A	Phosphoric Acid		
Nitric Acid 30%	DDAAAD	CDBA	50% Hot	DDDCDC	DDBA
Nitric Acid 80%	DDBBBD	DDBA	Phosphoric Acid		
Nitric Acid 100%	DDBBBD	DDCA	85% Cold	DDBBBC	DDBA
Nitric Acid			Phosphoric Acid		
Anhydrous	DDCCBD	D C A	85% Hot	DDCBBC	DD A
Nitrobenzene	888888	D DA	Phosphoric		
Nitrogen	A A A A A A	AABA	Anhydriede	DBB	DB A
Nitrous Acid 10%	DDCCBD	C A			

÷

í.

	VALVE MATERIAL	SEATS & SEALS		VALVE MATERIAL	SEATS & SEALS
A = Excellent	Steel Steel Steel	JEALS	A = Excellent	Steel Steel Steel	02,00
B = Good	រី ស៊ី ស៊ី		B = Good	_ ស្ត្រីស្ត្រ	
C = Poor	Bronze Carbon Steel 303 Stainless 304 Stainless 316 Stainless Monel	1	C = Poor	Bronze Carbon Steel 303 Stainless 5 304 Stainless 5 316 Stainless 5 Monel	
D = Do Not Use	te Stain Stain Stain	Zese	D = Do Not Use	ze Stair Stair	ZCZC
	Bronze Carbon (303 Stai 304 Stai 316 Stai Monel	Buna N Delrin EPDM Teflon	1	Bronze Carbon 303 Sta 304 Sta 316 Sta Monel	Buna N Delrin EPDM Teflon
Dhaabbaraya	©U⊼⊼≂≥	E O W F	Potassium	aŲෆෆෆ∠	
Phosphorous	ВААА	DAA	Phosphate	с ввв	A A A
Trichloride	BCBBAB	CAA	Potassium Phosphate	0 000	
Phthalic Acid	BBBAAA	CABA	Di-basic	ВААААВ	ААВА
Phthalic Anhydride		C B A	Potassiuum Phosphate		~~~~~
Picric Acid	DDBBBD	1 1	Tri-basic	A BB	в ва
Pineapple Juice	ССАААА	A A A	Potassium Suffate	ввваав	AAAA
Pine Oil	ВВАААВ	AADA		DDBBBD	A B A
Pitch (Bitumen)	АВАААА	C DA	Potassium Sulfide		BAA
Polysulfide Liquor	D BBB	6 BA	Potassium Sulfite	B B B B B A C B B B B B B A	AADA
Polyvinyl Acetate	B AAB	CAA	Producer Gas	ABBBBB	AADA
Polyvinyl Chloride	B BBB	ВА	Propane Gas	BBBBBB	ACAA
Potassium Bicar-			Propylene Glycol	BCBBBB	DBA
bonate	ΑΑΑΒ	BAA	Pyridine	ССССВС	AAA
Potassium Bi-			Pyrogallic Acid	ввв	DBA
sulfate	АВ	BA A	Pyrolignous Acid	BBAAA	AADA
Potassium Bi-			Quench Oil	DDAAA	
sulfite	CDBBBD	AABA	Quinine Bisulfate,		
Potassium Bromide	CDBBBB	AAAA	dry		A
Potassium			Ouinine Sulfate		
Carbonate	DBBAAB	AAAA	dry	AAAB	A
Potassium Chlorate	DCBBAC	A A A A	Resins & Rosins	АСВВВА	C DA
Potassium Chloride	DCCCBB	AAAA	Road Tar		BADA
Potassium Chromate	C BBB	B BA	Roof Pitch		BA A
Potassium Cyanide	DBBBBB	AAAA	Rosin Emulsion	BCAAAA	D A
Potassium			Rubber Latex		
Dichromate	BBBAAB	AAAA	Emulsions	ABAAA	AA
Potassium			Rubber Solvents		DCDA
Ferricyanide	СОВВВВ	AAAA	Salad Oil	всвввв	AADA
Potassium			Salicylic Acid	CDBBBC	BAAA
Ferrocyanide	всвбвв	AA A	Salt (naCl)	BCBBBA	AAAA
Potassium Hydroxide			Salt Brine	BD AAB	A BA
Dilute Cold	CBBBBA	A BA	Sea Water	CDBBAA	AAAA
Potassium Hydroxide			Sewage	ССВВВВ	A BA
To 70%, Cold	DCBBBA	B BA	Shellac-bleached	AAAAA	IA A
Potassium Hydroxide		1	Shellac-orange		
Dilute Hot	DBBBBA	B BA	Silicone Fluids	B B B B B	B BA
Potassium Hydroxide		1	Silver Bromide	BBAB	A
To 70%, Hot	ОСОРВВ	C A A *	Silver Cyanide	D ABAB	BBA
Potassium lodide	СОВВВС		Silver Nitrate	DDBBAD	CAAA
Potassium Nitrate	BBBBBB		Silver Plating Sol.	AAA	B BA
Potassium Oxalate	BBBB	DA	Soap Solutions		
Potassium			(Stearates)		A A A
Permanganate	ССВВВВ	CAAA	Sodium Acetate	BDBBBC	BAAA

بسيست والمستحد مستحد بالربية التركين والتبار واليراريان

Exhibit E Page 7 of 9

 $\omega \geq 1_{\rm eff}$

		SEATS &	<u> </u>		SEATS &
A = Excellent		SEALS			SEALS
B = Good	s Steel s Steel s Steel		A = Excellent B = Good	Steel Steel Steel	
C = Poor	Steel Intess Intess Intess			ees ess ess ess ess	
	ıze Jon Steel Staintess Staintess Staintess et	z	C = Poor	nze bon Steel 8 Stainless (1 Stainless (5 Stainless (nel	7
D = Do Not Use	Bronze Bronze Carbon Steel 303 Staintess 9 304 Staintess 9 316 Staintess 9 Monet	Buna N Detrin EPDM Tefton	D = Do Not Use	Bronze Bronze Carbon Steel 303 Stainless 306 Stainless Monel	Buna N Delrin EPDM Tetton
·			3	Bror 203 304 306 Mon	e de Be
Sodium Bicarbonate	BCAAAA		Sodium Phosphate		
Sodium Bichromate	D BBB	D A	Di-basic	ССВВВВ	AAAA
Sodium Bisulfate			Sodium Phosphate		
10%	CCAAAB	AAAA	Tri-basic	CCBBBB	ΒΑΑΑ
Sodium Bisulfite			Sodium		
10%	DDBBBB	AAAA	Polyphosphate	В	ΒΑΑ
Sodium Borate	BCBBBB	AAAA	Sodium Salicylate	AAA	A
Sodium Bromide 10%	всвввв	ΑΑΑΑ	Sodium Silicate	888888	AAAA
Sodium Carbonate			Sodium Silicate, hot	ССВВВВ	BA
(Soda Ash)	BBBBBA	AAAA	Sodium Sulfate	BBBAAB	AAAA
Sodium Chlorate	ВСВВВВ	AAAA	Sodium Sulfide	DCBBBB	АААА
Sodium Chloride	BCBBBA	AAAA	Sodium Sulfite	DCAAAB	A AA
Sodium Chromate	СВВВВВ	AAAA	Sodium Tetraborate	А	A BA
Sodium Citrate	BBB	A	Sodium Thiosulfate	DDCCBB	BACA
Sodium Cyanide	DCAAAD	AAAA	Soybean Oil	BCAAAA	AABA
Sodium Ferricyanide	СВВ	AA	Starch	BCBBBA	AACA
Sodium Fluoride	DDCCBA	ΑΑΑΑ	Steam (212°F)	ABAAAB	DDBB
Sodium Hydroxide			Stearic Acid	BCBBAC	ВАВА
20% Cold	ВВАААА	B AA'	Styrene	ΑΑΑΑΑΒ	D D A
Sodium Hydroxide			Succinic Acid	C DCBB	A
20% Hot	ВВАААА	B AA'	Sugar Liquids	ABAAAA	AABA
Sodium Hydroxide			Sugar, Syrups		
50% Cold	ССАААА	B AA'	& Jam	ВВАА	A A A
Sodium Hydroxide 50% Hot	ССВВАА		Sulfate, Black		
	CCBBAA	B A A -	Liquor Sulfata Cara a	DDBBBB	СВВА
Sodium Hydroxide 70% Cold	ССВВВА	в да.	Sulfate, Green		
Sodium Hydroxide	CCBBBA		Liquor Sulfate White	DDBBBB	CAA
70% Hot	ррсссв	D BA.	Sulfate, White		<u> </u>
Sodium Hypo-		U DA	Liquor Sulfonic Acid	DDBBBC	CA A
sulfite	АААВ	А	Sulfur	B BBB DDBAAB	D D A
Sodium Lactate	AAAB	Â	Sulfur Chlorides, Dry	DDDCCC	DAAA
Sodium Meta-	AAAD		Sulphur Dioxide,	DDDCCC	DADA
phosphate	СDВВВВ		dry		
Sodium Meta-	000000		Sulfur Dioxide,	BABBBB	DAAA
silicate Cold	ВСАААА	B A	wet		
Sodium Meta-	001111		Sulfur	DDDDBD	DAA
silicate Hot	BDAAAA	A	Hexafluoride		
Sodium Nitrate	DBBAAB	ВААА	Sulfur, Molten	B AAA DDBBBD	
Sodium Nitrite	BBBC	CBAA	Sulfur Trioxide		
Sodium Perborate	СВВВВВ	CAAA	Sulfur Trioxide,	DB BB	DBA
Sodium Peroxide	DCBBBB	CAAA	dry	DBBBBB	DABA
Sodium Phosphate	ССВВВВ	BBAA	Sulfuric acid		
			0 to 77%	DDDDDB	DCBA
]			D C D A

A = Excellent	VALVE MATERIAL ຮຮຮ	SEATS & SEALS			SEATS & SEALS
	Steel Steel Steel]	A = Excellent	Steel Steel Steel	36463
B ≖ Good	eel ess sss sss		B = Good	- S S S S	
C = Poor	nze bon Steef Stainless Stainless Stainless 1	-	C ≃ Poor	Ste inle inle	
D = Do Not Use	Bronze Bronze Carbon Steel 303 Stainless 304 Stainless 316 Stainless Monel	Buna N Delrin EPDM Tefton	D = Do Not Use	Bronze Bronze Carbon Steel 303 Stainless 316 Stainless Monel	Z S S
	Bronze Bronze Carbon Steet 303 Stainless S 304 Stainless S 316 Stainless S Monel	Buna N Deltrin EPDM Tefton		Bronze Bronze Carbon Steel 303 Stainless 5 316 Stainless 5 Monel	Buna N Detrin EPDM Tetton
Sulfuric Acid 100%	DCCCBD	DDCA	Trisodium		
Sulfurous Acid	DDDDBD	ВСВА	Phosphate	в ввв	АВА
Fall Oil	BBBBBB	BADA	Tung Oil	BBAAAC	
Fannic Acid			Turpentine	BBAAAA	BADA
(Tannin)	DDBBBB	BAAA	Urea	всвввв	BABA
fanning Liquors	888	B A	Uric Acid	ВВВ	A
far & Tar Oils		C DA	Varnish	ACAAAA	
artaric Acid	BDBAAB	ВАСА	Vegetable Oils	BBAAAA	AADA
etraethyl Lead	ВСВВВВ	BADA	Vinegar	ССВВВВ	D BA
oluol (Toluene)	АААААА	DADA	Vinyl Acetate	В АВВ	
omato Juice	ССВВВВ	AA A	Water, Distilled	ADAAAA	BAAA
ransformer Oil	вввввв	AADA	Water, Fresh	ACAAAA	BAAA
ributyl Phosphate	вввввв	DAA	Water, Acid Mine	DDBAAD	B A A
richlorethylene	ввввва	DADA	Waxes		AACA
richloroacetic		1	Whiskey & Wines	BCAAAA	AACA
Acid	DDDDDB	C CA	Xylene (Xylol), Dry	BBBBBB	DADA
riethanolamine	BC BBB	DBA	Zinc Bromide	В ВВВ	B B A
riethylamine	B BBB	B A	Zinc Hydrosulfite		AAAA
			Zinc Sulfate	CDBAAB	AAAA
		1			
				1	
		1			
ľ					
1		1			
		[
					i
	1				
1					

s,

ATTACHMENT D-2-4-6 APPENDIX D-2-4 SECTION D-2

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 1400

Revision No. 5.0

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 1400 TANKS T-1405 THROUGH T-1420

TABLE OF CONTENTS

I.	Introduction	1
II.	Tank Design	2
III.	Tank Foundation Design	3
IV.	Ancillary Equipment Design	3
V.	Secondary Containment System Design	4
VI.	Tank Venting Requirements	4
VII	. Hazardous Characteristics of the Waste Managed	5
VII	I. Certification of Tank System Design Assessment	6

LIST OF EXHIBITS

- Exhibit A Tank Data Sheets
- Exhibit B Tank Design Calculations
- Exhibit C Tank Foundation Design Calculations
- Exhibit D Calculations of Tank Venting Requirements
- Exhibit E Tank Material of Construction Compatibility Information

LIST OF REFERENCED DRAWINGS

1400-010-001	Tank Management Unit 1400 – P&ID
1400-010-001	Tank Management Unit 1400 – P&ID
1400-010-003	Tank Management Unit 1400 - P&ID
1400-010-004	Tank Management Unit 1400 - P&ID
1400-010-005	Tank Management Unit 1400 - P&ID
1400-010-006	Tank Management Unit 1400 - P&ID
1400-010-007	Tank Management Unit 1400 - P&ID
1400-020-001	Tank Management Unit 1400 - Area Foundation Location Plan – Phase 1
1400-020-003	Tank Management Unit 1400 - Area Paving Plan – Phase 1
1400-030-001	Tank Management Unit 1400 - Sections
1400-030-002	Tank Management Unit 1400 - Sections
1400-040-001	Tank Management Unit 1400 - Details
1400-040-002	Tank Management Unit 1400 - Details
1400-040-003	Tank Management Unit 1400 - Details
1400-080-005	Tank Data Sheet - T-1405
1400-080-006	Tank Data Sheet - T-1406
1400-080-007	Tank Data Sheet - T-1407
1400-080-008	Tank Data Sheet - T-1408
1400-080-009	Tank Data Sheet - T-1409
1400-080-010	Tank Data Sheet - T-1410
1400-080-011	Tank Data Sheet - T-1411
1400-080-012	Tank Data Sheet - T-1412
1400-080-013	Tank Data Sheet - T-1413
1400-080-014	Tank Data Sheet - T-1414
1400-080-015	Tank Data Sheet - T-1415
1400-080-016	Tank Data Sheet - T-1416
1400-080-017	Tank Data Sheet - T-1417
1400-080-018	Tank Data Sheet - T-1418
1400-080-019	Tank Data Sheet - T-1419
1400-080-020	Tank Data Sheet - T-1420

AttachD-2-4-6Text.docx

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNIT 1400 TANKS T-1405 THROUGH T-1420

I. Introduction

This document provides the assessment and certification for the design of the hazardous waste storage tank system(s) at Tank Management Unit 1400 at the Chemical Waste Management, Inc. Facility in Emelle, Sumter County, Alabama. The assessment was performed to address the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), regarding the design of the system within Tank Management Unit 1400 which is comprised of the tanks (i.e., Tanks T-1405 through T-1420), the tank foundation, the associated ancillary equipment and the secondary containment system.

Tank Management Unit 1400 is centrally located within the active portion of the Facility to the south of PK-1000 and to the north of Unit 2000 as shown on Drawing No. 0100-020-001 in Appendix D-1 to Section D of the RCRA Part B Permit Application. The primary function of the 15 tank systems within Unit 1400 is to store and treat all types of aqueous wastes including off-site receipts and Facility generated wastes such as landfill leachate, landfill berm surface waters, secondary containment system catchment waters, and aqueous residues from treatment of other wastes. Additionally, Unit 1400 will house clean water storage tank(s) for the biological treatment system. The majority of the underground pipe chase is considered to be ancillary to 20 Unit 1400. Only the portions of the underground pipe chase between the limits of the landfill trenches and the Unit 1700A, B & C tanks are considered to be ancillary to Unit 1700. The underground pipe chase enables the collection of leachate from the landfill trenches, catchment waters from various tank secondary containment systems, blowdown from Unit 900 and wastewaters from Unit 708, and subsequent underground transfer of these wastewaters to 25 Unit 1400. Schematic Diagrams for the underground pipe chase are provided in Drawing Nos. 0100-010-003 and 0100-010-004, which are all located in Appendix D-1 of this Application. The underground pipe chase is constructed in phases as required to support the management of leachate generated from new landfill trenches and other wastewaters generated on-site.

30

The following drawings were used in the preparation of this Assessment and Certification and are provided either in Exhibit A (Tank Data Sheets) or in Appendix D-1 to Section D of the RCRA Part B Permit Application:

35	Drawing No.	Drawing Title
	1400-010-003	Tank Management Unit 1400 - P&ID
	1400-010-004	Tank Management Unit 1400 - P&ID
	AttachD-2-4-6Text.c	docx Attachment D-2-4-6

	1400-010-005	Tank Management Unit 1400 - P&ID
	1400-010-006	Tank Management Unit 1400 - P&ID
	1400-010-007	Tank Management Unit 1400 - P&ID
	1400-020-001	Tank Management Unit 1400 - Area Foundation Location Plan – Phase 1
5	1400-020-003	Tank Management Unit 1400 - Area Paving Plan – Phase 1
	1400-030-001	Tank Management Unit 1400 - Sections
	1400-030-002	Tank Management Unit 1400 - Sections
	1400-040-001	Tank Management Unit 1400 - Details
	1400-040-002	Tank Management Unit 1400 - Details
10	1400-040-003	Tank Management Unit 1400 - Details
	1400-080-005	Tank Data Sheet - T-1405
	1400-080-006	Tank Data Sheet - T-1406
	1400-080-007	Tank Data Sheet - T-1407
	1400-080-008	Tank Data Sheet - T-1408
15	1400-080-009	Tank Data Sheet - T-1409
	1400-080-010	Tank Data Sheet - T-1410
	1400-080-011	Tank Data Sheet - T-1411
	1400-080-012	Tank Data Sheet - T-1412
	1400-080-013	Tank Data Sheet - T-1413
20	1400-080-014	Tank Data Sheet - T-1414
	1400-080-015	Tank Data Sheet - T-1415
	1400-080-016	Tank Data Sheet - T-1416
	1400-080-017	Tank Data Sheet - T-1417
	1400-080-018	Tank Data Sheet - T-1418
25	1400-080-019	Tank Data Sheet - T-1419
	1400-080-020	Tank Data Sheet - T-1420

II. Tank Design

30

Tanks T-1405 through T-1420 have been designed in accordance with the design codes and standards indicated within the DESIGN DATA section of the Tank Data Sheets (i.e., Drawing Nos. 1400-080-005 through -020,) provided in Exhibit A to this tank system design assessment. The criteria utilized in the assessment of the design of the shell, structural support, and anchorage for Tanks T-1405 through T-1420 are also provided within the DESIGN DATA section of the Tank Data Sheets, as well as within the tank design calculations provided in Exhibit B to this tank system design assessment.

35

The calculations provided in Exhibit B to this tank system design assessment demonstrate that the tank shell, structural supports and anchorages are, as designed, adequate to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and

AttachD-2-4-6Text.docx

wall loads, and associated environmental stresses such as wind and seismic loads, as applicable, at the design conditions indicated on the tank data sheets.

III. Tank Foundation Design

5

The design of the reinforced concrete foundations for Tanks T-1405 through T-1420 is indicated in the foundation detail Plan View and Details 2, 3, and 5 on Drawing No. 1400-040-003 which is provided in Appendix D-1 to Section D of the RCRA Part B Permit Application. The criteria utilized in the assessment of the design of the foundation for Tanks T-1405 through T-1420 are provided within the tank foundation design calculations provided in Exhibit C to this tank system design assessment.

10

The tank foundation design calculations provided in Exhibit C demonstrate that the tank foundation is, as designed, adequate to support the load of the full tanks and to withstand associated environmental stresses at the design conditions indicated on the tanks data sheets and provided within foundation design calculations.

IV. Ancillary Equipment Design 15

All tank system ancillary piping systems shall be designed, installed and tested in accordance with the American Society of Mechanical Engineers (ASME) Standard B31.3, "Chemical Plant and Petroleum Refinery Piping", or an equivalent nationally recognized standard, and in accordance with recognized good engineering practices to ensure that they are supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

20

25

All other ancillary equipment for the tank system shall be designed, installed and tested in accordance with appropriate recognized standards, if any, and in accordance with recognized good engineering practices to ensure that it is supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

In order for this tank design assessment and associated certification to be maintained, and prior to the tank system being placed in use, the Facility shall ensure that the tank system ancillary equipment is properly installed and that all required inspections, tests and repairs are performed 30 in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f). Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative

Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment was properly designed, installed and tested.

V. Secondary Containment System Design

5

The design features of the secondary containment system for the tank system within Unit 1400 are indicated on Drawing Nos. 1400-020-001 & -003, 1400-030-001 & -002, and 1400-040-001 through -003, which are located in Appendix D-1 to Section D of the RCRA Part B Permit Application. As shown on these drawings and in accordance with the applicable requirements of 40 CFR 264.193 and ADEM Administrative Code Rule 335-14-5-.10(4), the secondary containment system design is comprised of a reinforced concrete base, with all joints sealed with chemical-resistant waterstops, and all concrete surfaces sealed with chemical resistant 10 concrete coating system. Information on the concrete coatings available for use on the secondary containment system is provided within Appendix D-1-3 to Section D-1 of the RCRA Part B Permit Application.

Calculations demonstrating that the design secondary containment capacity meets or exceeds 15 the applicable requirements 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e) are provided in Appendix D-2-2 to Section D-2 of the RCRA Part B Permit Application.

VI. Tank Venting Requirements

As indicated on the P&ID's for Unit 1400 (i.e., Drawing Nos. 1400-010-001 through -007 which 20 are located in Appendix D-1 to Section D of the RCRA Part B Permit Application), Tanks T-1405 through T-1420 are designed as closed top tanks that passively vent to atmosphere. The Tank Data Sheets (i.e., Drawing Nos. 1400-080-005 through -020,) specify the diameter of the atmospheric vent nozzle on each of the tanks.

25

30

The requirements for normal (i.e., liquid displacement and thermal effects) venting capacities for the Unit 1400 tanks were evaluated in accordance with American Petroleum Institute Standard 2000, Venting Atmospheric and Low-Pressure Storage Tanks (i.e., API 2000). As shown in the venting calculations provided in Exhibit D to this tank system design assessment, the size of the atmospheric vent nozzle on each of the tanks is adequate to allow the tank under normal conditions to be maintained within the design limitations for pressure and vacuum as specified on the Tank Data Sheets provided in Exhibit A and within the tank design calculations provided in Exhibit B to this tank system design assessment. The venting calculations provided in Exhibit D to this tank system design assessment also indicate the design maximum tank fill and

35

withdrawal rates which were used in the evaluation of the tank venting requirements.

VII. Hazardous Characteristics of the Waste Managed

In accordance with the requirements of 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., this section presents an evaluation of the compatibility of the wastes managed within the Unit 1400 tank system with the materials of construction of Tanks T-1405 through T-1420 and the ancillary equipment (i.e., pumps and piping) to determine their suitability for service in this unit.

The types of wastes managed within Tanks T-1405 through T-1420 will include virtually every type of hazardous waste listed and identified in 40 CFR Part 261 and ADEM Administrative Code Rule 335-14-2, except for ignitable and reactive wastes. In addition, non-hazardous wastes, as well as treatment residues from listed wastes are managed in tank systems in Unit 1400. Tanks T-1405 through T-1420 and the ancillary equipment that contact wastes within this system are primarily constructed of carbon steel with internal corrosion protection for the tanks.

15

35

40

10

5

Exhibit E to this tank system design assessment presents information which provides an indication of the relative compatibility of epoxy coating, such as Devoe Chemline 253 or demonstrated equivalent, with a wide variety of chemical compounds and other substances. The table in Exhibit E provides corrosion/compatibility information for Chemline 253 epoxy coating exposed to pure chemical compounds which, in general, tend to have a more severe 20 corrosive effect than wastes which contain mixtures and complexes of these compounds. Although this table may not provide corrosion data and service recommendations for all of the potential constituents of the wastes or waste mixtures which may be managed within the tank system in Unit 1400, the table does demonstrate that Chemline 253 is generally compatible with and, under normal conditions, should not experience an accelerated rate of corrosion or 25 deterioration when exposed to a majority of the types and classes of wastes which are managed within the Unit 1400 tank system. In addition to the compatibility/corrosion data provided in Exhibit E, the compatibility of Chemline 253 with the types of wastes managed within Unit 1400 is further validated by the empirical data provided by many years of comparable service

³⁰ applications within a variety of units at the Facility.

Based on the information provided in Exhibit E of this tank system design assessment and the empirical data compiled at the Facility for comparable service applications, it is the conclusion of this evaluation that the Chemline 253 coated carbon steel tank system components are generally compatible with the types of waste managed within the Unit 1400 tank system. It is further concluded that these materials of construction are suitable for this service if the tank system is operated within the design limitations set forth within this assessment, and that, if the tank system is managed in accordance with the following minimum practices, these materials of construction should not experience an accelerated rate of corrosion or deterioration which may result in a catastrophic failure of the tank system, throughout its useful life:

AttachD-2-4-6Text.docx

- Prior to placement of a waste into the tank system, the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. References other than Exhibit E of this document, such as other recognized sources of corrosion data, may also be used to evaluate compatibilities. The Facility shall prohibit the placement into the Unit 1400 tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components; and
- The Facility shall perform an annual inspection of the tank shells to ensure that minimum code thicknesses are maintained, and that adequate corrosion allowance is available for continued service.

VIII. Certification of Tank System Design Assessment

- In accordance with the requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), this section provides a certification by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), that an assessment of the design of the following tank system(s) demonstrates that the tank system foundation, structural supports, seams, connections, and pressure controls are adequate, and that the tanks have sufficient structural strength, compatibility with the wastes to be managed and/or protection from corrosion so that they will not collapse, rupture or fail, if properly installed, operated within the design limits, and properly inspected and maintained:
- Tank System Location: Chemical Waste Management, Inc. Emelle, Alabama
 Tank System Identification: Tank Management Unit 1400
 Applicable Tanks: T-1405 through T-1420
- At a minimum, the assessment of the tank system design, which is incorporated herein by reference, addresses and considers the following factors with respect to the intended use of the tank system:
- 35

5

10

In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tank designs have been evaluated for structural integrity with regards to the ability of the designed tank shell, structural supports and anchorages to withstand the static and dynamic stresses associated with

pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as applicable;

- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tanks have been evaluated with regards to the adequacy of the designed tank to provide the necessary capacity for normal venting;
- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which piping and other ancillary equipment shall be designed and constructed to maintain this certification;
- In accordance with 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., the assessment of the tank system design considers the compatibility of the tank's materials of construction and/or internal coatings with the types of hazardous wastes to be managed;
- In accordance with the applicable requirements of 40 CFR 264.192(a)(5) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)5., the assessment of the tank system design considers the ability of the designed tank system foundation to support the load of the full tanks and to withstand associated environmental stresses; and
- The assessment of the tank system design considers the adequacy of the capacity of the designed tank secondary containment system as required by the applicable requirements of 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e).

In order for this certification to be maintained, the Facility shall comply with the applicable requirements of 40 CFR 264 Subpart J and ADEM Administrative Code Rule 335-14-5-.10, and shall perform all routine management procedures, periodic inspections and reviews, and tank system functionality and integrity tests as required by the permit including, but not limited to, the following:

The Facility shall ensure that the tank system is properly installed and that, prior to placing the tank system in use, all required inspections, tests and necessary repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f);

5

10

15

20

25

- Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested;
- Prior to placement of a waste into the tank system, the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the Unit 1400 tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components;
- Prior to placement of a waste into the tank system, the Facility shall verify the specific gravity of the waste in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the tank system of any waste that has a specific gravity that exceeds the design maximum value specified within the tank system design assessment;
 - Prior to placement of a waste into the tank system, the Facility shall verify in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application that the treatment of the waste will not cause temperatures within the tank system to exceed the design maximum value specified within the tank system design assessment;
 - The Facility shall perform a daily inspection of the visible aboveground portions of the tank exterior to detect excessive corrosion or deterioration;
 - The Facility shall perform a daily inspection of the visible aboveground portions of the tank secondary containment system to detect leakable cracks or gaps, or excessive deterioration of the concrete base and/or chemical resistant concrete coatings;
 - The Facility shall perform an annual inspection of the tank shells, as described in Subsection F-2-6 of Section F-2 of the RCRA Part B Permit Application, to ensure that minimum code thicknesses are maintained, and that adequate corrosion allowance is available for continued service;
 - The Facility shall perform an annual inspection of the tank structural supports and anchorages to ensure that their integrity is maintained;

25

5

10

35

- The Facility shall perform a periodic inspection of the tank venting devices to ensure that they are in good working order to maintain the tanks within the design limits for pressure as specified within the tank system design assessment;
- The Facility shall perform a periodic inspection of the tank level sensing, overfill control devices and associated interlocks to ensure that they are in good working order with the appropriate settings to prevent overfilling of the tanks. The frequencies and procedures for inspection of all tank level sensing and overfill control devices shall be as recommended by the manufacturer;

 The Facility shall perform a periodic inspection of any other operational controls for the tank system to ensure that they are in good working order with the appropriate settings to maintain the tanks within their design limits as specified within the tank system design assessment. The frequencies and procedures for inspection of other tank system operational controls shall be as recommended by the manufacturer; and

• The Facility shall perform periodic inspections of the integrity of any tank system grounding and lightning protection systems.

Based on the information provided within the tank system design assessment and supporting documentation, the design of Tanks T-1405 through T-1420 within Tank Management Unit 1400 meets the current RCRA requirements relative to the design of new hazardous waste tank systems. The design assessment addresses only the applicable requirements of 40 CFR 264.192 and 40 CFR 264.193, and ADEM Administrative Code Rules 335-14-5-.10(3) and (4), and does not consider compliance with other codes or regulations, including, but not limited to, the requirements of the Occupational Safety and Health Act (OSHA).

25

30

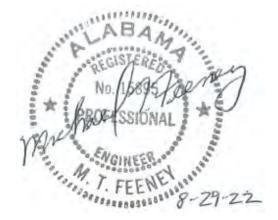
With regards to the assessment and certification of the design of hazardous waste tank systems in accordance with the applicable requirements of 40 CFR 264.192(a) and (g), and ADEM Administrative Code Rules 335-14-5-.10(3)(a) and (g), I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is,

to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are

significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

William O. Hagerman, P.E. Alabama P.E. No.: 14014 President

5 ETI Corporation
 6799 Great Oaks Road, Suite 100
 Memphis, Tennessee 38138-2500

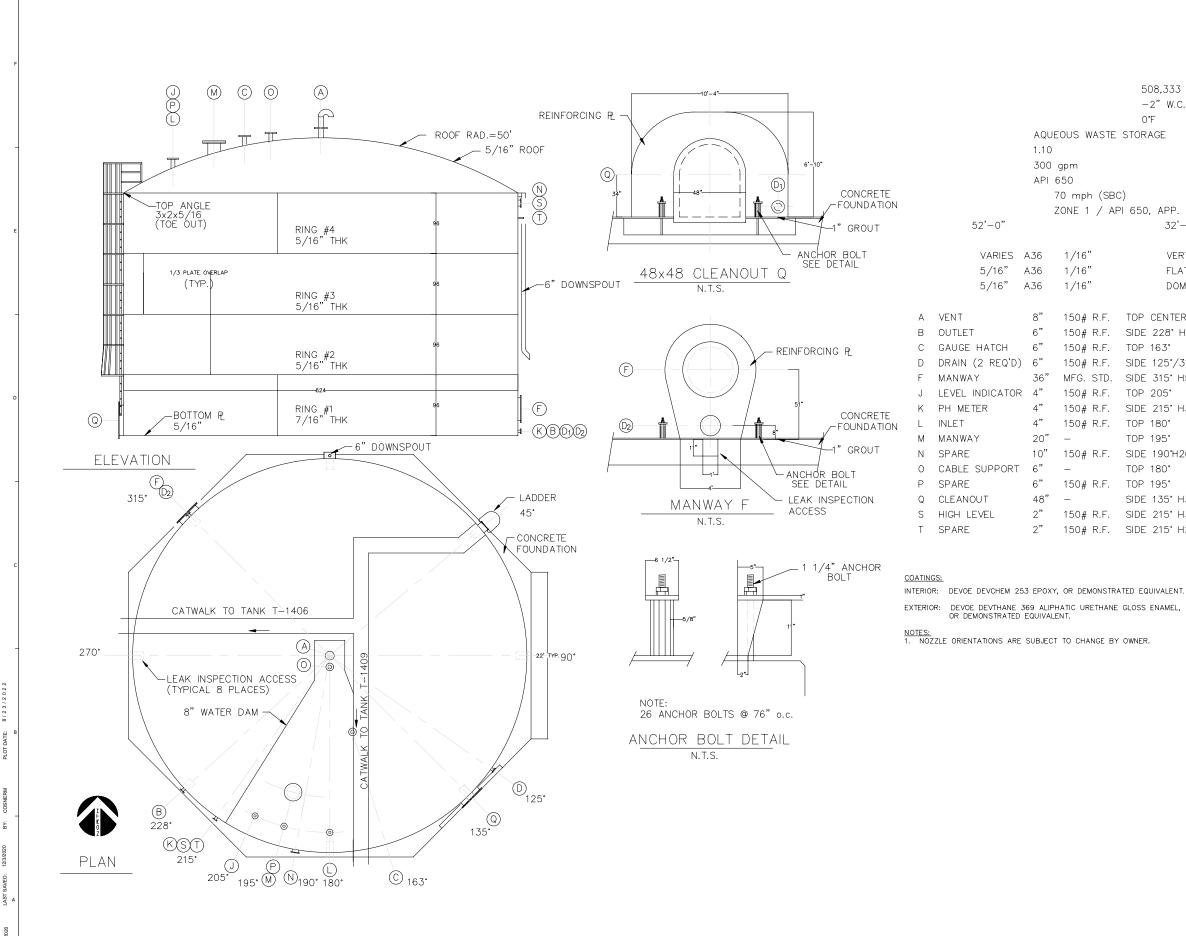

2. 1-95

This certification was originally submitted in 1995. As part of the 2002 Part B Application Renewal, revisions were made to the text in this attachment. These revisions consisted primarily of renaming the section for the Waste Analysis Plan to Section C to maintain consistency with the other Sections contained within this Part B Permit Application. As part of the 2009 Part B Application Renewal, additional revisions were made to the text in this attachment. These revisions consisted primarily of removing references to Tanks T-1421 through T-1436, which were not built and are no longer proposed. No revisions were made to this attachment during this Part B Permit Application renewal process (Revision 5.0).

With regards to the revisions noted above, I certify under penalty of law that these modifications were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

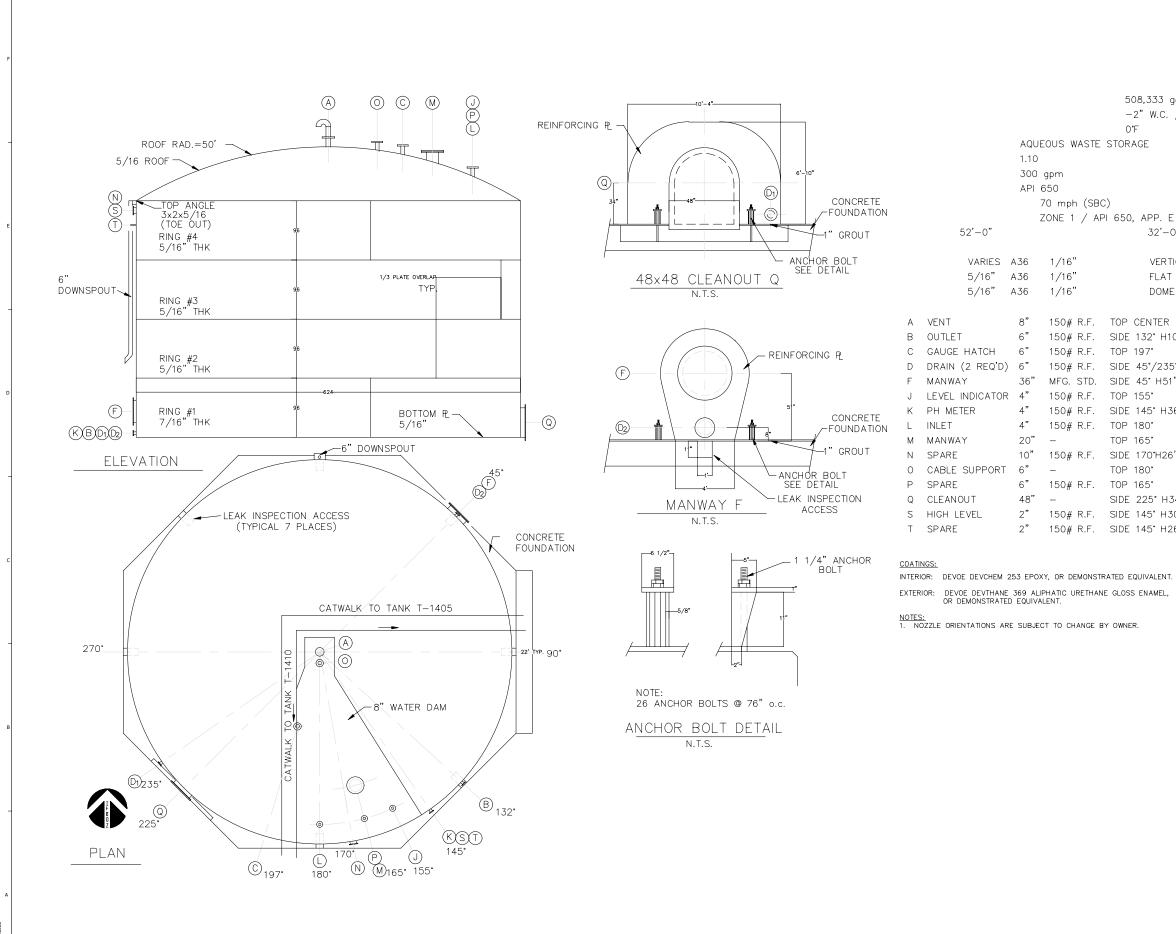
Michael T. Feeney, P.E.

Alabama P.E. No.: 15895
 Jacobs Engineering Group Inc.
 Ten 10th Street NW
 Atlanta, Georgia 30309

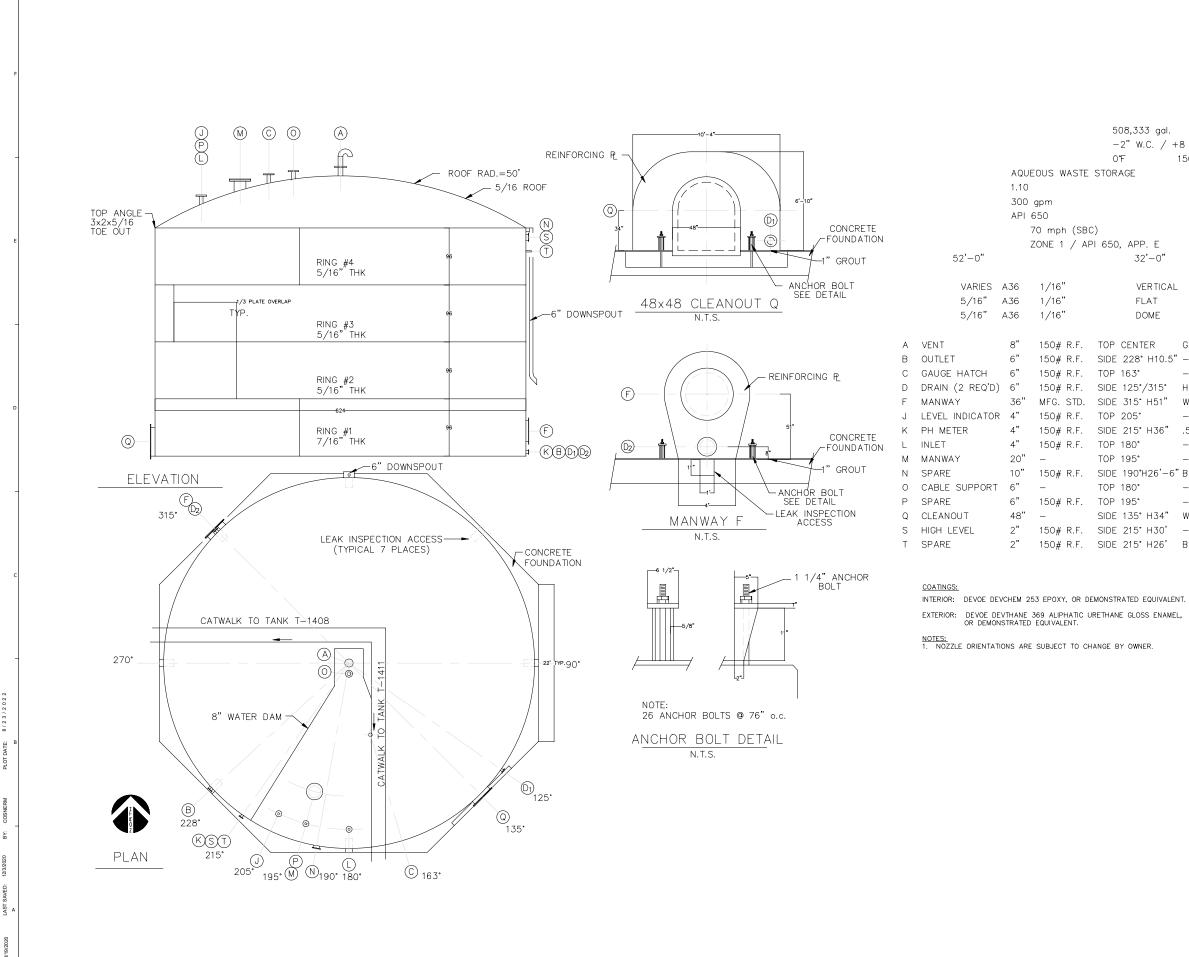

[End of Attachment D-2-4-6 Text]

Attachment D-2-4-6

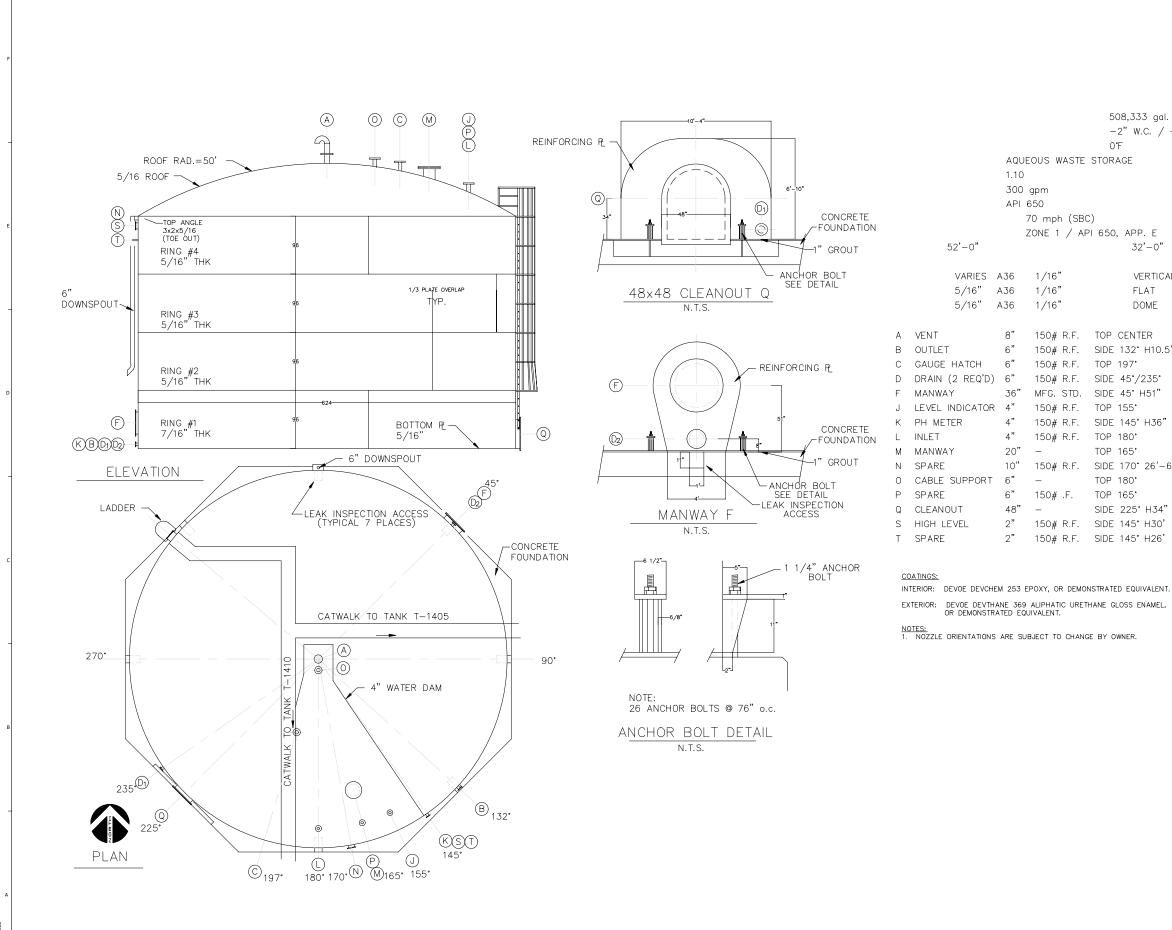
40


EXHIBIT A

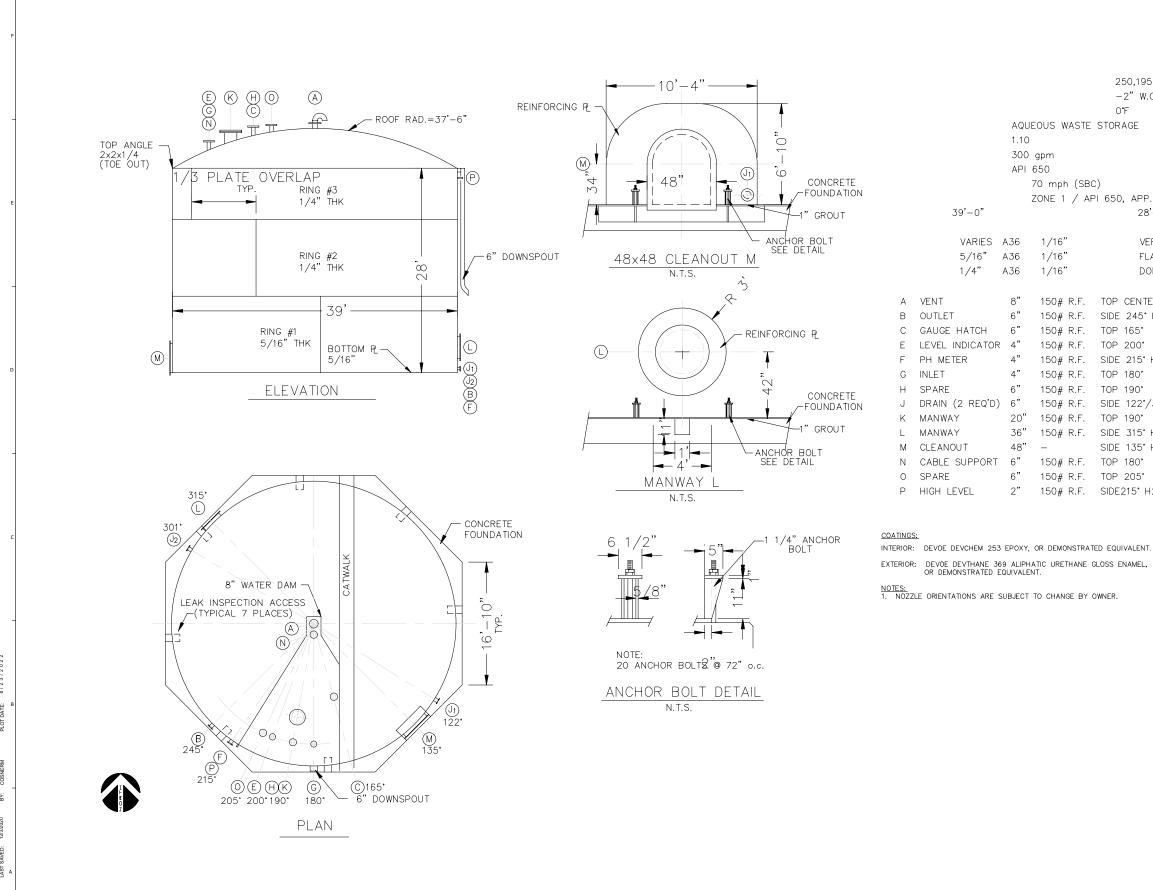
TANK DATA SHEETS


.10 00 g PI 6 7'		-2" O'F STORAGE)	:	8 oz. 150°F 12" 300 gpm 0.85
5	1/16" 1/16" 1/16"		32'-0" VERTICAL FLAT DOME	32'-0" - R 50'
" " 6" " " 0"	150# R.F. 150# R.F. 150# R.F. MFG. STD. 150# R.F.	SIDE 22 TOP 163 SIDE 12 SIDE 31 TOP 203 SIDE 21 TOP 180 TOP 195	8° H10.5" 3° 5°/315° 5° H51" 5° 5° H36" 3° 3° 0°H26'-6"	— Н 8"
" 8" "	150# R.F. - 150# R.F. 150# R.F.	TOP 195 SIDE 13 SIDE 21	5° 5° H34" 5° H30'	– W/ DAVIT – BLIND FLG.

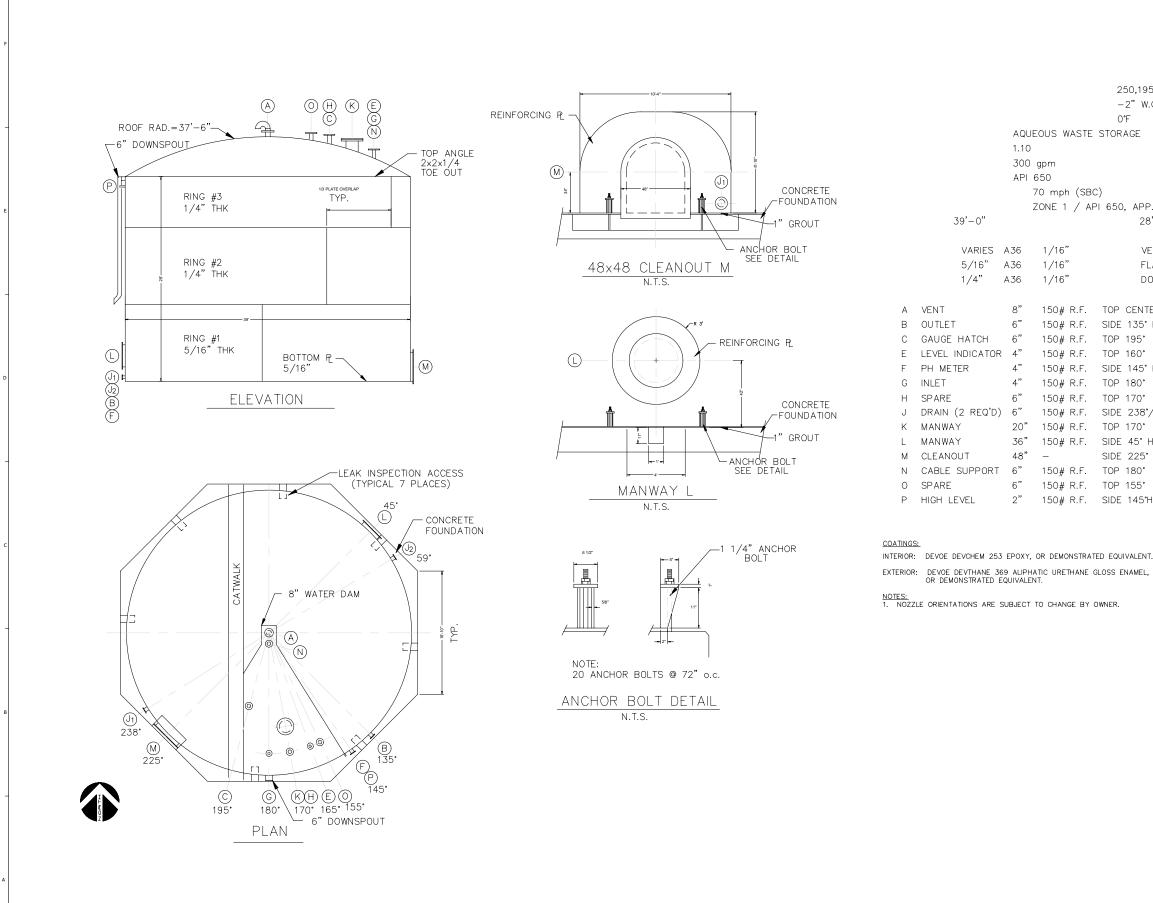
	Jacobs	10 Tenth Street	Attantia, GA 30309 1404.978.7600
		NOT RELEASED FOR	CONSTRUCTION
	WASTE MANAGEMENT		
RCRA PART B PERMIT APPLICATION	CHEMICAL VIASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY		SUMTER COUNTY, AL
		RCRA PART B PERMIT RENEW AL	REVISION DESCRIPTION
		08/22	DATE
		S ONE IN	s Rev
THIS LIN LC THIS DRA WITH THE	IE I I I I I I I I I I I I I I I I I I	S UNE IN CALE NJUNCTI G TECHN	ON ICAL
PROJECT	IONS AND OTHER CONTRAC NO: D3279702 JGUST 2022	I DOCUM	ENTS.
DISC. LE/ MTF	AD: DESIGNER: C RAK	CHECKE SB T	R:
SHEET TI	τιε CDATA SHEET -	T-140)5
SHEET	1400-080-005	5	_


508,333 gal. −2" W.C. / +8 oz. 0°F 150°F AQUEOUS WASTE STORAGE 12" 300 gpm 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 32'-0" VERTICAL 32'-0" FLAT – DOME R 50' 8" 150# R.F. TOP CENTER GOOSE NECK 150# R.F. SIDE 132° H10.5" -_ D DRAIN (2 REQ'D) 6" 150# R.F. SIDE 45°/235° H 8" 36" MFG. STD. SIDE 45" H51" W/ DAVIT 4" 150# R.F. SIDE 145° H36" .5" INT. PROJ 4" 150# R.F. TOP 180* _ TOP 165° _ 10" 150# R.F. SIDE 170°H26'-6" BLIND FLG. TOP 180° _ 6" 150# R.F. TOP 165° _ SIDE 225°H34" W/ DAVIT 2" 150# R.F. SIDE 145° H30' -2" 150# R.F. SIDE 145° H26' BLIND FLG.

	Jacobs	10 Tenth Street 5.Jan 1400 Alanta, CA 303091404.478.7600
		NOT RELEASED FOR CONSTRUCTION
	MASTE MANAGEMENT	
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	Sunter County AL
THIS LINE		DE 20 00.2 RCM ANT B FRUNT RENEWA. REV DATE REVISION DESCRIPTION
HIS LINE LON THIS DRAW WITH THE AL SPECIFICATIO PROJECT N DATE: AUG DISC. LEAD MTF SHEET TITU	UST 2022 : DESIGNER: RAK	IS ONE INCH ISOLE DNJUNCTION IG TECHNICAL IT DOCUMENTS. CHECKER: SBT
CHEET	DATA SHEET -	

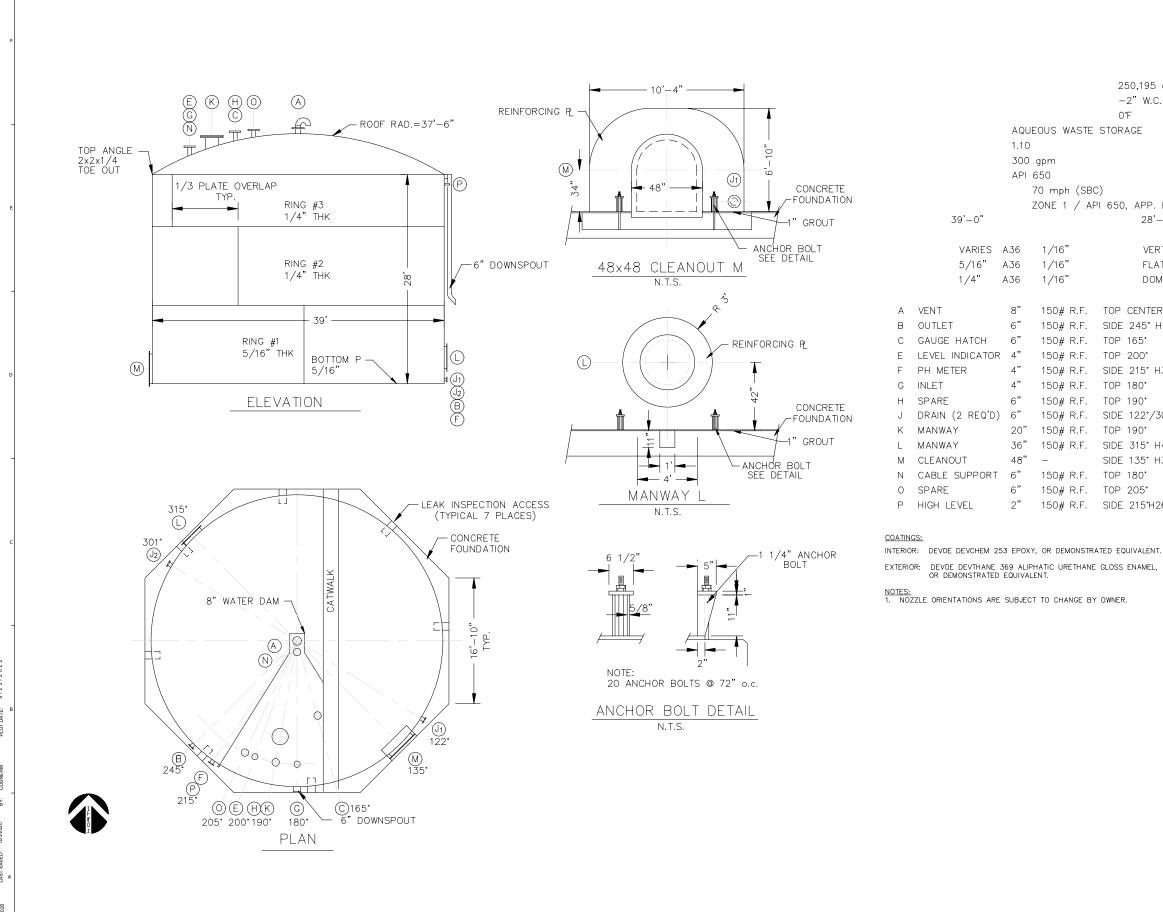

		-	2" W	3 gal. .C. / + 1	8 oz. 50°F
US W	ASTE 2	STOR	AGE		
om O mot	n (SBC))			12" 300 gpm 0.85
	/ API			₽. E 2'−0"	
/16'	,		V	ERTICAL	32'-0"
/16'	,		Fl	AT	_
/16'	,		D	ЭМЕ	R 50'
					GOOSE NECK
50#	R.F.	SIDE	228°	H10.5"	-
	R.F.				_
				/315°	
/FG.	STD.	SIDE	315°	H51"	W/ DAVIT
	R.F.				-
50#	R.F.	SIDE	215°	H36"	.5" INT. PROJ
50#	R.F.	TOP	180°		_
-		TOP	195°		_
50#	R.F.	SIDE	190°I	126'-6"	BLIND FLG.
-		TOP	180°		-
50#	R.F.				-
-		SIDE	135°	H34"	W/ DAVIT
				H30'	-
50#	R.F.	SIDE	215°	H26'	BLIND FLG.

						パコンノロン			10 Ten th Street	Sulter 14.00 Atlantia, GA 30309 (1404.978.7600
									NUL RELEASED FOR	CONSTRUCTION
							WASTE MANAGEMENT			
	RCRA PART B PERMIT APPLICATION					CHEMICAL WASTE MANAGEMENT INC.	EMELLE, ALABAMA TREATMENT FACILITY			SUMTER COUNTY, AL
								RCRA PART B PERMIT RENEW AL		REVISION DESCRIPTION
Ц								08/22		DATE
Ų	HIS	INF					L	23 15.0	NF TP	E REV
T	HIS I	LON DRAV	IG WI	HEN I MUS	T BE	TED F USED GOV R COF			NE IN E JNCT: ECHN	ION ICAL
PR	OJE	CT N		D32	797					
DIS MT	5C. I F	EAD	D:	DES	IGN	ER:			CKE B T	R:
		тл VK		TA	SH	IEE	т-	T-	140)7
SH	EET		14	00	-08	30-	00	7		

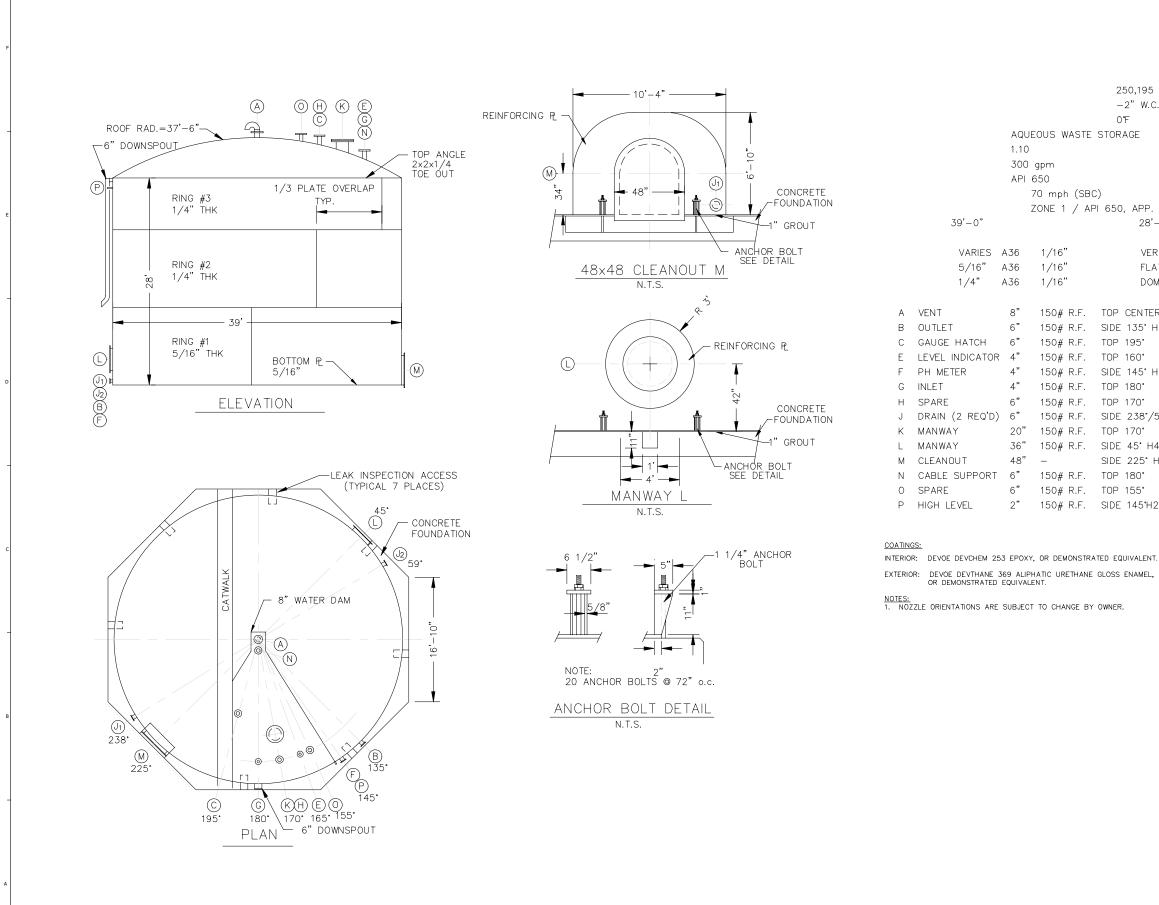

508,333 gal. -2" W.C. / +8 oz. 0°F 150°F AQUEOUS WASTE STORAGE 12" 300 gpm 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 32'-0" VERTICAL 32'-0" FLAT _ DOME R 50' 150# R.F. TOP CENTER GOOSE NECK 150# R.F. SIDE 132° H10.5" -150# R.F. TOP 197° D DRAIN (2 REQ'D) 6" 150# R.F. SIDE 45°/235° H 8" 36" MFG. STD. SIDE 45° H51" W/ DAVIT _ 4" 150# R.F. SIDE 145° H36" .5" INT. PROJ 4" 150# R.F. TOP 180° _ TOP 165° _ 10" 150# R.F. SIDE 170' 26'-6" BLIND FLG. TOP 180° _ 6" 150# .F. TOP 165° SIDE 225° H34" W/ DAVIT 2" 150# R.F. SIDE 145° H30' – 2" 150# R.F. SIDE 145' H26' BLIND FLG.

	Jacobs	10 Tenth Street	Allamia, GA 30309 1404.978.7600
		NOT RELEASED FOR	CONSTRUCTION
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY		SUMTER COUNTY, AL
		RCRA PART B PERMIT RENEW AL	REVISION DESCRIPTION
		08/22	DATE
		20	REV
THIS LINE LO THIS DRAW WITH THE	I USE WHEN PLOTTED FULL SI WING MUST BE USED IN CO APPLICABLE OR GOVERNING DNS AND OTHER CONTRACT	S ONE IN CALE NJUNCTI G TECHN	CH ION ICAL
PROJECT I DATE: AU	NO: D3279702	T DOCUM	ENTS.
DISC. LEA MTF	D: DESIGNER: C RAK	CHECKE SB T	R:
TANK	data sheet - '	T-140)8
SHEET	1400-080-008	}	

250,195 gal. -2" W.C. / +8 oz. 150°F 0°F AQUEOUS WASTE STORAGE 12" 300 gpm 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 28'-0" VERTICAL 28'-0" FLAT _ DOME R 37'-6" 150# R.F. TOP CENTER GOOSE NECK 150# R.F. SIDE 245° H10.5" -150# R.F. TOP 165° 150# R.F. TOP 200° 150# R.F. SIDE 215° H36" -150# R.F. TOP 180° 150# R.F. TOP 190* 150# R.F. SIDE 122°/301° H 8" 20" 150# R.F. TOP 190* 36" 150# R.F. SIDE 315° H42" -SIDE 135° H34" – N CABLE SUPPORT 6" 150# R.F. TOP 180' BLIND FLG. 6" 150# R.F. TOP 205* _ 2" 150# R.F. SIDE215* H26'-6"-

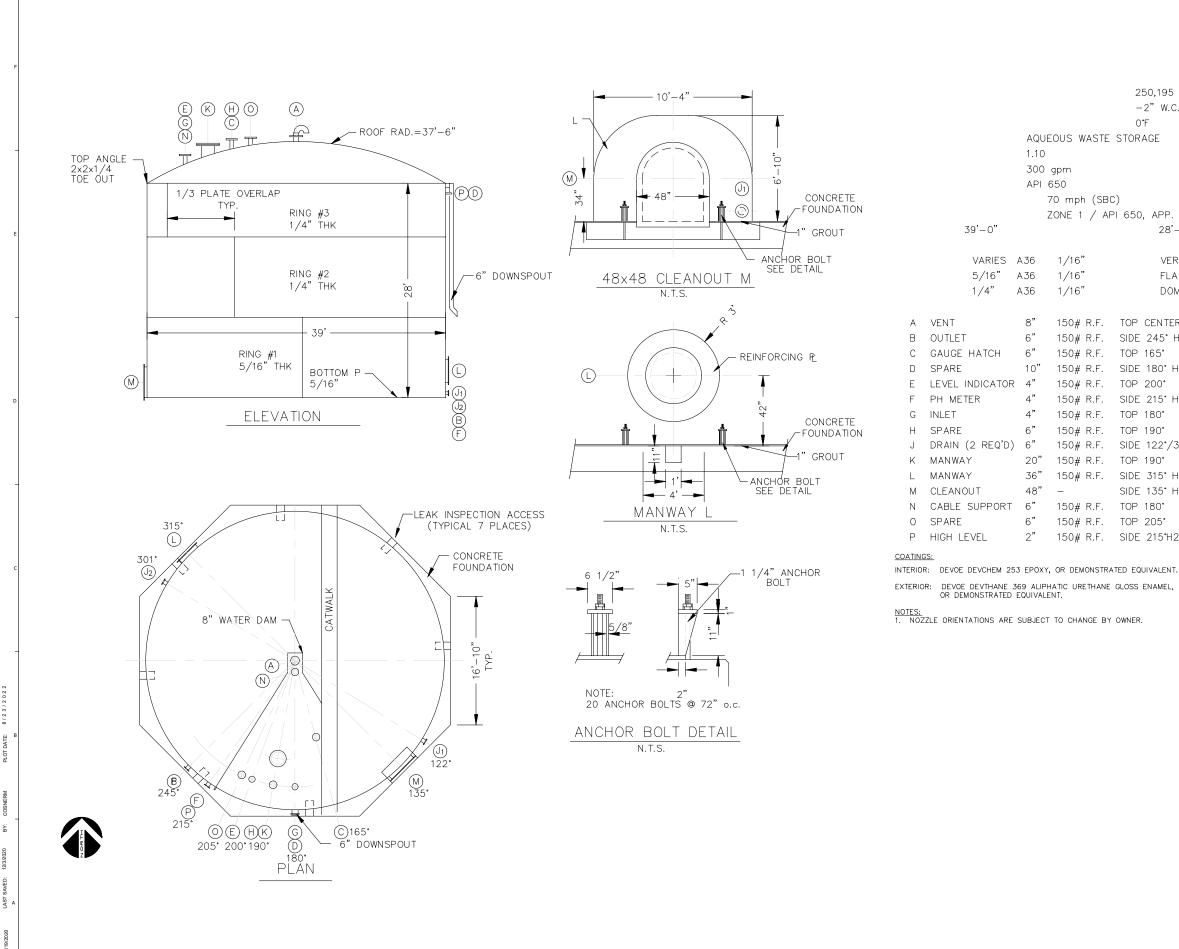

	Jacobs	10 Tenth Street Sule 1400 Atlantia, GA 30303 40.4.978.7600
		NOT RELEASED FOR CONSTRUCTION
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILLITY	SIMTER COUNTY, AL
THIS LINE U LONG THIS DAWN WITH THE APP SPECIFICATION THIS DAWN THE APP SPECIFIC THOUSAND DISC. LEAD: MTF SHEET TITLE	WHEN PLOTTED FULL SI WHEN PLOTTED FULL SI IG MUST BE USED VIE ROU LICABLE OR GYDERON AND OTHER CONTRACT I: D3279702 ST 2022 DESIGNER: C RAK	NOLLADOSE O NOISO 28 NOLLADOSE O NOLLADOSE O NOLLADOS
	ATA SHEET - ⁻ 400-080-009	

8/23/2022

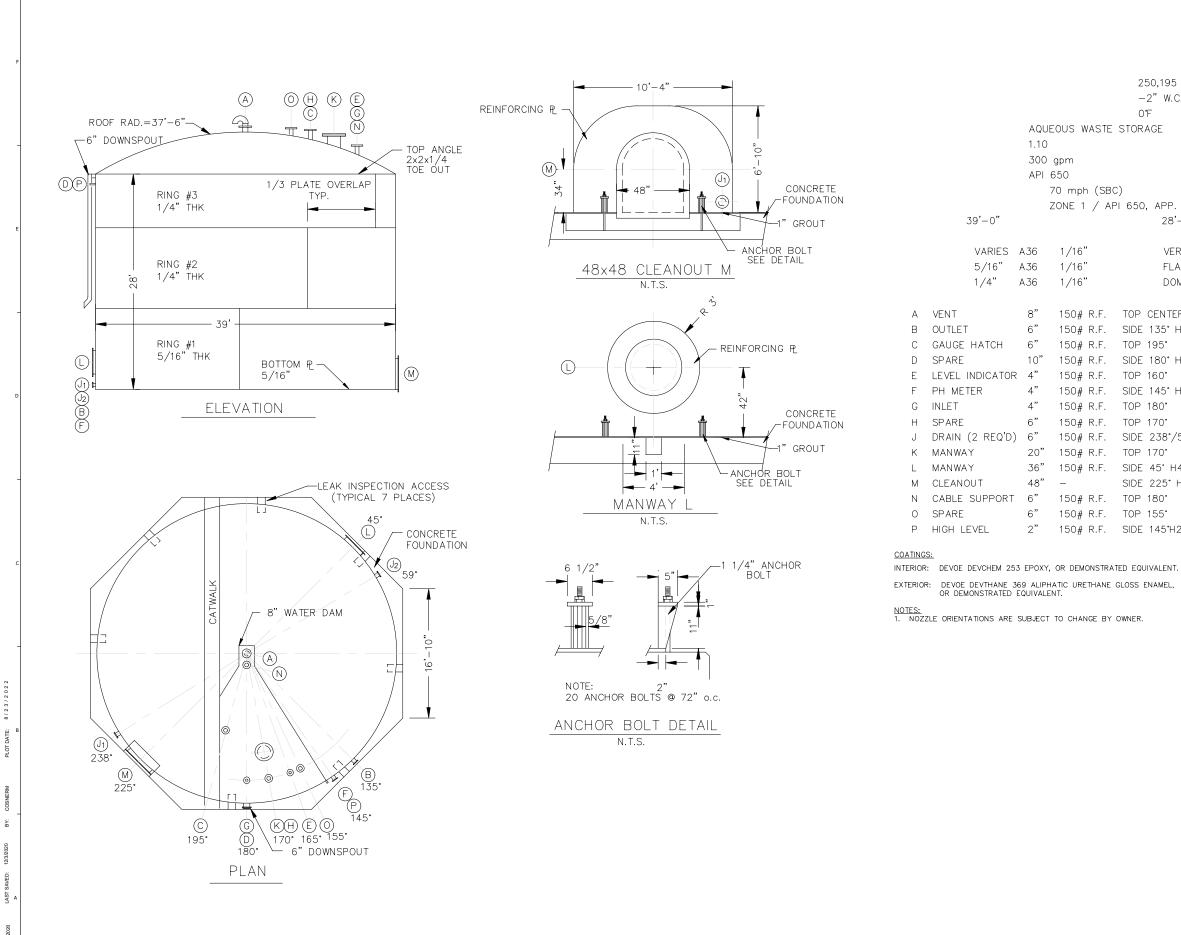

250,195 gal. -2" W.C. / +8 oz. 0°F 150°F AQUEOUS WASTE STORAGE 12" 300 gpm 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 28'-0" VERTICAL 28'-0" FLAT _ DOME R 37'-6" 150# R.F. TOP CENTER GOOSE NECK 6" 150# R.F. SIDE 135° H10.5" -_ 4" 150# R.F. SIDE 145° H36" -4" 150# R.F. TOP 180° _ 6" 150# R.F. TOP 170° _ J DRAIN (2 REQ'D) 6" 150# R.F. SIDE 238'/59" H 8" 20" 150# R.F. TOP 170° 36" 150# R.F. SIDE 45° H42" -SIDE 225° H34" – BLIND FLG. 6" 150# R.F. TOP 155° _ 2" 150# R.F. SIDE 145°H26'-6"-

		Jacobs	10 Tan'n Straet Sula 1400 Alanta, GA 313091 404378.7600
NOLLA SUBJECT NO: 032/3702 TOM: VICE TO 2022			NOT RELEASED FOR CONSTRUCTION
THE STRAME MUST BE USED NO OFFICIENCE OCCURRENT THE STRAME MUST BE USED NO OFFICIENCE OUTPEND THE STRAME MUST BE USED NO OUTPEND THE STRAME MUST BE NO OUTPEND THE STRAME MUST BE DO THE STRAME MUST BE THE STRAME MUST		WASTE MANAGEMENT	
THS LINE LINE WHEN ROTED FLLS SOLE INCH UNIT WHEN ROTED FLLS SOLE INCH UNIT WHEN ROTED FLLS SOLE INCH UNIT WHEN ROTED FLLS SOLE INCH WITH FLARE USALE OF GOVERNME TECHNICAL WEET ATTOR AND OTHER CONTRECT COLUMENTS PROJECT NO: 032/3702 DATE: AUGUST 2022	RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TERATMENT EACLI ITY	SUMTER COUNT, AL
THIS DRAWING MUST BE USED IN CONUNCTION WITH THE APPLICABLE OR GOVERNING TECHNICAL SPECIFICATIONS AND OTHER CONTRACT DOCUMENTS. PROJECT NO: D3279702 DATE: AUGUST 2022			5.0 08/22 RCRA PART B PERM REV DATE
MTF RAK SBT SHEET TITLE TANK DATA SHEET - T-1410	THIS DRAWL WITH THE AF SPECIFICATION PROJECT NC DATE: AUG DISC. LEAD: MTF SHEET TITL	NG MUST BE USED IN ULCABLE OR GOVENN IS AND OTHER CONTR D: D3279702 UST 2022 DESIGNER: RAK E	CONJUNCTION ING TECHNICAL ICT DOCUMENTS. CHECKER: SB T

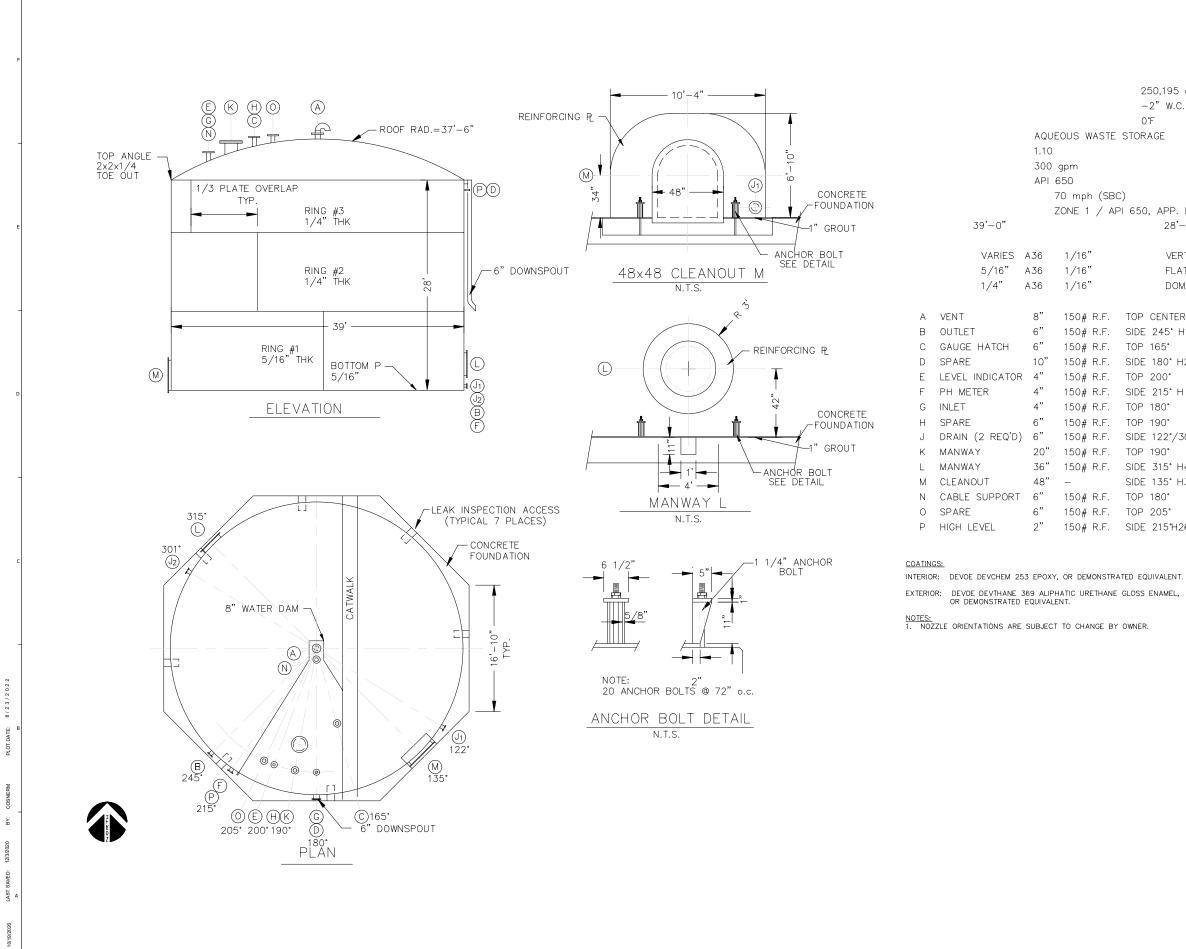
250,195 gal. -2" W.C. / +8 oz. 0°F 150°F AQUEOUS WASTE STORAGE 12" 300 gpm 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 28'-0" VERTICAL 28'-0" 1/16" 1/16" FLAT _ 1/16" DOME R 37'-6" 150# R.F. TOP CENTER GOOSE NECK 150# R.F. SIDE 245° H10.5" -150# R.F. TOP 165' 150# R.F. TOP 200° 150# R.F. SIDE 215° H36" -150# R.F. TOP 180° 150# R.F. TOP 190* _ 150# R.F. SIDE 122°/301° H 8" 20" 150# R.F. TOP 190* 36" 150# R.F. SIDE 315° H42" -SIDE 135° H34" – BLIND FLG. 6" 150# R.F. TOP 205° 2" 150# R.F. SIDE 215°H26'-6"-


	Jacobs	10 Tenth Street Sule 1400 Alanta, GA 30303 404.978.7600
		NOT RELEASED FOR CONSTRUCTION
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	Sumter county, AL
		06.62 RCAN PART B REMIT RENEW AL 06.62 RCAN PART B REMIT RENEW AL 0 DATE REVISION DESCRIPTION
THIS LINE L LONG THE APPI SPECIFICATIONS PROJECT NO: DATE: AUGU DISC. LEAD: MTF SHEET TITLE	ST 2022	S ONE INCH CALE NOUNCTION G TECHNICAL T DOCUMENTS. CHECKER: SBT
CUEET	ATA SHEET - 1	

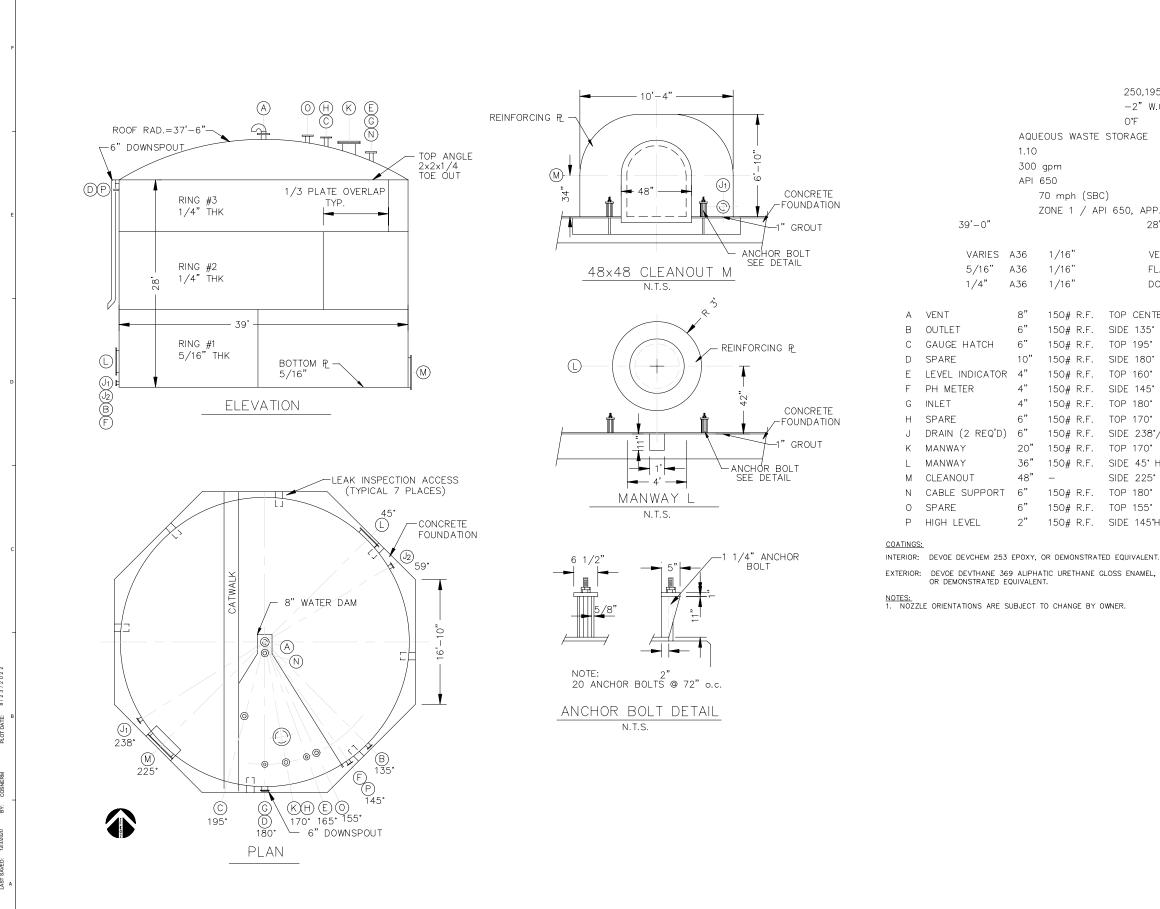
8/23/2022


250,195 gal. -2" W.C. / +8 oz. 0°F 150°F AQUEOUS WASTE STORAGE 12" 300 gpm 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 28'-0" VERTICAL 28'-0" 1/16" 1/16" FLAT _ 1/16" DOME R 37'-6" 150# R.F. TOP CENTER GOOSE NECK 150# R.F. SIDE 135° H10.5" -150# R.F. TOP 195° 150# R.F. TOP 160° 150# R.F. SIDE 145° H36" – 150# R.F. TOP 180° -150# R.F. TOP 170° 150# R.F. SIDE 238*/59* H 8" 20" 150# R.F. TOP 170° 36" 150# R.F. SIDE 45" H42" -SIDE 225° H34" – BLIND FLG. 6" 150# R.F. TOP 155° _ 2" 150# R.F. SIDE 145°H26'-6"-

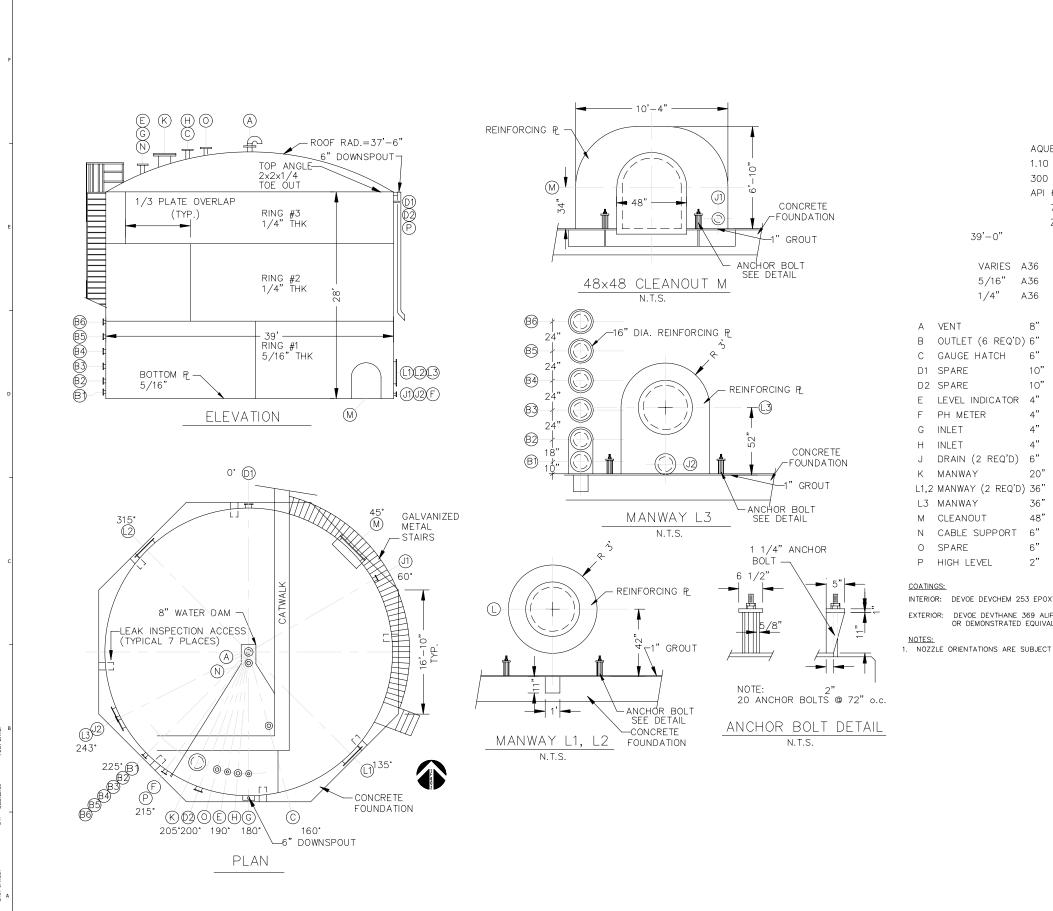
	Jacobs	10. Tenth Street Sule 1400 Alama, GA 30309(404.978.7800					
		NOT RELEASED FOR CONSTRUCTION					
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	Sumter county al.					
		0523 R.CA.A.MAT D.FENLTRENEWA. DATE REVISION DESCRIPTION					
THIS LINE	WHEN PLOTTED FULLS	S ONE INCH					
THIS DRAWIN WITH THE APP SPECIFICATIONS PROJECT NO: DATE: AUGU DISC. LEAD: MTF SHEET TITLE	G MUST BE USED IN CO LICABLE OR GOVERNIN AND OTHER CONTRAC D3279702 ST 2022	DUUNCTION G TECHNICAL T DOCUMENTS. CHECKER: SBT					
CUEET	ATA SHEET -						


250,195 gal. −2" W.C. / +8 oz. 0°F 150°F AQUEOUS WASTE STORAGE 12" 300 gpm 300 gpm API 650 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 28'-0" 1/16" VERTICAL 28'-0" FLAT 1/16" _ 1/16" DOME R 37'-6" 150# R.F. TOP CENTER GOOSE NECK 150# R.F. SIDE 245° H10.5" -150# R.F. TOP 165° 10" 150# R.F. SIDE 180° H27' -150# R.F. TOP 200° 150# R.F. SIDE 215° H36" -150# R.F. TOP 180° 150# R.F. TOP 190° 150# R.F. SIDE 122°/301° H 8" 20" 150# R.F. TOP 190° 36" 150# R.F. SIDE 315° H42" -48" – SIDE 135° H34" – BLIND FLG. 6" 150# R.F. TOP 205" _ 2" 150# R.F. SIDE 215°H26'-6"-

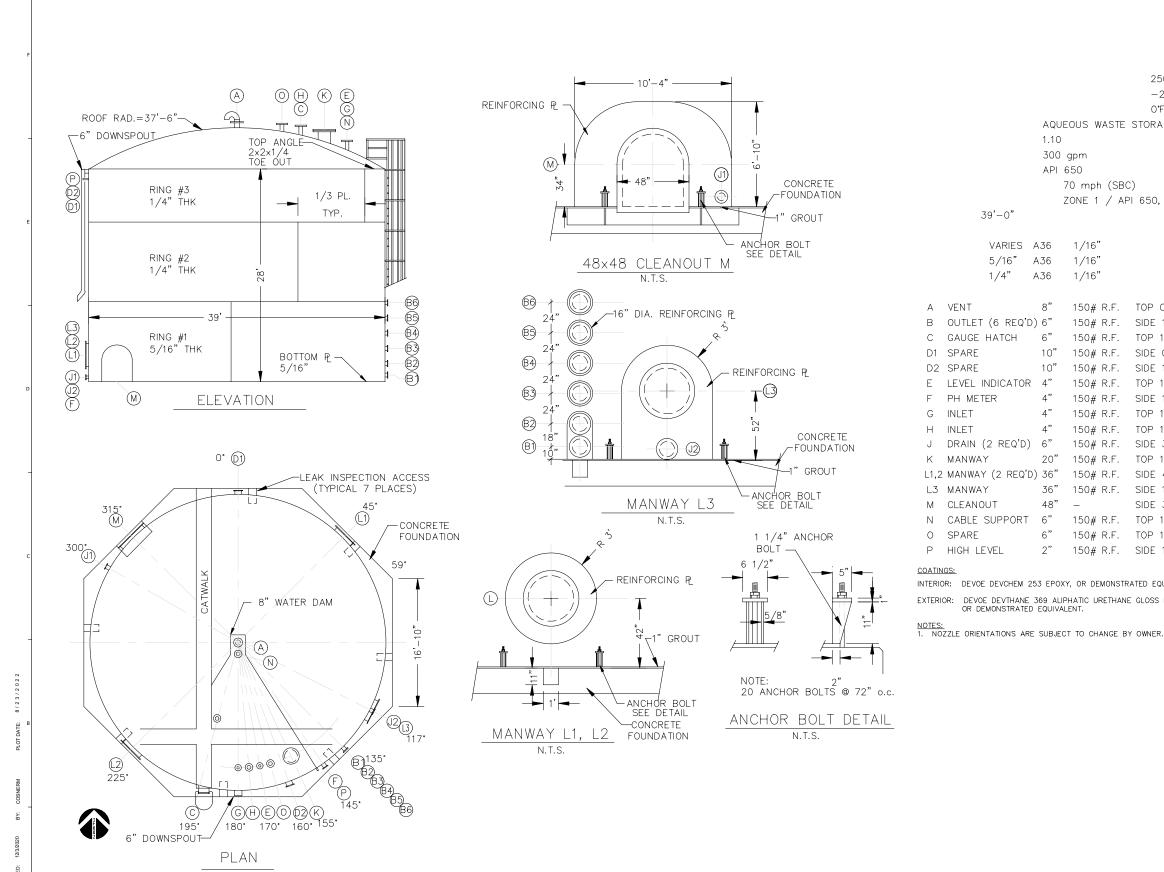
	Jacobs	10 Tearth Stravel Sules 1400 Allanta, CA 30303(); 404.978.7600
		NOT RELEASED FOR CONSTRUCTION
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	SUMTER COUNTY, AL
THSURE L UNKW	I I I I I I I I I I I I I I I I I I I	TO 002 RCM ANT B FEMITERMUK REV DATE REVITERMUK
THIS DRAWING WITH THE APPL SPECIFICATIONS , PROJECT NO: DATE: AUGUS DISC. LEAD: MTF SHEET TITLE	I MUST BE USED IN CO ICABLE OR GOVERNIN AND OTHER CONTRAC D3279702 ST 2022 DESIGNER: (RAK	DECHNICAL T DOCUMENTS.
CUTCT	ATA SHEET - 1	


250,195 gal. -2" W.C. / +8 oz. 0°F 150°F AQUEOUS WASTE STORAGE 12" 300 gpm 300 gpm API 650 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 28'-0" 1/16" VERTICAL 28'-0" 1/16" FLAT _ 1/16" DOME R 37'-6" 150# R.F. TOP CENTER GOOSE NECK 150# R.F. SIDE 135° H10.5" -150# R.F. TOP 195° 10" 150# R.F. SIDE 180° H27' -4" 150# R.F. SIDE 145° H36" -4" 150# R.F. TOP 180° 6" 150# R.F. TOP 170° _ J DRAIN (2 REQ'D) 6" 150# R.F. SIDE 238°/59° H 8" 20" 150# R.F. TOP 170° 36" 150# R.F. SIDE 45 H42" -48" – SIDE 225° H34" – BLIND FLG. 6" 150# R.F. TOP 155° _ 2" 150# R.F. SIDE 145"H26'-6" -

	Jacobs	10 Tenth Street Sube 1400 Attanta, GA 30309 (r 40.4.9.78.76.00
	NOT PELEACEN EVD	CONSTRUCTION
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	SJMTER COUNTY, AL
THE LINE L LORO WITH THE AUGUS PROJECT NO: PROJECT NO: DATE: AUGUS DISC. LEAD: SHEET TITLE	T 2022	NCTION CHNICAL CUMENTS.
TANK DA	NTA SHEET - T-1	414


250,195 gal. -2" W.C. / +8 oz. 0°F 150°F AQUEOUS WASTE STORAGE 12" 300 gpm 300 gpm API 650 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 28'-0" 1/16" VERTICAL 28'-0" 1/16" FLAT _ 1/16" R 37'-6" DOME 150# R.F. TOP CENTER GOOSE NECK 150# R.F. SIDE 245° H10.5" -150# R.F. TOP 165° 10" 150# R.F. SIDE 180° H27' -150# R.F. TOP 200° 150# R.F. SIDE 215° H 36" -150# R.F. TOP 180° 150# R.F. TOP 190° J DRAIN (2 REQ'D) 6" 150# R.F. SIDE 122*/301* H8" 20" 150# R.F. TOP 190° 36" 150# R.F. SIDE 315° H42" -SIDE 135° H34" – 48" – BLIND FLG. 6" 150# R.F. TOP 205° _ 2" 150# R.F. SIDE 215"H26'-6"-

	Jacobs	10 Tenth Street Suite 1400 Allanda, CA 30309[4:04.978.7600
		NOT RELEASED FOR CONSTRUCTION
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	SAMTER COUNTY, AL
		RICKA PAKTI B PERMIT RENEWAL REVISION DESCRIPTION
++	++++	s.0 08/22 REV DATE
THIS DRAWIN WITH THE APP SPECIFICATION PROJECT NO DATE: AUGU	VG MUST BE USED IN CO PLICABLE OR GOVERNIN 5 AND OTHER CONTRAC 1: D3279702 JST 2022	S ONE INCH CALE INJUNCTION G TECHNICAL T DOCUMENTS.
DISC. LEAD: MTF SHEET TITLE TANK D	RAK	


250,195 gal. -2" W.C. / +8 oz. 150°F 0°F AQUEOUS WASTE STORAGE 12" 300 gpm 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 28'-0" 1/16" VERTICAL 28'-0" 1/16" FLAT _ DOME R 37'-6" 150# R.F. TOP CENTER GOOSE NECK 150# R.F. SIDE 135° H10.5" -150# R.F. TOP 195° 150# R.F. SIDE 180° H27' -150# R.F. TOP 160° 150# R.F. SIDE 145°H 36"-4" 150# R.F. TOP 180° 6" 150# R.F. TOP 170° J DRAIN (2 REQ'D) 6" 150# R.F. SIDE 238°/59° H8" 20" 150# R.F. TOP 170° 36" 150# R.F. SIDE 45° H42" -SIDE 225° H34" – BLIND FLG. 6" 150# R.F. TOP 155° _ 2" 150# R.F. SIDE 145°H26'-6"-

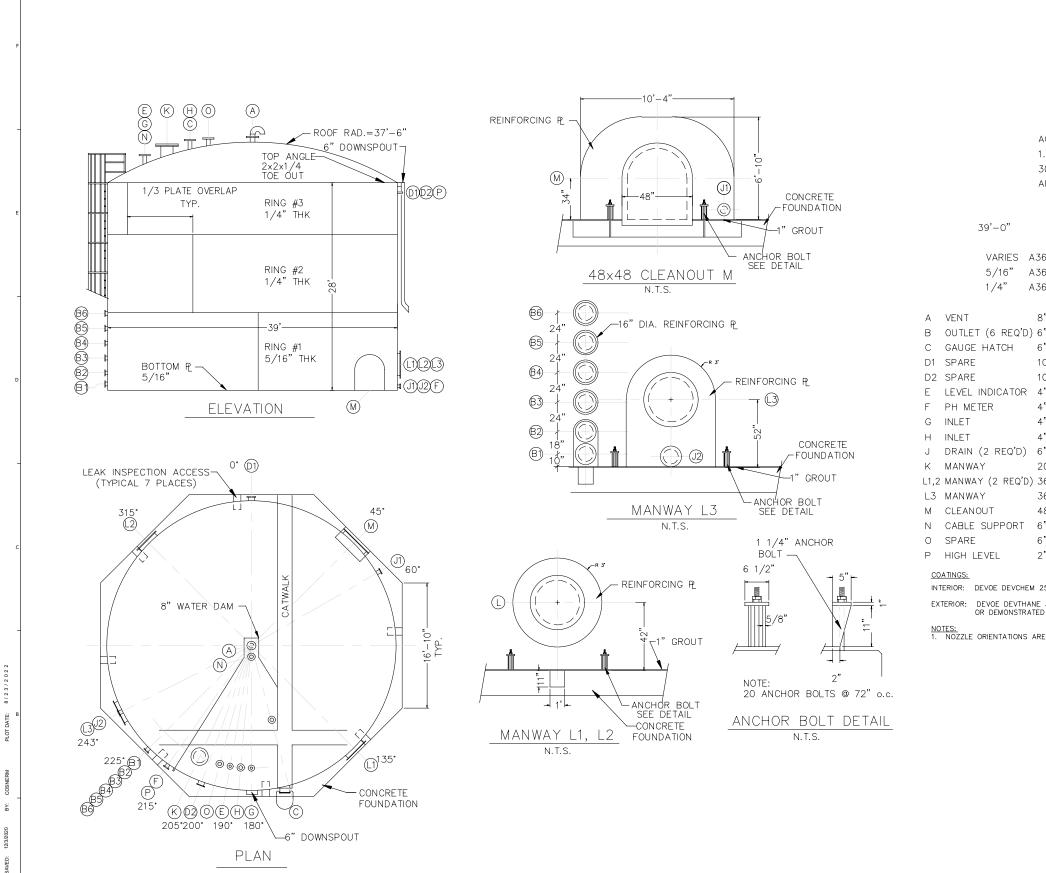
	Jacobs	10 Tenth Street Suite 1400 Attentia, Cix 30 303 # 404.6 78,7800
		NOT RELEASED FOR CONSTRUCTION
	MASTE MANAGEMENT	
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	SMTER COUNTY, AL
		RCAA PART & PERMIT RENEWAL REVISION DESCRIPTION
		0 08/22 V DATE
	G WHEN PLOTTED FULL:	IS ONE INCH
THIS DRAV WITH THE A SPECIFICATIO	ING MUST BE USED IN C PPLICABLE OR GOVERNIN NS AND OTHER CONTRAI IO: D3279702	ONJUNCTION NG TECHNICAL ET DOCUMENTS.
DATE: AU DISC. LEAD MTF	GUST 2022	CHECKER: SBT
SHEET TIT	DATA SHEET -	T-1416

	8	1		9		1	
							Jacobs
		250,195	gal.				
		-2" W.C					
1.10 300 API	650 70 mph (SB(C) PI 650, APP.	E	50°F 12" 300 gpr 0.85	m		
		28'-	-0"				
.36 36 36	1/16" 1/16" 1/16"	VEF FLA DOM		28'-0" - R 37'-6"			3
8" 6"	150# R.F. 150# R.F.	TOP CENTE		GOOSE NEC B1-B6	K		
6" 10" 10"	150# R.F. 150# R.F. 150# R.F.	TOP 165° SIDE 0° H2° SIDE 200° H		-		PLICATION	MENT INC.
4" 4" 4"	150# R.F. 150# R.F. 150# R.F.	TOP 190° SIDE 215° H TOP 180°	1 36"	-		RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC.
4" 6" 20"	150# R.F. 150# R.F. 150# R.F.	TOP 185° SIDE 60°/24 TOP 205°		- H 8" -		RA PART B	HEMICAL WA
36" 36" 48"	150# R.F. 150# R.F. -	SIDE 135°/3 SIDE 243° H SIDE 45° H3	452"	H 42"		RC	D
6" 6" 2"	150# R.F. 150# R.F. 150# R.F.	TOP 180° TOP 195° SIDE 215°H2		BLIND FLG. - -			
	PHATIC URETHAN	RATED EQUIVALEN E GLOSS ENAMEL					
JBJECT	TO CHANGE BY	OWNER.					
						THIS DRAWING WITH THE APPL	
						DISC. LEAD:	

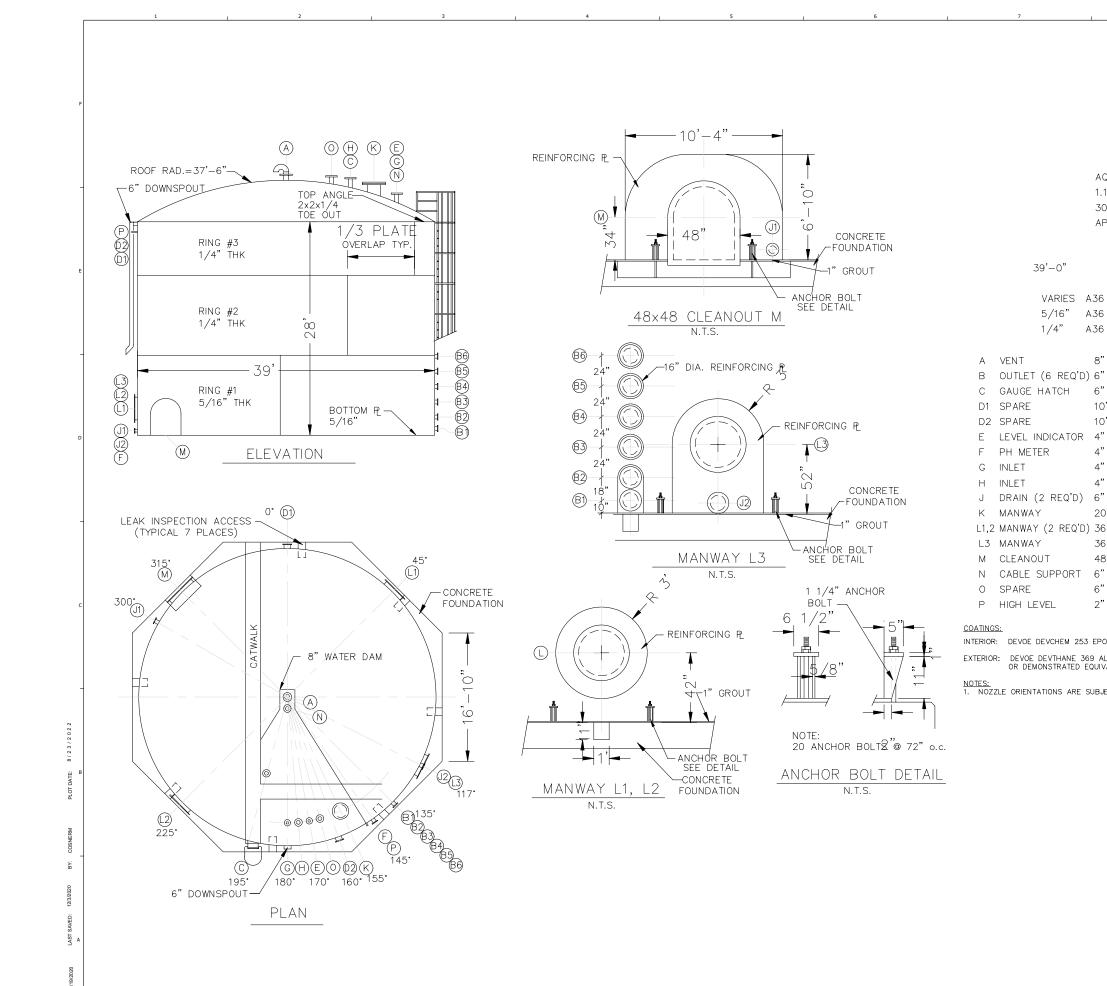
NOT RELEASED FOR CONSTRUCTION CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY IS ONE IN JST BE USED IN CONJUNCTION BLE OR GOVERNING TECHNICAL O OTHER CONTRACT DOCUMENT 3279702 022 SIGNER: CHECKER: SBT TANK DATA SHEET - T-1417 SHEET 1400-080-017

250,195 gal. -2" W.C. / +8 oz. 150°F 0°F AQUEOUS WASTE STORAGE 12" 1.10 300 gpm 300 gpm API 650 0.85 70 mph (SBC) ZONE 1 / API 650, APP. E 28'-0" VERTICAL 28'-0" 1/16" 1/16" FLAT _ 1/16" R 37'-6" DOME 150# R.F. TOP CENTER GOOSE NECK 150# R.F. SIDE 135° B1-B6 150# R.F. TOP 195° 10" 150# R.F. SIDE 0" H27' 10" 150# R.F. SIDE 160° H27' -E LEVEL INDICATOR 4" 150# R.F. TOP 170° 150# R.F. SIDE 145°H 36" -4" 150# R.F. TOP 180° 4" 150# R.F. TOP 175° J DRAIN (2 REQ'D) 6" 150# R.F. SIDE 300'/117" H8" 20" 150# R.F. TOP 155* _ L1,2 MANWAY (2 REQ'D) 36" 150# R.F. SIDE 45°/225° H 42" 36" 150# R.F. SIDE 117" H52" _ 48" — SIDE 315° H34" – N CABLE SUPPORT 6" 150# R.F. TOP 180° BLIND FLG. 6" 150# R.F. TOP 165° _ 2" 150# R.F. SIDE 145°H26'-6"-

A36


8"

6"


4"

INTERIOR: DEVOE DEVCHEM 253 EPOXY, OR DEMONSTRATED EQUIVALENT. EXTERIOR: DEVOE DEVTHANE 369 ALIPHATIC URETHANE GLOSS ENAMEL,

	Jacobs	10 Tearth Street Sup 1400 Attentia, CA 30 300 40 4 978.7600
		NOT RELEASED FOR CONSTRUCTION
	WASTE MANAGEMENT	
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	SUMTER COUNTY, AL
THIS DRAWN WITH THE AP SPECIFICATION PROJECT NO	WHEN PLOTTED FULL SC WHEN PLOTTED FULL SC NG MUST BE USED IN CO PUCABLE OR GOVERNING IS AND OTHER CONTRACT D: D3279702	VILLE REGALESEMENTS
DATE: AUG DISC. LEAD MTF SHEET TITL	DESIGNER: C	HECKER: SBT

		8				9									
													ガンシンシン		10 Tenth Street Sube 1400
				50,195 gal. 2" W.C. / + F	-8 15										
1.10 300 API 6	gpm 350	VASTE		AGE		12" 300 0.85	gpm								
		n (SBC / AP		APP. E				ſ					i t		
		,		28'-0"								1	EMEN		
36 36 36	1/16' 1/16' 1/16'	,		VERTICAL FLAT DOME	-	28'-C - R 37'							WASTE MANAGEMENT		
8" 6"	150# 150#	R.F.		CENTER 225°		00SE N 1-B6	NECK								
5 6"	150#		TOP		_				Z			,	÷È		
10"	150#			0°H27'	_				RCRA PART B PERMIT APPLICATION				CHEMICAL WASTE MANAGEMENT INC. EMELLE ALARAMA TREATMENT FACTITY		
10"	150#		SIDE	200° H27'	_				PLIC					-	
4"	150#	R.F.	TOP	190°	_				[API						4
4"	150#			145°H 36"	-				SMI				TRFA	2	SIMTED COUNTY AI
4"	150#		TOP		-				Ē			1			INTED
4" - "	150#		TOP		-	- "			RTE				NL W	Ì	0
6" • • "	150#			60°/243°	Н	8"			PAF			0.00	MIC ^A	ì	
20"	150#		TOP		_				CRA			Į	Ē	1	
36" 76"	150#			135*/315*	н	42"			æ				ш	Ĵ	
36" 48"	150#	K.F.		243° H52" 45° H34"	_										
40 6"	- 150#	PF	TOP		R	lind fi	C								
5 6"	150#		TOP		_		_0.								
2"				215°H26'-6'	" _										
E 369 ID EQU	ALIPHATI IVALENT.	IC URETH	IANE GL	D EQUIVALENT. .OSS ENAMEL,											
RE SUE	BJECT TO	CHANG	E BY O	WNER.										TRENEWAL	
														RCRA PART B PERMIT RENEW	
														RA PART I	
								\mathbb{H}	+				+		+
								\mid	_				_	08/22	+
								Ч						5.0	
								-	HIS D	LONG N	G MUST	BEU	ED FUL	CONJU	NCTIO
										IE APPL TIONS T NO:			CONTR	ING TE ACT DO	CUME
								DA	TE: /	AUGU EAD:	ST 20	22		CHE	CKER:
								MT	F	EAD:	RAK				BT
								1		K D			еет 0-0:		1419

1	8	I	9	
		250,195 gal.		\geq
		-2" W.C. / +	8 07.	
			150°F	
AQUE	EOUS WASTE	STORAGE		
1.10			12"	
300	gpm		300 gpm	
API (0.85	
	70 mph (SB			
2	ZONE 1 / AF	PI 650, APP. E 28'-0"		\geq
		20 0		
A36	1/16"	VERTICAL	28'-0"	
	1/16"	FLAT	-	
A36	1/16"	DOME	R 37'-6"	
8"	150# R.F.	TOP CENTER	GOOSE NECK	
) 6"	150# R.F.	SIDE 135°	B1-B6	
6"	150# R.F.	TOP 195°	_	
10"	150# R.F.	SIDE 0° H27'	-	
10"	150# R.F.	SIDE 160° H27'	_	
4"	150# R.F.	TOP 170°	_	οσολορτ Β ΒΕΦΜΙΤ ΛΟΟΙ ΓΛΑΤΙΟΝ
4"	150# R.F.	SIDE 145° H 36"	-	
4"	150# R.F.		_	IWD
4" 。"	150# R.F.		-	
6" 20"	150# R.F.		Н 8"	DT T DA
20") 36"		SIDE 45°/225°	— Н 42"	
36"	150# R.F. 150# R.F.	SIDE 437223 SIDE 117°H52"	- 42	
48"		SIDE 315° H34"	_	
6"	150# R.F.	TOP 180°	BLIND FLG.	
6"	150# R.F.	TOP 165°	_	
2"	150# R.F.	SIDE 145°H26'-6"	_	
S EPOXY,	OR DEMONSTRA	TED EQUIVALENT.		
69 ALIPH EQUIVALE		GLOSS ENAMEL,		
	TO CHANCE BY	OWNER		
SUBJECT	TO CHANGE BY	OWNER.		
				+

EXHIBIT B

TANK DESIGN CALCULATIONS

	CHEMICAL WASTE MANAGEMENT CO.								
	EMELLE, ALABAMA FACILITY								
	<u> </u>	<u>.</u>	CAL	CULATION	COVER S	HEET			
UNIT:					400				
TANK NC	0.:	<u> </u>	05 T	0 T-1	408 8	4 T-1421 TU T-1424			
DECRIPT	ION:	_5	z'Ø 8	sv 32	' TANK	K T-1421 TU T-1424 W/ SCHIEICAL TOP			
				'ESSEL CA					
PREPARE	ED BY:	_ L	ANZ		DATE:	9/29/94			
REV. NO.	DATE	BY	СНК	APPVD.	PAGES	REMARKS			

ATTACHMENTS: PRIOR CALCULATIONS HAVE BEEN INCLUDED TO SUPPLEMENT THE DATA USED IN THE CALCULATIONS.									

•

Exhibit B Page 1 of 18

.

UNIT 1400

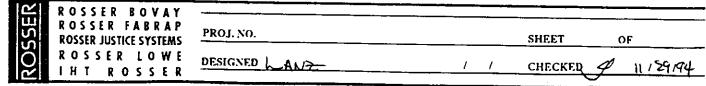
DESIGN CALCUALTIONS

DESIGN DATA SHEET T-1405, T-1406, T-1407, T-1408 Page 1 of 8 T-1421, T-1422, T-1423, T-1424

Service: Bulk Storage

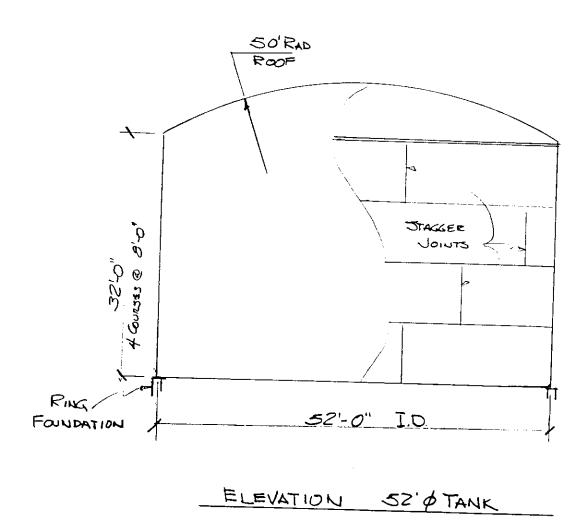
52 ft. Diameter by 32 ft. High Spherical Roofed Flat Bot. Storage Tanks. Chemical Waste Management, Emelle, AL Job No. 44228.00

Diameter/Length Shell/Heigth Bottom/Width	API 650 Existing/Proposed
Heads/Ends Top	Spherical
DOLLOM	····· Flat
цеда	
operating capacity	
Joint Efficiency	
Design Spec. Grav.	0.85
Design Pressure	0.5 1.10
Design Temperature	0.5 psig Max and 2 inches H20 Vacuum (Min)
remperature	the second of the second of the second
Mind I a	20 psf
WING DOUG	SBC, 70 mph
Seismic Zone	Zone 1
Agitator	
Location	NA
	Outdoors


<u> に</u>	ROSSER BOVAY			
SS	ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET	OF
ROSSER	ROSSER LOWE IHT ROSSER	DESIGNED 4N7 / /	CHECKED <	7 11/29/94

TANK DESIGN	Diameter 52 feet
Weight of Contents	Height 32 feet
Volume = Pi*H*D*D/4 = 67958.93	Cubic Feet
Weight = Volume*Unit Wt*SG =	4664701. Pounds (32 ft. Depth)
Operating Weight = Vol * Den =	4664701. pounds
Tank Wall Thickness	
The 32 foot high tank will be o wide rolled sheet carbon steel. Mi determined using the expressions in	onstructed of 4 courses of 8 foot nimum thicknesses of plate are Section 3.6 in API Standard 650.
Min. Values are Bottom 2nd, 3rd	Course 1/4" + Corrosion Allowance & 4th Courses - 1/4" + CA
Thickness of the bottom (1st) cour method and Appendix F.	se, 8 feet high, using the 1 foot
t = 2.6*D*(H-1+P/.433)*G/E/21,0	00 + Corr Allow
= 2.6*52*(32-1+.5/.433)*1.1/	.85/21000 + 1/16 = 0.330 inches
3/8 INCH PLATE ACCEPTABLE,	USE 7/16 INCH PLATE FURNISHED
Thickness of the second course	
t = 2.6*D*(H-1+P/.433)*G/E/21,0	00 + Corr Allow
= 2.6*52*(24-1+.5/.433)*1.1/	.85/21000 + 1/16 = 0.264 inches
	USE 5/16 INCH PLATE
Thickness of the 3rd and top course	25
USE 5/16" PLATE PER API 650 (1/4 Calc Values are 0.197	' + CA) inches & 0.130 inches
Tank Floor Thickness	
USE 5/16 INCH	I PLATE PER API 650 (1/4" + CA)

Tanks T-1405, T-1406, T-1407, T-1408 T-1421, T-1422, T-1423, T-1424


Page 2 of 8

Rev 1 10/24/94

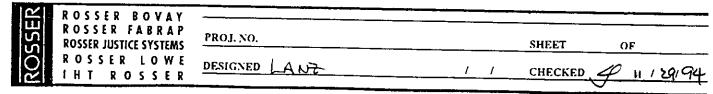
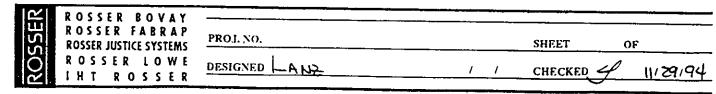
TANK UNIT 1400

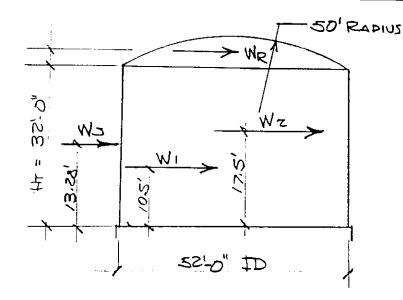
Page 3 of 8 Tanks T-1405, T-1406, T-1407, T-1408 T-1421, T-1422, T-1423, T-1424

ROSSER BOVAY			<u> </u>
ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET	OF
ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER	DESIGNED LANZ / /	CHECKED	11/29/94

Exhibit B Page 4 of 18

TANK UNIT 1400 Page 4 of 8 Tanks T-1405, T-1406, T-1407, T-1408 T-1421, T-1422, T-1423, T-1424 Rev 2 11/20/94 Tank Roof Thickness Use a Spherical Roof for these tanks. Try 50 foot radius Check 0.8*D<50<1.2*D 41.6 < 50' R < 62.4 The 50 foot radius is acceptable Thickness of Roof Per API 650, Section 3.10.6 Min Thickness = R/200 > 3/16"Design Thickness = R/200 = 50/200 = 0.25 inches Check for increased thickness = sqrt(LL+DL/45) = = Sqrt((20 + 12.65 + 10.4)/45) = < 1.0 OK USE 5/16" PLATE (1/4" + 1/16" Corr Allow) Top Angle Attachment Per API 650 Section 3.1.5.9, USE 3" X 2" X 5/16" ANGLE Allowable internal pressure Pa = 30,800 * A * tanO/d/d + 8 * thtan0 = asin26/50 = 0.60878 $8 \star th = 8 \star 0.250 = 2.0$ A = 1.06 + (.3*SQRT(Rr*th)+.6*SQRT(Rc*tc))*.25= 1.71 sq in Pa = 13.84 inches of water = 0.50 psi, allowable > 0.5 psi INTERNAL PRESSURE CHECKS Weight of Tank Weight of Floor Wt. = Area times unit weight = Pi*R*R*12.75 = Pi*26*26*12.75 = 27077 pounds


Exhibit B Page 5 of 18 TANK UNIT 1400 Page 5 of 8 Tanks T-1405, T-1406, T-1407, T-1408 T-1421, T-1422, T-1423, T-1424 Rev 2 11/20/94 Weight of tank (cont) Weight of Wall Wt. = Area times unit weight = Pi*D*h*12.75 = Pi*(52*24*12.75+52*8*15.3) = 69985 pounds Weight of Roof Wt = Area times unit weight = Pi*R*Height 2*@PI*50*(50-50*@SIN(@ACOS(26/50)))*12.75 = 29207.07 Pounds Weight of Nozzles and Attachemnts = 10000 pounds Weight of Tank Wt = Floor + Wall + Roof + Att = 136269.0 Pounds Force on Tank Roof Force = Pressure times Area = P*Pi*R*R 0.5*Pi*26*12*26*12 _ = 152907.5 Pounds This force is greater that the weight of the empty tank by 16638.50 pounds. An anchor system is required to hold the tank down. ANCHOR BOLTS AREA REQUIRED FOR TIE DOWN Resisting Area at Design Pressure wh = 0.3Sqrt(R2tn)3.67 inches wc = 0.6*Sqrt(Rc*tc)5.30 inches Area = wh*th+wc*tc 2.24 sq inches Area Required = D*D*(P-8th)/30800/tan theta 1.71 sq inches 1.71 < 2.24 Resisting Area OK

 Page
 6
 of
 8

 Tanks T-1405, T-1406, T-1407, T-1408
 Rev
 1

 T-1421, T-1422, T-1423, T-1424
 10/24/94

Earthquake Forces

The Site is in Zone 1. Z= 0.075

The overturning moment due to seizmic forces applied to the bottom of the shell are (API 650, App. E)

M = Z*I*(C1*Ws*Xs+C1*Wr*Ht+C1*W1*X1+C2*W2*X2)

Where

```
M is the overturning moment
Z is the seizmic zone factor
                                    Z = 0.075
I is the importance factor
                                    I = 1.0
C1, C2 are earthquake force coefficients, E3.3: C1 = 0.6, C2 = 0.173
Ws is the weight of the tank shell
                                                      Ws = 69,985 Lb
Xs is the distance up to the shell center of gravity
                                                      Xs = 15.78 ft
Wr is the weight of the tank roof
                                                      Wr = 29,210 LB
Ht is the height of the tank shell
                                                      Ht = 32 ft
WI is the effective mass of the tank contents that move with the tank
                                                      W = 3,032,250
X1 is the height to the centroid of seizmic force W1
                                                      X1 = 12 ft
W2 is the effictive mass of the contents that move in the first
     sloshing mode
                                                      W2 = 1,749,400
X2 is the height to the centroid of seizmic force W2
                                                      H2 = 20.0 t
```

12	ROSSER BOVAY			
55	ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET	OF
Š	ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER	DESIGNED LANZ	CHECKED 4	0 11/29/94
			9	

Exhibit B Page 7 of 18

 Page
 7 of
 8

 Tanks T-1405, T-1406, T-1407, T-1408
 Rev
 1

 T-1421, T-1422, T-1423, T-1424
 10/24/94

Then

M = .075*1.0*(.6*69985*15.78+.6*29210*32+.6*3032250*12+.17*1749400*20)= 2183143. foot-pounds

Resistance to Overturning

Not considered for anchored tanks.

Shell Compresion

The maximum longitudinal compressive stress at the bottom of the shell is determined by the expression

b = wt + 1.273 * M/D/D = 136270/Pi/52+1.273 * 2183143/52/52= 1861.94

The maximum longitudinal compressive stress in the shell b/12/t shall not excees the following Fa = 1,000,000*t/D when G*H*D*D/t/t > 1,000,000 G*H*D*D/t/t = 1335140.Maximum Stress = 1000000*.267/52 = 5135 psi

Minimum Anchorage

```
The force per foot of circumference = 1.273*M/D/D-wt
= 301 pounds
```

2	ROSSER BOVAY			
S	ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET	OF
ROSSER	ROSSER LOWE	DESIGNED LANZ	CHECKED 4	11 129.94
	THT KUSSEK			

Page 8 of 8 Tanks T-1405, T-1406, T-1407, T-1408 T-1421, T-1422, T-1423, T-1424

Wind Loading

Stresses from wind loading will be bending and axial stresses in the shell. Fw = q2*Gh*Cf*A $q2 = 0.00256 \times K2I \times I \times V \times V = 12.3$ V = 70 mphExposure C $At = 52 \times 32$ Exp Coeff. = K@ = 0.98 eZ=30'Ar = 52*7.29*2/3Gust Factor = 1.26Mom = At*Lt + Ar*Lr Shape Factor = 0.8 Importance Factor = 1.0 At = 1664 Fw =12.3*1.26*0.8*1916.7 -Ar 252.72 23764 pounds 1916.72 Mom = 4031667 ft lbZ = Pi*R*R*t =76454 in 3 P = tank Wt = 109192 lb Sben = M/Z =53 psi As = Pi*D*t490 Saxl = P/A =223 psi

Stressed are low and do not significantly contribute to the overall stresses.

に て し	ROSSER BOVAY			
SSE	ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET	OF
ROSSER	ROSSER LOWE	DESIGNED LANZ	CHECKED	4 11 129194
والمشيا ا	THE ROJUER			

	CHEMICAL WASTE MANAGEMENT CO.									
EMELLE, ALABAMA FACILITY										
CALCULATION COVER SHEET										
UNIT:		1400								
TANK NO.:		T-1409 TOT-1420 & T-1425 TOT-1436 (24)								
DECRIPTION:		T-1409 TOT-1420 & T-1425 TOT-1436 (24) 39'\$ BY 28' TANK W/SPHERICAL DOME								
			v	'ESSEL CA	LCULATIC	ONS				
PREPARED BY:			LANZ DATE: <u>7/30/94</u>							
						, ,				
REV. NO.	DATE	BY	СНК	APPVD.	PAGES	REMARKS				
							=			
						· · · · · · · · · · · · · · · · · · ·				
					· · • · · · · · · · · · · · · · · · · ·					
							-			
ATTACHM		PRIOR CA SUPPLEM	LCULATIC	DNS HAVE	BEEN INC	OLUDED TO CALCULATIONS UHAY LANK 9901 STATE OMAAL OCT 3 1994				

Exhibit B Page 10 of 18

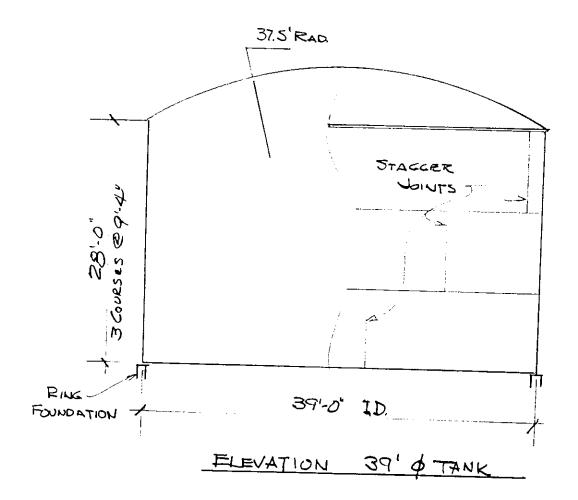
UNIT 1400

DESIGN CALCULATIONS

DESIGN DATA SHEET - T-1409, T-1410, T-1411, T-1412, T-1413 T-1414, T-1415, T-1416, T-1417, T-1418, T-1419, T-1420 T-1425, T-1426, T-1427, T-1428, T-1429, Y-1430, T-1431 T-1432, T-1433, T-1434, T-1435, T-1436

Service: Bulk Storage

39 ft. Diameter by 28 ft. Shell, Spherical Roof, Ring Foundation


Chemical Waste Management, Emelle, AL Job No. 44228.00

Design Code Service Status Diameter/Length Shell/Heigth Bottom/Width	API 650 Existing/Proposed
Heads/Ends Top	Spherical
Bottom	Flat
Legs	None
Operating Capacit	У250.195
Material of Const	ruction
Corrosion Allownc	e
Joint Efficiency	•••••••••••••••••••••••••••••••••••••••
Design Spec. Grav	····· 1.10
Design Pressure Design Temperature	
Wind Load	SBC, 70 mph
Seismic Zone	Zone 1
Agitator	NO
Location	Outdoors

ER	ROSSER BOVAY			
SE	ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ.NO.	SHEET OF	
(055)	ROSSER LOWE	DESIGNED LANT	1 1 CHECKED 4 11291	94

Exhibit B Page 11 of 18

TANK UNIT 1400 Tanks T-1409 to T-1420 and T-1	425 to T-1436	Page 2 of 8 Rev 1 10/24/94 Rev 2 11/20/94
TANK DESIGN	Diameter	39 feet
Weight of Contents	Height	28 feet
Volume = Pi*H*D*D/4 = 33448.5	3 Cubic Feet	
Weight = Volume*Unit Wt*SG =	2295907. Pou	nds (28 ft. Depth)
Operating Weight = Vol * Den =	2295907. pou	nds
Tank Wall Thickness		
The 28 foot high tank will be o wide rolled sheet carbon steel. M determined using the expressions in	inimum thickne	sses of plate are
Min. Values are Bottom 2nd and	Course 3/16" 3rd Courses -	+ Corrosion Allowance 3/16" + CA
Thickness of the bottom (1st) coun method and Appendix F.	rse, 9.33 feet	high, using the 1 foot
$t = 2.6 \star D \star (H - 1 + P / .433) \star G / E / 21, 0$	000 + Corr Alle	OW
<pre>= 2.6*39*(28-1+.5/.433)*1.1,</pre>	/.85/21000 + 1, 0.176 = 1,	/16 = /16 = 0.238 inches
1/4 INCH PLATE ACCEPTABLE,	, USE 5/16 INC	H PLATE FURNISHED
Thickness of the second course		
t = 2.6*D*(H-1+P/.433)*G/E/21,0	000 + Corr Allo	w
= 2.6*39*(18.67-1+.5/.433)*1 =		+ 1/16 = /16 = 0.180 inches
Thickness of the top course	USE	1/4 INCH PLATE
Calc Value is 0.059 USE 1/4" PLATE	9 +1/16 = (2 (3/16 " + 1/	0.122 inches /16" CA)
Tank Floor Thickness		
USE 5/16 INC	H PLATE PER AP	PI 650 (1/4" + CA)
ROSSER BOVAY ROSSER FABRAP		······································
ROSSER JUSTICE SYSTEMS		SHEET OF
ROSSER LOWE DESIGNED ANZ		<u>/ / снескер 🖌 /// 29</u> 9

に 、	ROSSER BOVAY				
155	ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ.NO.	SHEE	T	OF
Š	ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER	DESIGNED LANZ / /	CHEC	KED	11129194

TANK UNIT 1400 Page 4 of 8 Tanks T-1409 to T-1420 and T-1425 to T-1436 Rev 2 11/20/94 Tank Roof Use a Spherical Roof for these tanks. Try 37.5 foot radius Check 0.8*D < 37.5 < 1.2*D 31.2 <37.5'R < 46.8 The 37.5 foot radius is acceptable Thickness of Roof Per API 650, Section 3.10.6 Min Thickness = R/200 > 3/16" Design Thickness = R/200 = 37.5/200 0.1875 inches Check for increased thickness = sqrt((LL+DL)/45) = = sqrt((20 + 10.2 + 10.4)/45) =< 1.0 OK USE 1/4" PLATE (3/16" + 1/16" Corr Allow) Top Angle Attachment Per API 650 Section 3.1.5.9, USE 2" X 2" X 1/4" ANGLE Allowable internal pressure Pa = 30,800 * A * tanO/d/d + 8 * thtan0 = asin19.5/37.5 = 0.60878 $8 \star th = 8 \star 0.1875 = 1.5$ A = 1.06 + (.3*SQRT(Rr*th)+.6*SQRT(Rc*tc))*.251.42 sq in = Pa = 19.56 inches of water = 0.71 psi, allowable > 0.5 psi INTERNAL PRESSURE CHECKS Weight of Tank Weight of Floor Wt. = Area times unit weight = Pi*R*R*10.2 = Pi*19.5*19.5*12.75 = 15231 pounds

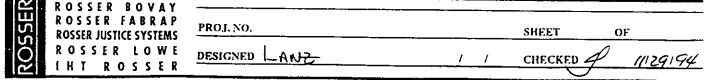


Exhibit B Page 14 of 18 TANK UNIT 1400 Page 5 of 8 Tanks T-1409 to T-1420 and T-1425 to T-1436 Rev 2 11/20/94 Weight of tank (cont) Weight of Wall Wt. = Area times unit weight = Pi*D*h*12.75 = Pi*(39*18.67*10.2+39*9.33*12.75) = 37907 pounds Weight of Roof Wt = Area times unit weight = Pi*R*Height = 2*0PI*37.5*(37.5-37.5*0SIN(0ACOS(19.5/37.5)))*10.2 = 12732.61 Pounds Weight of Nozzles and Attachemnts = 8000 pounds Weight of Tank Wt = Floor + Wall + Roof + Att = 73871 Pounds Force on Tank Roof Force = Pressure times Area = P*Pi*R*R = 0.5*Pi*19.5*12*19.5*12 152908 Pounds This force is greater that the weight of the empty tank by 79037 pounds. An anchor system is required to hold the tank down. ANCHOR BOLTS AREA REQUIRED FOR TIE DOWN Resisting Area at Design Pressure wh = 0.3Sqrt(R2tn) 3.18 inches wc = 0.6*Sqrt(Rc*tc)4.59 inches Area = wh*th+wc*tc 1.94 sq inches Area Required = D*D*(P-8th)/30800/tan theta 0.96 sq inches 0.96 < 1.94 Resisting Area OK

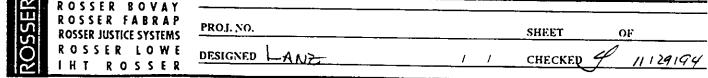
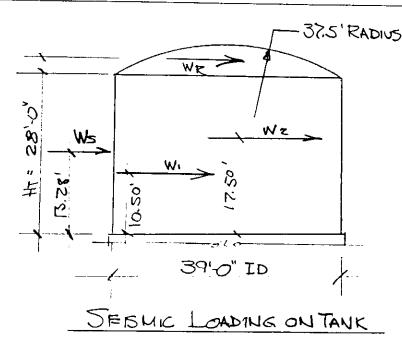
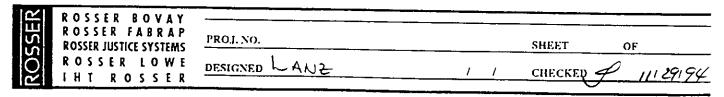



Exhibit B Page 15 of 18 TANK UNIT 1400 Page 6 of 8 Tanks T-1409 to T-1420 and T-1425 to T-1436 Rev 1 10/24/94


Earthquake Forces The Site is in Zone 1. Z= 0.075

The overturning moment due to seizmic forces applied to the bottom of the shell are (API 650, App. E)

M = Z*I*(C1*Ws*Xs+C1*Wr*Ht+C1*W1*X1+C2*W2*X2)

Where

```
M is the overturning moment
Z is the seizmic zone factor
                                     Z = 0.075
I is the importance factor
                                     I = 1.0
C1, C2 are earthquake force coefficients, E3.3: C1 = 0.6, C2 = 0.204
Ws is the weight of the tank shell
                                                       Ws = 37,907 Lb
Xs is the distance up to the shell center of gravity
                                                       Xs = 13.28 \text{ ft}
Wr is the weight of the tank roof
                                                       Wr = 12,733 lb
Ht is the height of the tank shell
                                                       Ht = 28 ft
W1 is the effective mass of the tank contents that move with the tank
                                                       W = 1,492,435
X1 is the height to the centroid of seizmic force W1
                                                       X1 = 10.5 ft
W2 is the effictive mass of the contents that move in the first
     sloshing mode
                                                       W_2 = 861,032
X2 is the height to the centroid of seizmic force W2
                                                       H2 = 17.5 ft
```


TANK UNIT 1400 Page 7 of 8 Tanks T-1409 to T-1420 and T-1425 to T-1436 Rev 1 10/24/94

Then

 $\begin{array}{rl} \texttt{M}=.075*1.0*(.6*37907*13.28+.6*12733*28+.6*1492435*10.5+.26*861032*17.5) \\ = & 1037699. \ \texttt{foot-pounds} \end{array}$

Resistance to Overturning

Not considered for anchored tanks.

Shell Compresion

The maximum longitudinal compressive stress at the bottom of the shell is determined by the expression (E.5.2)

b = wt + 1.273*M/D/D = 73871/Pi/39+1.273*1037699/39/39 = 1471 psi Allowable

The maximum longitudinal compressive stress in the shell b/12/t shall not excees the following Fa = 1,000,000*t/D when G*H*D*D/t/t >1,000,000 G*H*D*D/t/t = 1529691. Maximum Stress = 1000000*.175/52 = 4487 psi Stresses are OK

Minimum Anchorage

```
The force per foot of circumference = 1.273*M/D/D-wt
= 350 pounds
ANCHOR BOLTS ARE REQUIRED
```

に 、	ROSSER BOVAY		
SE	ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET OF
ROSSER	ROSSER LOWE	DESIGNED LANZ	CHECKED 4 11 129 194
	INI KOJJEK		

TANK UNIT 1400 Page 8 of 8 Tanks T-1409 to T-1420 and T-1425 to T-1436 $\$

Wind Loading Stresses from wind loading will be bending and axial stresses in the shell. Fw = q2*Gh*Cf*Aq2 = 0.00256*K2I*I*V*V = 12.3 V = 70 mph Exposure C At = 39 * 28Exp Coeff. = K@ = 0.98 eZ=30' $Ar = 39 \times 5.47 \times 2/3$ Gust Factor = 1.26Mom = At*Lt + Ar*Lr Shape Factor = 0.8Importance Factor = 1.0 At = 1092 Fw =12.3*1.26*0.8*1234.2 Ar = 142.22 15302 pounds 1234.22 Mom = 2299562 ft 1b Z = Pi*R*R*t =32254 in 3 P = tank Wt = 58640 lb Sben =M/2 = 71 psi As = Pi*D*t276 Saxl = P/A =213 psi

Stressed are low and do not significantly contribute to the overall stresses.

ROSSER BOVAY			
ROSSER FABRAP ROSSER JUSTICE SYSTEMS	PROJ. NO.	SHEET	OF
ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE I H T ROSSER	DESIGNED LANZ	CHECKED A	11179194
INI KUSSER		<u> </u>	

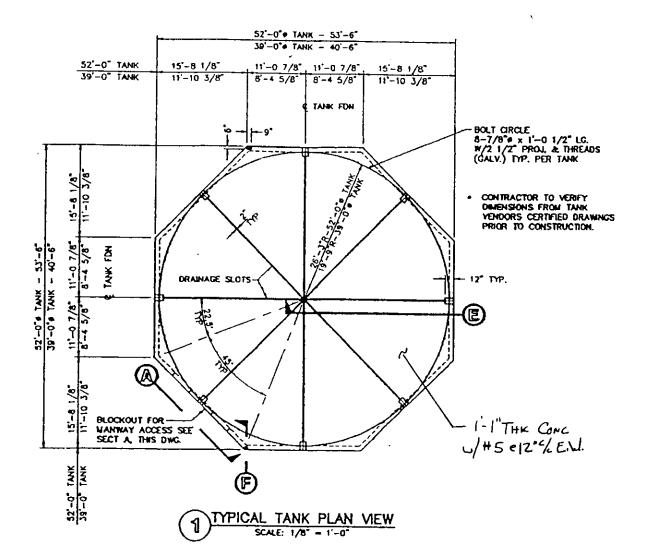
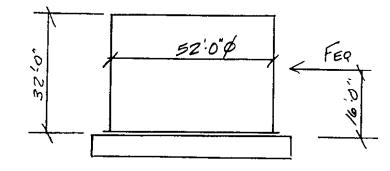

and a special second second

Exhibit B Page 18 of 18

EXHIBIT C

TANK FOUNDATION DESIGN CALCULATIONS


	CHEMICAL WASTE MANAGEMENT CO.						
	EMELLE, ALABAMA FACILITY						
			CAL	CULATION	OVER 8	SHEET	
UNIT:		_140	0				
TANK N	D.:	T-140	<u>5 to T-</u>	1408	FT. 147	21 TO T- 1424	
DECRIP	TION:	500					
				UNDATION			
PREPAR	ED BY:	_5.4			DATE:	9.20-94	
REV. NO.	DATE	BY	СНК	APPVD.	PAGES	REMARKS	
АТТАСНМ		PRIOR CA SUPPLEM	LCULATIC	ONS HAVE DATA USE	BEEN INC D IN THE (CLUDED TO CALCULATIONS.	
	SCOLF CSMITH SCOLF						

ROSSER	ROSSER BOVAY ROSSER FABRAP	PROJECT CHEM LASTE	Manacement Proj. No. Sheet Se-1 of 9120194 Checked 1	
	ROSSER JUSTICE SYSTEMS	EMELLE, ALD	sheet Se-1 of	
	IHT ROSSER	DESIGNED 5. SMITH	9120194 CHECKED 1	1

Exhibit C Page 2 of 52

٠.

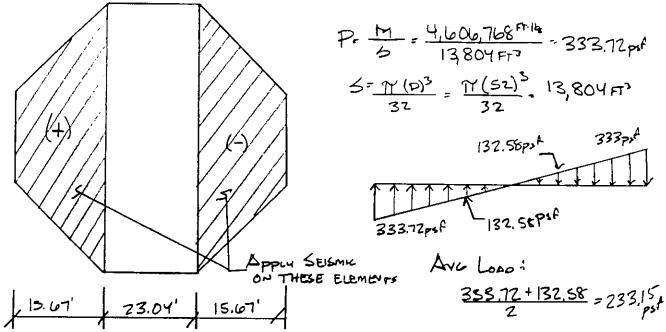
$$\frac{T_{ANK}}{MESKHT} (Empry)$$

$$T_{OP} = \frac{Y(52.0)^{2}}{Y} = 10.2^{H}/_{SF} = 21,661^{H}$$

$$S_{HELL} = TT (52.0)(32.0)(15.3^{H}/_{SF}) = 79,982^{H}$$

$$B_{OTTOM} = \frac{TT (52.0)^{2}}{Y} \times 12.8^{H}/_{SF} = 27,182^{H}$$

$$S_{UBTOTAL} = 128,825^{H}$$


$$No22LES = V_{ALVES} (5\%) \qquad 6,441^{H}$$

$$I_{UE} = 135,266,^{H}$$

$$MESLOHT OF CONTENTS$$

SSEF	ROSSER BOVAY ROSSER FABRAP	PROJECT CHEM LOSTE MANAGEMENT	PROJ. NO.	
	ROSSER JUSTICE SYSTEMS	EMELE, ALA	SHEET	OF
	ROSSER LOWE IHT ROSSER	DESIGNED 4. 5MITH 9120194	CHECKED	1 1

Exhibit C Page 3 of 52 $\frac{Foundations For Tanks T-1405 to T-1408 + T-1421 to T-1424}{EARTHQUAKE LODD (3BC 1994)}$ $Feq = A_V \times C_C \times P \times Q_C \times M_F$ $A_V = 0.06$ $C_C = 2.0 \quad Gon \ Equip$ $P^{-} \quad 0.5 \quad 1' \quad 1'$ $Q_{C^{--}} \quad 1.0 \quad Fined$ $Mr \cdot Me + Mc - 135, 7666^{+} + 4, 663466^{+} = 4,798,732^{+}$ $Feq = 0.06 \times 2.0 \times 0.5 \times 1.0 \times 4,798,732^{+-} \quad 287,923^{+} \in E_{-} 16.0'$ $M = 287,923^{+} \times 16.0' \cdot <u>4,606,768}{F^{-16}} = F^{-16}$ </u>

ROSSER	ROSSER BOVAY ROSSER FABRAP ROSSER JUSTICE SYSTEMS ROSSER LOWE IHT ROSSER	PROJECT CHEM LASTE	MANAGEMENT PROJ. NO.
	ROSSER JUSTICE SYSTEMS	EMELE, ALA	SHEET Z OF
	IHT ROSSER	DESIGNED 5, Smith	9170194 CHECKED / 1

Exhibit C Page 4 of 52 FOUNDATIONS FOR TONKS T- 1405 TO T-1408 + T- 1421 TO 1424

,

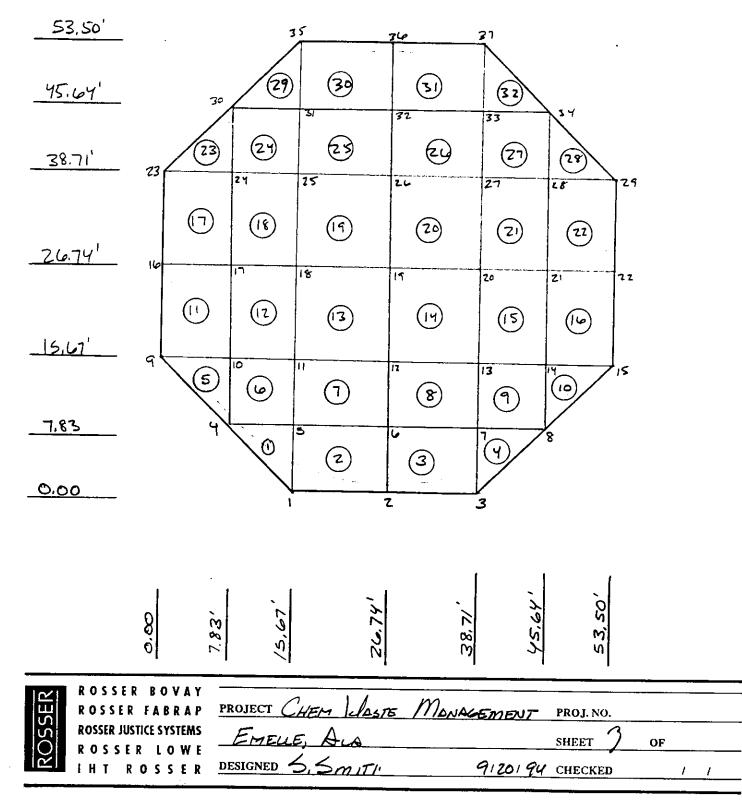


Exhibit C Page 5 of 52

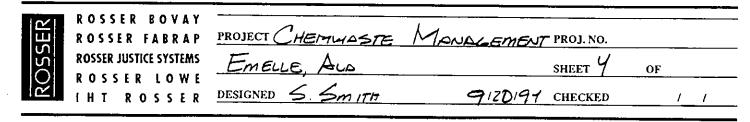
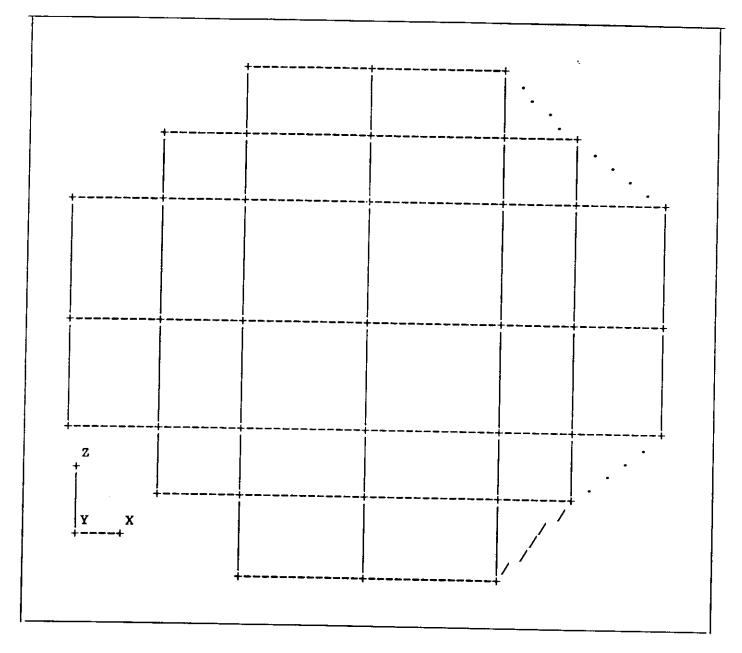


Exhibit C Page 6 of 52


STAAD-III * REVISION 15.0 (VERSION 15 LEVEL 0) PROPRIETARY PROGRAM OF * * RESEARCH ENGINEERS, INC. * SEP 21, 1994 DATE= TIME= 7:25:56 1. STAAD SPACE "CHEM WASTE MANAGEMENT" 2. * 4. * CHEM WASTE MANAGEMENT 5. * EMELLE, ALABAMA 6. * TANK NO. T-1405 TO T-1408 ; T-1421 TO T-1424 7. * 8. * 9. * FILE NAME "T1405" 10. * 11. * DESIGNED BY SCOTT SMITH 12. * 14. UNIT KIPS FEET 15. * 16. * 17. JOINT COORDINATES 15.67 0 18. 1 0.00 ; 2 26.74 0.00 ; 0 3 38.71 0.0 0.00 19. 4 7.83 0 7.83 ; 5 15.67 7.83 0 7 6 26.74 20.7 0.0 7.83 38.71 0 7.83 ; 8 45.64 0 7.83 0.00 9 ; 0.0 15.67 21. 10 ; 11 ; 14 7.83 0 15.67 15.67 0 15.67 12 26.74 ; 0.0 22. 13 38.71 0 15.67 15.67 45.64 0 15.67 15 ; 53.50 0.0 23. 16 15.67 0.00 0 ; 17 ; 20 ; 23 26.74 7.83 0 26.74 18 ; 15.67 0.0 26.74 24. 19 26.74 0 26.74 38.71 0 26.74 ; 25. 22 26. 25 27. 28 28. 31 29. 34 30. 37 21 45.64 0.0 26.74 53.50 0 26.74 0.00 0 38.71 ; 7.83 24 38.71 0.0 15.67 0 38.71 ; 26 26.74 38.71 ; 0 27 38.71 0.0 38.71 45.64 0 38.71 ; 29 53.50 38.71 ; 0 30 7.83 0.0 15.67 0 45.64 45.64 ; 32 26.74 45.64 ; 0 33 38.71 0.0 45.64 45.64 0 45.64 ; 35 15.67 0 53.50 ; 36 26.74 0.0 53.50 38.71 0 53.50 32. * 33. * MAT FOUNDATION ELEMENTS 34. * 36. ELEMENT INCIDENCES 37.1 4 5 1 ; 2 5 6 2 1; 3 6 7 38. 4 39. 7 з 2 7 5 8 3 9 10 4 6 10 7 11 5 4 5; 8 11 12 6 12 13 7 6; - 9 13 14 8 7 40. 10 14 15 ;11 8 16 9; 17 10 12 17 41. 13 42. 16 43. 19 44. 22 18 11 10 18 19 12 11;14 19 20 12 ; 15 13 20 21 14 13 21 22 15 14;17 23 24 17 16 ; 18 24 25 18 17 25 26 19 18;20 26 27 20 19 ; 21 27 28 21 20 28 29 22 21;23 30 24 23 ; 24 30 31 25 45. 25 24 31 32 26 25;26 32 33 27 26 ; 27 33 34 28 27 46. 28 34 ;29 29 28 35 31 30 ; 30 35 36 32 31 47. 31 36 37 33 32;32 37 34 33 48. *

```
"CHEM WASTE MANAGEMENT"
                                                   -- PAGE NO.
                                                              2
*
50. UNITS KIP INCHES
51. *
52. *
53. * MAT FOUNDATION ELEMENTS
                                                    ٩.
54. *
55. ELEMENT PROPERTIES
56.1 TO 32
                       TH 13
58. SUPPORTS
59. 1 3 9 15 23 29 35 37
60. 2 16 22 36
                                      FIXED BUT MX MY MZ KFY
                                                           798.95
                                      FIXED BUT MX MY MZ KFY
                                                           972.93

      61.
      4
      8
      30
      34

      62.
      5
      7
      10
      14
      24
      28
      31
      33

                                      FIXED BUT MX MY MZ KFY 658.76
                                      FIXED BUT MX MY MZ KFY 1595.86
63. 6 11 13 17 21 25 27 32
                                      FIXED BUT MX MY MZ KFY 1943.38
64. 12 18 20 26
                                      FIXED BUT MX MY MZ KFY 2353.95
65. 19
                                      FIXED BUT MX MY MZ KFY 2866.54
66. *
68. *
69. UNITS KIP FEET
70. *
71. *
      CONCRETE STRENGTH = 3000 PSI
CONCRETE UNIT WT. = 150 PCF
72. *
73. *
          E(CONC.) = 57000(SQ. RT. OF CONC. STRENGTH)
74. *
75. CONSTANTS
76. E 449571 ALL
77. POIS 0.2 ALL
78. DEN 0.15 ALL
80. PLOT PLAN XZ 0.
```


"CHEM WASTE MANAGEMENT" -- PAGE NO. 4 82. * 83. LOADING 1 DEAD LOAD 84. * 85. SELFWEIGHT 86. * 87. ELEMENT LOAD 88. 1 TO 32 PR -0.057 89. * 91. LOADING 2 LIVE LOAD 92. * 93. ELEMENT LOAD 94. 1 TO 32 PR -1.970 95. * 97. LOADING 3 EARTHQUAKE LOAD 98. * 99. ELEMENT LOAD PR 0.233 100. 1 5 6 11 12 17 18 23 24 29 101. 4 9 10 15 16 21 22 27 28 32 PR -0.233 102. * 104. LOAD COMBINATION 4 105. 1 1.0 2 1.0 3 1.0 110. LOAD COMBINATION 6 111. 1 1.05 2 1.275 3 1.275 113. PERFORM ANALYSIS PRINT ALL

PROBLEM STATISTICS

NUMBER OF JOINTS/MEMBER+ELEMENTS/SUPPORTS = 37/ 32/ 37 ORIGINAL/FINAL BAND-WIDTH = 8/ 8 TOTAL PRIMARY LOAD CASES = 3, TOTAL DEGREES OF FREEDOM = 222 SIZE OF STIFFNESS MATRIX = 11988 DOUBLE PREC. WORDS TOTAL REQUIRED DISK SPACE = 12.38 MEGA-BYTES "CHEM WASTE MANAGEMENT" *

-- PAGE NO. 5

٩

LOADING 1 DEAD LOAD

SELFWEIGHT Y -1.000

ACTUAL WEIGHT OF THE STRUCTURE = 387.454 KIP

ELEMENT LOAD (UNITS ARE KIP FEET)

ELEMENT	PRESSURE	
1	-0.057000	
2	-0.057000	
3	-0.057000	
4	-0.057000	
5	-0.057000	
6	-0.057000	
7	-0.057000	
8	-0.057000	
9	-0.057000	
10	-0.057000	
11	-0.057000	
12	-0.057000	
13	-0.057000	
14	-0.057000	
15	-0.057000	
16	-0.057000	
17	-0.057000	
18	-0.057000	
19	-0.057000	
20	-0.057000	
21	-0.057000	
22	-0.057000	
23	-0.057000	
24	-0.057000	
25	-0.057000	
26	-0.057000	
27	-0.057000	
28	-0.057000	
29	-0.057000	
30	-0.057000	
31	-0.057000	
32	-0.057000	
SUMMATIO	LIED LOAD (KIP N FORCE-X = N FORCE-Y = N FORCE-Z =	FEET) SUMMARY (LOADING 1) 0.00 -523.36
		0.00
SUMMATION MX=	OF MOMENTS AROU 14018.57 MY=	UND THE ORIGIN- 0.00 MZ= -14019.35

"CHEM WASTE MANAGEMENT" *

-- PAGE NO. 6

٩.

LOADING 2 LIVE LOAD

ELEMENT LOAD (UNITS ARE KIP FEET)

ELEMENT	PRESSURE		
1	-1.970000		
2	-1.970000		
3	-1.970000		
4	-1.970000		
5 6	-1.970000		
6	-1.970000		
7	-1.970000		
8	-1.970000		
9	-1.970000		
10	-1.970000		
11	-1.970000		
12	-1.970000		
13	-1.970000		
14	-1.970000		
15	-1.970000		
16	-1.970000		
17	-1.970000		
18	-1.970000		
19	-1.970000		
20	-1.970000		
21	-1.970000		
22	-1.970000		
23	-1.970000		
24	-1.970000		
25	-1.970000		
26	-1.970000		
27	-1.970000		
28	-1.970000		
29	-1.970000		
30	-1.970000		
31	-1.970000		
32	-1.970000		
***TOTAL APP	LIED LOAD (KIP N FORCE-X =	FEET) SUMMAR	Y (LOADING 2)
SUMMATIO		0.00	
SUMMATIO	V FORCE-Z = -	4697.14	
JONIATIO	fORCE = 2 =	0.00	
SUMMATTON	OF MOMENTS AROU		
MX=	L25799.74 MY=		
		0.00	MZ = -125826.52
TOT DIVIS	— — — — — — — — — — — — — — — — — — —		

LOADING 3 EARTHQUAKE LOAD

ELEMENT LOAD	(UNITS ARE KIP	FEET)	
ELEMENT	PRESSURE		x
1 5 6 11 12 17 18 23 24 29 4 9 10 15	0.233000 0.233000 0.233000 0.233000 0.233000 0.233000 0.233000 0.233000 0.233000 0.233000 0.233000 -0.233000 -0.233000 -0.233000 -0.233000 -0.233000		
16 21 22 27 28 32	-0.233000 -0.233000 -0.233000 -0.233000 -0.233000 -0.233000 -0.233000		
***TOTAL APPI SUMMATION SUMMATION		FEET) SUMMARY (L 0.00 9.47 0.00	OADING 3)
SUMMATION MX=	OF MOMENTS AROUN -201.66 MY=	D THE ORIGIN- 0.00 MZ=	-4622.39
++ PROCESSING	ELEMENT STIFFNES GLOBAL STIFFNESS TRIANGULAR FACTO	MATRIX.	7:26: 4 7:26:19 7:26:22
++ CALCULATING	IMPROPER LOAD WI MY PROBABLE CA JOINT DISPLACEM ELEMENT FORCES.	LL CAUSE INSTABIL USE MODELING PROB ENTS.	LTY AT JOINT 37 LEM 0.373E-08 7:26:29 7:26:32
***TOTAL REAC	TION (KIP FEET) SUMMARY	
LOADING 1			
		523.36 SUM-Z=	0.00
	MOMENTS AROUND OF		
-140	18.57 MY=	0.00 MZ=	14019.34
LOADING 2			

.

Exhibit C Page 13 of 52

"CHEM WASTE MANAGEMENT" -- PAGE NO. 8 * SUM-X= 0.00 SUM-Y= 4697.14 SUM-Z= 0.00 SUMMATION OF MOMENTS AROUND ORIGIN-MX= -125799.75 MY= 0.00 MZ= 125826.52 LOADING 3 SUM-X= 0.00 SUM-Y= -9.47 SUM-Z= 0.00 SUMMATION OF MOMENTS AROUND ORIGIN-MX= 201.66 MY= 0.00 MZ= 4622.39 LOAD COMBINATION NO. 4 LOADING-1. 2. 3. FACTOR - 1.00 1.00 1.00 LOAD COMBINATION NO. 5 LOADING- 1. 2. FACTOR - 1.40 1.70 LOAD COMBINATION NO. 6 2. LOADING- 1. 3. FACTOR - 1.05 1.27 1.27 ************ END OF DATA FROM INTERNAL STORAGE ************* 114. LOAD LIST 1 2 3 4 115. PRINT JOINT DISPLACEMENTS

۰.

JOINT DISPLACEMENT (INCH RADIANS) STRUCTURE TYPE = SPACE ------

JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
1	1	0.00000	-0.00927	0.00000	0.00001	0 00000	0 00000
	2	0.00000	-0.09113	0.00000	-0.00001	0.00000	0.00000
	3	0.00000	0.00440	0.00000	0.00000	0.00000	0.00003
	4	0.00000	-0.09600	0.00000	0.00000	0.00000	-0.00005
2	1	0.00000	-0.01002	0.00000	-0.00001	0.00000	-0.00002 0.00000
	2 3	0.00000	-0.08989	0.00000	-0.00005	0.00000	0.00001
	3	0.00000	0.00009	0.00000	0.00000	0.00000	-0.00001
	4	0.00000	~0.09982	0.00000	-0.00006	0.00000	C.00000
3	1	0.00000	-0.00895	0.00000	0.00001	0.00000	0.00000
	2	0.00000	-0.07663	0.00000	0.00015	0.00000	0.00005
	3	0.00000	-0.00224	0.00000	0.00002	0.00000	-0.00004
	4	0.00000	-0.08782	0.00000	0.00019	0.00000	0.00002
4	1	0.00000	-0.01117	0.00000	-0.00002	0.00000	0.00002
	2	0.00000	-0.10358	0.00000	-0.00021	0.00000	0.00016
	3	0.00000	0.01180	0.00000	0.00003	0.00000	-0.00008
	4	0.00000	-0.10295	0.00000	-0.00020	0.00000	0.00010
5	1	0.00000	-0.00974	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08706	0.00000	-0.00002	0.00000	0.00004
	3	0.00000	0.00421	0.00000	0.00000	0.00000	-0.00006
	4	0.00000	-0.09259	0.00000	-0.00002	0.00000	-0.00001
6	1	0.00000	-0.01006	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.09009	0.00000	0.00003	0.00000	0.00001
	3	0.00000	0.00009	0.00000	0.00000	0.00000	-0.00002
_	4	0.00000	-0.10006	0.00000	0.00003	0.00000	-0.00001
7	1	0.00000	-0.00968	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08539	0.00000	0.00003	0.00000	0.00000
	3	0.00000	-0.00377	0.00000	0.00001	0.00000	-0.00005
_	4	0.0000	-0.09883	0.00000	0.00004	0.00000	-0.00006
8	1	0.00000	-0.01033	0.00000	-0.00001	0.00000	-0.00001
	2	0.00000	-0.09495	0.00000	-0.00011	0.00000	-0.00013
	3	0.00000	-0.01045	0.00000	~0.00002	0.00000	-0.00009
-	4	0.00000	- 0.11573	0.00000	-0.00014	0.00000	-0.00022
9	1	0.00000	-0.00880	0.00000	0.00000	0.00000	-0.00002
	2	0.00000	-0.07487	0.00000	0.00004	0.00000	-0.00018
	3	0.00000	0.00954	0.00000	-0.00001	0.00000	0.00002
	4	0.00000	-0.07414	0.00000	0.00003	0.00000	-0.00018
10	1	0.00000	-0.00968	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08526	0.00000	-0.00004	0.00000	-0.00005
	3	0.00000	0.00931	0.00000	0.00001	0.00000	-0.00003
	4	0.00000	-0.08564	0.00000	-0.00003	0.00000	-0.00009
11	1	0.00000	-0.01004	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08965	0.00000	0.00001	0.00000	-0.00001
	3	0.00000	0.00469	0.00000	-0.00001	0.00000	-0.00005
	4	0.00000	-0.09501	0.00000	0.00000	0.00000	-0.00007
12	1	0.00000	-0.01014	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.09072	0.00000	0.00003	0.00000	-0.00001
	3	0.00000	0.00005	0.00000	0.00000	0.00000	-0.00002
	4	0.00000	-0.10081	0.00000	0.00003	0.00000	-0.00003

JOIN	T DISPI	LACEMENT (INCH RADIAN	S) STRU	JCTURE TYPE	= SPACE	
JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
13	1	0.00000	-0.00994	0.00000	0.00000	0.00000	0.00001
	2	0.00000	-0.08869	0.00000	0.00001	0.00000	0.00005
	3	0.00000	-0.00437	0.00000	0.00001	0.00000	-0.00005
	4	0.00000	-0.10300	0.00000	0.00001	0.00000	0.00000
14	1	0.00000	-0.00930	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08310	0.00000	-0.00001	0.00000	0.00000
	3	0.00000	-0.00877	0.00000	-0.00001	0.00000	-0.00005
	4	0.00000	-0.10117	0.00000	-0.00002	0.00000	-0.00004
15	1	0.00000	-0.00916	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.09009	0.00000	-0.00002	0.00000	-0.00007
	3	0.00000	-0.01144	0.00000	0.00000	0.00000	-0.00001
_	4	0.00000	-0.11068	0.00000	-0.00002	0.00000	-0.00008
16	1	0.00000	-0.01002	0.00000	0.00000	0.00000	0.00001
	2	0.00000	-0.08968	0.00000	0.00005	0.00000	0.00006
	3	0.00000	0.01124	0.00000	-0.00001	0.00000	-0.00001
	4	0.00000	-0.08845	0.00000	0.00004	0.00000	0.00005
17	1	0.00000	-0.01006	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.09003	0.00000	0.00003	0.00000	-0.00003
	3	0.00000	0.00985	0.00000	0.00000	0.00000	-0.00003
10	4	0.00000	-0.09024	0.00000	0.00003	0.00000	-0.00007
18	1	0.00000	-0.01014	0.00000	0.00000	0.00000	0.00000
	2 3	0.00000	-0.09074	0.00000	0.00000	0.00000	-0.00003
	4	0.00000	0.00484	0.00000	0.00000	0.00000	-0.00005
19	1	0.00000 0.00000	-0.09604 -0.01022	0.00000	0.00000	0.00000	-0.00008
17	2	0.00000	-0.09180	0.00000	0.00000	0.00000	0.00000
	3	0.00000	0.00007	0.00000	0.00000	0.00000	0.00000
	4	0.00000	-0.10195	0.00000 0.00000	0.00000	0.00000	-0.00003
20	i	0.00000	-0.01004	0.00000	0.00000	0.00000	-0.00003
	2	0.00000	-0.08984	0.00000	0.00000 0.00001	0.00000	0.00001
	3	0.00000	-0.00450	0.00000	0.00000	0.00000	0.00006
	4	0.00000	-0.10438	0.00000	0.00001	0.00000	-0.00005
21	1	0.00000	-0.00966	0.00000	0.00000	0.00000 0.00000	0.00002
	2	0.00000	-0.08658	0.00000	-0.00001	0.00000	0.00000
	3	0.00000	-0.00918	0.00000	0.00000	0.00000	0.00003
	4	0.00000	-0.10543	0.00000	-0.00001	0.00000	-0.00004
22	1	0.00000	-0.00995	0.00000	0.00000	0.00000	-0.00001 -0.00001
	2	0.00000	-0.08927	0.00000	-0.00001	0.00000	-0.00009
	3	0.00000	-0.01129	0.00000	0.00000	0.00000	-0.00002
	4	0.00000	-0.11051	0.00000	-0.00001	0.00000	-0.00012
23	1 2 3	0.00000	-0.00937	0.00000	0.00000	0.00000	-0.00001
	2	0.00000	-0.09127	0.00000	0.00001	0.00000	0.00001
	3	0.00000	0.01146	0.00000	0.00000	0.00000	-0.00001
. .	4	0.00000	-0.08918	0.00000	0.00001	0.00000	0.00000
24	1 2	0.00000	-0.00973	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08724	0.00000	0.00001	0.00000	0.00003
	3	0.00000	0.00955	0.00000	-0.00001	0.00000	-0.00004
	4	0.00000	-0.08742	0.00000	0.00000	0.00000	-0.00001

. **

•

۰.

JOINT DISPLACEMENT (INCH RADIANS) STRUCTURE TYPE = SPACE ------

						۶.	
JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
25	1	0.00000	-0.00994	0.00000	-0.00001	0.00000	0.00000
	2	0.00000	-0.08876	0.00000	-0.00005	0.00000	0.00000
	3	0.00000	0.00465	0.00000	0.00001	0.00000	-0.00005
	4	0.00000	-0.09404	0.00000	-0.00005	0.00000	-0.00005
26	1	0.00000	-0.01004	0.00000	-0.00001	0.00000	0.00000
	2	0.00000	-0.08986	0.00000	-0.00006	0.00000	0.00000
	3	0.00000	0.00009	0.00000	0.00000	0.00000	-0.00002
	4	0.00000	-0.09981	0.00000	-0.00006	0.00000	-0.00002
27	1	0.00000	-0.00983	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08775	0.00000	-0.00004	0.00000	0.00004
	3	0.00000	-0.00430	0.00000	-0.00001	0.00000	-0.00005
	4	0.00000	-0.10188	0.0000	-0.00005	0.00000	0.00000
28	1	0.00000	-0.00926	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08173	0.00000	-0.00001	0.00000	0.00005
	3	0.00000	-0.00860	0.00000	0.00001	0.00000	-0.00004
	4	0.00000	-0.09959	0.00000	-0.00001	0.00000	0.00001
29	1	0.00000	-0.00881	0.00000	-0.00001	0.00000	0.00000
	2	0.00000	-0.07534	0.00000	-0.00008	0.00000	0.00007
	3	0.00000	-0.00965	0.00000	-0.00002	0.00000	0.00000
~ ~	4	0.00000	-0.09380	0.00000	-0.00010	0.00000	0.00008
30	1	0.00000	-0.01038	0.00000	0.00001	0.00000	0.00001
	2	0.00000	-0.09672	0.00000	0.00010	0.00000	0.00017
	3	0.00000	0.01103	0.00000	-0.00002	0.00000	~0.00008
7 1	4	0.00000	-0.09606	0.00000	0.00009	0.00000	0.00010
31	1 2	0.00000	-0.00925	0.00000	-0.00001	0.00000	0.00000
	23	0.00000	-0.08149	0.00000	-0.00007	0.00000	0.00001
	4	0.00000	0.00382	0.00000	0.00001	0.00000	-0.00005
32	1	0.00000 0.00000	-0.08692	0.00000	-0.00006	0.00000	-0.00004
22	2	0.00000	-0.00966	0.00000	0.00000	0.00000	0.00000
	3	0.00000	-0.08650 0.00000	0.00000	-0.00003	0.00000	-0.00003
	4	0.00000	-0.09616	0.00000	0.00000	0.00000	-0.00001
33	1	0.00000	-0.00930	0.00000	-0.00003	0.00000	-0.00005
55	2	0.00000	-0.08339	0.00000	0.00000	0.00000	0.00000
	3	0.00000	-0.00374	0.00000 0.00000	0.00002	0.00000	0.00001
	4	0.00000	-0.09643	0.00000	0.00000	0.00000	-0.00005
34	i	0.00000	-0.00963	0.00000	0.00001	0.00000	-0.00004
	2	0.00000	-0.08901	0.00000	0.00000	0.00000	0.00000
	3	0.00000	-0.00994	0.00000	0.00009 0.00002	0.00000	~0.00006
	4	0.00000	-0.10858	0.00000	0.00012	0.00000	-0.00008
35	1	0.00000	-0.00869	0.00000	-0.000012	0.00000	-0.00015
	2	0.00000	-0.07384	0.00000	-0.00013	0.00000	0.00000
	3	0.00000	0.00243	0.00000	0.00002	0.00000 0.00000	-0.00004 -0.00004
	4	0.00000	-0.08009	0.00000	-0.00012	0.00000	-0.00004
36	1	0.00000	-0.00994	0.00000	0.00001	0.00000	0.00000
	2	0.00000	-0.08905	0.00000	0.00009	0.00000	-0.00006
	3	0.00000	-0.00006	0.00000	0.00000	0.00000	-0.00000
	4	0.0000	-0.09905	0.00000	0.00010	0.00000	-0.00007
							0.00007

٩

JOINT DISPLACEMENT (INCH RADIANS) STRUCTURE TYPE = SPACE

JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
37	1	0.00000	-0.00924	0.00000	0.00000	0.00000	0.00001
	2	0.00000	-0.09000	0.00000	0.00009	0.00000	0.00002
	3	0.00000	-0.00382	0.00000	0.00000	0.00000	-0.00004
	4	0.00000	-0.10306	0.00000	0.00010	0.00000	-0.00001

116. LOAD LIST 5 6 117. PRINT ELEMENT FORCES

ELEMENT	FORCES	FORCE, L	ENGTH UNI	TS= KIP FEET		
FORCE OF	STRESS	= FORCE/W	IDTH/THIC	K, MOMENT = F	ORCE-LENGTH	/ŴIDTH
ELEMENT	LOAD	QX	QY FX	MX Fy		МХҮ
1	5	1.10	0.18	1.39 0.00	0.10	-0.82
TOP	: SMAX=	9.13	SMIN=	0.00 -1.54 TMAX -9.13 TMAX 0.85 0.00 -1.20 TMAX -5.66 TMAX	0.00 	
BOTT	SMAX=	1.54	SMIN=	-9.13 TMAX	= 5.33	ANGLE = -25.9 ANGLE = -25.9
	6	0.70	0.10	0.85	0.03	-0.53
ምረጉ	· • • • • • • • • • • • • • • • • • • •	5 66	0.00	0.00	0.00	
BOTT	SMAX-	2.00	SMIN=	-1.20 TMAX	= 3.43	ANGLE = -26.2
2011	. 01441-	1,20	SMIN-	-5.66 TMAX:	= 3.43	ANGLE = -26.2
2	5	-0.31	-0.18	0.25 0.00 1.21 TMAX= -2.16 TMAX=	0.41	0.05
TOP	: SMAX=	2.16	SMIN=	0.00 1 21 ייאאצע-	- 0.00	
BOTT	: SMAX=	-1.21	SMIN=	-2.16 TMAX=	- 0.48	ANGLE = -16.9
	6	-0.21	-0.10	-0.05	0.27	0.01
TOD	• CHAY_	1 40	0.00	0.00	0.00	0.01
BOTT	: SMAX=	1.40	SMIN=	-0.25 TMAX=	= 0.82	ANGLE= -2.4
2011	· OIMA-	0.23	SMIN≠	-2.16 TMAX= -0.05 0.00 -0.25 TMAX= -1.40 TMAX=	= 0.82	ANGLE = -2.4
3	5	0.33	0.02	-0.15 0.00 -3.34 TMAX= -1.28 TMAX= 0.05 0.00 -2.59 TMAX= -1.82 TMAX=	-0.26	-0.45
			0.00	0.00	0.00	-0.45
TOP	: SMAX=	1.28	SMIN=	-3.34 TMAX=	= 2.31	ANGLE= -41.6
BOIT	: SMAX=	3.34	SMIN=	-1.28 TMAX=	= 2.31	ANGLE= -41.6
	0	0.29	-0.01	0.05	-0.20	-0.41
TOP	: SMAX=	1.82	SMIN=	-2.59 TMAX=	= 2 20	
BOTT	: SMAX=	2.59	SMIN=	-1.82 TMAX=	= 2.20	ANGLE = -36.3
4	F			_		
4	5	-1.13	0.43	1.32	-1.08	0.47
TOP	SMAX=	7.18	SMINE	-5 00 mww.	0.00	Warn
BOTT	oran-	J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.	SHTN-	/ . IX 'I'MAX=	· 0.59	$\begin{array}{rcl} \text{ANGLE} = & 10.7 \\ \text{ANGLE} = & 10.7 \end{array}$
	6	-1 01	0 20	1 60		
6 00			0.00	1.28 0.00 -4.85 TMAX= -6.89 TMAX=	0.00	0.40
TOP : BOTT	SMAX=	6.89	SMIN=	-4.85 TMAX=	5.87	ANGLE= 10.1
2011.	orma-	4.00	SMIN=	-6.89 TMAX=	5.87	ANGLE= 10.1
5	5	-0.54			1.72	~0.65
TOP	SMAX=	9 5 2	0.00 SMIN=	0.00	0.00	
BOTT	SMAX=	6.62	SMIN=	-6.62 TMAX= -9.52 TMAX=		ANGLE= 12.2
	6	-0.28	-0.80	-0.47	1.21	ANGLE= 12.2 -0.39
			0.00	0.00	0.00	-0.39
TOP :	SMAX=	6.61			4.73	ANGLE= 12.5
BOIT:	SMAX=	2.85	SMIN=	-6.61 TMAX=	4.73	ANGLE= 12.5
6	5	0.23	-0.02	0.74	1 47	
			0 00	0.00	1.27 0.00	-1.18
TOP :	SMAX=	11.32	SMIN=	-1.04 TMAX= -11.32 TMAX=	6.18	ANGLE= 38.7
BOLL:	SMAX=	1.04	SMIN=	-11.32 TMAX=	6.18	ANGLE= 38.7

Exhibit C Page 19 of 52

•

•

Į.

FORCE OR	STRESS =	FORCE/W	IDTH/THICH	, MOMENT = FORC	E-LENGTH/ŴIDTH	I
ELEMENT I			QY FX	MX	MY FXY	MXY
	6	0.08	-0.05	0.52		-0.72
5 00	0W3 W		0.00	0.00	0.00	0112
BOTT:	SMAX=	0.30	SMIN= SMIN=	-0.30 TMAX= -7.27 TMAX=	3.78 ANGLE 3.78 ANGLE	= 38.5 = 38.5
7	5	-0.35	0.18	0.15	0.20	-0.28
TOP :	SMAX=	2.32	SMIN=	-0.52 TMAX=	1.42 ANGLE	- 43 7
BOTT:	SMAX=	0.52	SMIN=	-2.32 TMAX=	1.42 ANGLE	= 42.7
	6	-0.23	0.12	-0.11	0.08	-0.22
TOD •	CWAY-	1 10	0.00	0.00	0.00	
BOTT:	SMAX=	1.13	SMIN= SMIN=	0.15 0.00 -0.52 TMAX= -2.32 TMAX= -0.11 0.00 -1.29 TMAX= -1.13 TMAX=	1.21 ANGLE 1.21 ANGLE	= 33.2 = 33.2
8	5	0 1 2	0 15			
	<u> </u>		0.00	0.00	0.00	
TOP :	SMAX=	-0.34	SMIN=	-1.44 TMAX=	0.55 ANGLE	= -37.4
BOII.	6	0 14	SMIN=	0.34 TMAX=	0.55 ANGLE	= -37.4
	0	0.14	0.12	-0.20 0.00 -1.44 TMAX= 0.34 TMAX= 0.03 0.00 -0.60 TMAX=	-0.09	0.06
TOP :	SMAX=	0.28	SMIN=	-0.60 TMAX=	0.44 ANGLE	= 235
BOTT:	SMAX=	0.60	SMIN≖	-0.28 TMAX=	0.44 ANGLE	= 23.5
9	5	0.28	-0.36	1.17	0.63	0.83
TOP :	SMAX=	9.07	SMIN=	0.00 0.11 TMAX= -9.07 TMAX=	0.00 4 49 ANGER	- 26 0
BOTT:	SMAX=	-0.11	SMIN=	-9.07 TMAX=	4.48 ANGLE	= 36.0
	6	0.11	-0.26	1.03	0.53	0.77
	0.01		0.00	0.00	0.00	
TOP : BOTT	SMAX=	8.15	SMIN ≈	-9.07 TMAX= 1.03 0.00 -0.15 TMAX= -8.15 TMAX=	4.15 ANGLE	= 36.1
						= 36.1
10	5	-0.10	-0.87	1.00 0.00	1.24	0.61
TOP .	SMA V-	0.00	0.00	0.00	0.00	
BOTT:	SMAX=	-2.54	SMIN=	2.54 TMAX= -8.93 TMAX=	3.19 ANGLE	= -39.4
20111	6	0.01	-0.75	-8.93 IMAX=	3.19 ANGLE	= -39.4
			0.00	0.00	0.96 0.00	0.56
		6.81	SMIN=	0.61 TMAX=		= -33.7
BOTT:	SMAX=	-0.61	SMIN=	-6.81 TMAX=		= -33.7
11	5	0.06	0.44	-0.22	0.26	0.63
	SMAX=	3.51	SMIN=	-3.33 TMAX=	0.00	
TOP :		3.33	SMIN=	-3.51 TMAX=	3.42 ANGLE 3.42 ANGLE	= -34.5 = -34.5
TOP : BOTT:	SMAX=				しょうえん パロリアレビス	
	5MAX= 6	0.10	0.29			
BOTT:	6	0.10	0.00	0.13 0.00	0.22	0.40
BOTT:	6 SMAX=	0.10 2.96		0.13	0.22 0.00	

ELEMENT FORCES	FORCE, L	ENGTH UNI	TS= KIP FEET		
FORCE OR STRESS	= FORCE/W	IDTH/THIC	K, MOMENT = FOR	CE-LENGTH/WIDTH	
ELEMENT LOAD		FX	FY		MXY
12 5	-0.13	0.22	-0.15	0.21	~0.04
TOP : SMAX= BOTT: SMAX= 6	1.11 0.80 -0.17	SMIN= SMIN= 0.14	-0.80 TMAX= -1.11 TMAX= 0.03	0.21 0.00 0.95 ANGLE= 0.95 ANGLE= 0.17 0.00 0.37 ANGLE= 0.37 ANGLE=	5.8 5.8 0.00
TOP : SMAX= BOTT: SMAX=	0.87 -0.14	SMIN= SMIN=	0.00 0.14 TMAX= -0.87 TMAX=	0.00 0.37 ANGLE= 0.37 ANGLE=	= 1.0 = 1.0
13 5	0.04	-0.02	~0.15	-0.16	-0.05
TOP : SMAX= BOTT: SMAX= 6	-0.54 1.02 0.04	SMIN= SMIN= -0.01	-1.02 TMAX= 0.54 TMAX= -0.27	-0.16 0.00 0.24 ANGLE= 0.24 ANGLE= -0.13 0.00 0.43 ANGLE= 0.43 ANGLE=	90.0 90.0 -0.05
TOP : SMAX= BOTT: SMAX=	-0.60 1.47	SMIN= SMIN=	-1.47 TMAX= 0.60 TMAX=	0.00 0.43 ANGLE= 0.43 ANGLE=	17.3 17.3
14 5	-0.07	-0.04 0.00	-0.49 0.00	-0.20 0.00	0.06
TOP : SMAX= BOTT: SMAX= 6	-0.98 2.54 -0.02	SMIN= SMIN= -0.03	-2.54 TMAX= 0.98 TMAX= -0.23	0.78 ANGLE= 0.78 ANGLE= -0.14	-11.2 -11.2 0.02
14 5 TOP: SMAX= BOTT: SMAX= 6 TOP: SMAX= BOTT: SMAX=	-0.68 1.20	SMIN= SMIN=	0.00 -1.20 TMAX= 0.68 TMAX=	0.00 0.26 ANGLE= 0.26 ANGLE=	-14.7 -14.7
15 5	0.43	0.33 0.00	0.49	0.11	0.16
15 5 TOP : $MAX=$ BOTT: $MAX=$ 6 TOP : $MAX=$ BOTT: $MAX=$	2.78 -0.28 0.23	SMIN= SMIN= 0.28 0.00	0.28 TMAX= -2.78 TMAX= 0.32 0.00	1.25 ANGLE= 1.25 ANGLE= 0.08	19.8 19.8 0.16
TOP : SMAX= BOTT: SMAX=	2.04 0.01	SMIN= SMIN=	-0.01 TMAX= -2.04 TMAX=	1.02 ANGLE= 1.02 ANGLE=	26.1 26.1
16 5	-0.32	0.28	1.10	0.26	-0.01
TOP : SMAX= BOTT: SMAX= 6	5.64 -1.35 -0.20	SMIN= SMIN= 0.23 0.00	0.00 1.35 TMAX= -5.64 TMAX= 0.60	0.00 2.15 ANGLE= 2.15 ANGLE= 0.16	-0.5 -0.5 -0.02
TOP : SMAX= BOTT: SMAX=	3.09 -0.82	SMIN= SMIN=	0.00 0.82 TMAX= -3.09 TMAX=	0.00 1.13 ANGLE= 1.13 ANGLE=	
17 5	0.09	-0.26 0.00	0.30 0.00	-0.17 0.00	0.03
TOP : SMAX= BOTT: SMAX=	1.52 0.88	SMIN= SMIN=	-0.88 TMAX= -1.52 TMAX=	1.20 ANGLE= 1.20 ANGLE=	

Exhibit C Page 21 of 52 ELEMENT FORCES FORCE, LENGTH UNITS= KIP FEET

FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH

element load	QX	QY FX		MY	МХҮ
		LY.	r i	FXY	
6	0.12	-0.17	0.47	-0.07	0.03
	• • • •	0.00	0.00	0.00	0.05
BOTT: SMAX=	2.39	SMIN≕ SMIN-	0.47 0.00 -0.37 TMAX= -2.39 TMAX=	1.38 ANGLE=	3.6
18 5	-0.19	-0.24	0.12	-0.26	0.35
— - —		0.00	0.00	0.00	0.33
TOP : SMAX=	1.66	SMIN=	-2.41 TMAX=	2.03 ANGLE=	30.6
BOIT: SMAX=	-0 21	SMIN=	-1.66 TMAX=	2.03 ANGLE=	30.6
0	-0.21	-0.15	0.19	-0.17	0.21
TOP : SMAX=	1.50	SMIN=	-1.36 TMAX=		25 0
BOTT: SMAX=	1.36	SMIN=	0.00 -2.41 TMAX= -1.66 TMAX= 0.19 0.00 -1.36 TMAX= -1.50 TMAX=	1.43 ANGLE= 1.43 ANGLE=	25.0
10 5			-0.19 0.00		23.0
19 5	0.01	0.09	-0.19	-0.48	0.05
ቸ <u>ር</u> የ እ እ እ እ እ እ እ እ እ እ እ እ እ እ እ እ እ እ	-0.90	0.00	0.00	0.00	
BOTT: SMAX=	2.48	SMIN-	$\begin{array}{c} 0.00 \\ -2.48 \text{TMAX} = \\ 0.90 \text{TMAX} = \\ -0.30 \\ 0.00 \\ -2.03 \text{TMAX} = \\ \end{array}$	0.79 ANGLE=	10.2
6	0.01	0.06	-0.30	0.79 ANGLE=	10.2
	_	0.00	0.00	-0.38	0.06
TOP : SMAX=	-1.34	SMIN=	-2.03 TMAX=	0.34 ANGLE=	30.7
BOTT: SMAX=	2.03	SMIN=	-2.03 TMAX= 1.34 TMAX=	0.34 ANGLE=	30.7
20 5	-0-07	0.05	-0.50 0.00 -2.86 TMAX=		
	0.07	0.00	-0.50	-0.49	-0.06
TOP : SMAX=	-2.22	SMIN=	-2.86 TMAX=	0.32 ANGLE-	00 0
BOTT: SMAX=	2.86	SMIN=	2.22 TMAX=	0.32 ANGLE=	90.0
6	-0.03	0.04	-0.24	-0.37	-0.03
		0.00	0.00	0.00	
BOTT SMAR	-1.20	SMIN=	-1.90 TMAX=	0.35 ANGLE=	-12.4
DOTT: SHAA-	1.90	SMIN=	0.00 -2.86 TMAX= 2.22 TMAX= -0.24 0.00 -1.90 TMAX= 1.20 TMAX=	0.35 ANGLE=	-12.4
21 5	0.40	-0.11	0.14 0.00 -0.77 TMAX=	-0 15	-0 01
		0.00	0.00	0.00	-0.01
TOP : SMAX=	0.73	SMIN=	-0.77 TMAX=	0.75 ANGLE=	-2.2
BOTT: SMAX=	0.77	SMIN=	-0.73 TMAX=	0.75 ANGLE=	-2.2
0	0.22	-0.10	0.03	-0.13	-0.03
TOP : SMAX=	0 19	0.00 CMTN	0.00	0.00	
BOTT: SMAX=	0.71		-0.73 TMAX= 0.03 0.00 -0.71 TMAX= -0.19 TMAX=	0.45 ANGLE=	-10.8
		011210	U.IJ IMAA-	0.45 ANGLE=	-10.8
22 5	-0.09	-0.30	0.51	-0.17	0.42
TOP : SMAX=	a	0.00	0.00	0.00	
TOP : SMAX= BOTT: SMAX=	3.63	SMIN=	-1.89 TMAX=	2.76 ANGLE=	
6	1.89 -0.01	SMIN= -0.25	-3.63 TMAX=	2.76 ANGLE=	
<u> </u>	0.01	0.00	0.12 0.00	-0.20	0.37
TOP : SMAX=	1.85	SMIN=	-2.28 TMAX=	0.00	77
BOTT: SMAX=	2.28	SMIN=	-1.85 TMAX=	2.07 ANGLE= 2.07 ANGLE=	
			1100	2.07 ANGLE=	33.6

ELEMENT FORCES	FORCE, LI	ENGTH UNIT	S= KIP FEET		
FORCE OR STRESS =	FORCE/WI	DTH/THICH	, MOMENT = FORCE	-LENGTH/WIDTH	
ELEMENT LOAD	QX	QY FX	MX Fy	MY FXY	MXY
23 5	1.09	0.14	1.11 0.00 -2.01 TMAX=	-0.07	-0.70
TOP : SMAX= BOTT: SMAX= 6	7.35 2.01 0.69	SMIN= SMIN= 0.01	-2.01 TMAX= -7.35 TMAX=	4.68 ANGLE 4.68 ANGLE	= -24.9 = -24.9
TOP : SMAX= BOTT: SMAX=	5.33	0.00 SMIN=	-2.01 TMAX= -7.35 TMAX= 0.81 0.00 0.05 TMAX= -5.33 TMAX=	0.00 2.64 ANGLE	= -28.4
24 5	0.15	-0.03	-5.33 TMAX=	2.64 ANGLE	-28.4 0.95
TOP : SMAX= BOTT: SMAX= 6	9.79 0.18	SMIN= SMIN=	1.18 0.00 ~0.18 TMAX= -9.79 TMAX= 0.80 0.00 0.26 TMAX= -6.27 TMAX=	0.00 4.99 ANGLE 4.99 ANGLE	= 37.9 = 37.9
TOP : SMAX= BOTT: SMAX=	6.27	0.02 0.00 SMIN= SMIN-	0.00 0.26 TMAX=	0.47 0.00 3.01 ANGLE	0.56 = 36.9
25 5	-0.21	-0.39	0.21	0.11	-0.09
TOP : SMAX= BOTT: SMAX= 6	1.34 -0.30 -0.13	SMIN= SMIN= -0.29	0.21 0.00 0.30 TMAX= -1.34 TMAX= -0.05	0.00 0.52 ANGLE 0.52 ANGLE	= -28.8 = -28.8
TOP : SMAX= BOTT: SMAX=	0.33	0.00 SMIN= SMIN=	-1.34 TMAX= -0.05 0.00 -0.31 TMAX= -0.33 TMAX=	0.00 0.32 ANGLE	-0.04 = 18.8
26 5	0.23	-0.43	-0.25 0.00	0.44	-0.26
TOP : SMAX= BOTT: SMAX= 6	2.71 1.72 0.23	SMIN= SMIN= -0.34	-0.25 0.00 -1.72 TMAX= -2.71 TMAX= 0.01 0.00 -0.31 TMAX= -2.42 TMAX=	2.21 ANGLE= 2.21 ANGLE= 0.41	= 18.6 = 18.6 -0.18
TOP : SMAX= BOTT: SMAX=	2.42 0.31	0.00 SMIN= SMIN=	0.00 -0.31 TMAX= -2.42 TMAX=	0.00 1.37 ANGLE= 1.37 ANGLE=	= 21.0 = 21.0
27 5	-0.02	-0.19 0.00	0.67 0.00	1.13 0.00	~0.63
TOP : SMAX= BOTT: SMAX= 6	8.03 -1.19 -0.14	SMIN= -0.18	1.19 TMAX= -8.03 TMAX= 0.61	3.42 ANGLE= 3.42 ANGLE= 0.94	= 35.1 ≡ 35.1 -0.61
TOP : SMAX= BOTT: SMAX=	7.21 -0.71	0.00 SMIN= SMIN=	0.00 0.71 TMAX= -7.21 TMAX=	0.00 3.25 ANGLE= 3.25 ANGLE=	37.5 37.5
28 5		0.76 0.00	0.31 0.00	1.02 0.00	0.62
TOP : SMAX= BOTT: SMAX=		SMIN= SMIN=	-0.27 TMAX= -7.06 TMAX=	3.67 ANGLE=	-30.3 -30.3

--

ELEMENT FORC	ES FORCE, L	ENGTH UNIT	S= KIP FEET				
FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH							
		гХ	MX Fy	FXY			
6	0.57	0.57 0.00	-0.01 0.00 -1.94 TMAX= -5.48 TMAX=	0.70	0.63		
TOP : SP	IAX= 5.48	SMIN=	-1.94 TMAX=	3.71 ANGI	E = -30.3		
BOTT: SN	4AX= 1.94	SMIN=	-5.48 TMAX=	3.71 ANGL	E = -30.3		
29 5	-0.30	-1.10	-0.29 0.00 -2.23 TMAX= -9.28 TMAX= -0.18 0.00 -1.41 TMAX= -5.90 TMAX=	1.67	-0.54		
TOP : SM	(AX= 9.28	U.UU SMIN-	-2 22	0.00	_		
BOTT: SN	AX = 2.20	SMIN-	-2.23 TMAX=	5.75 ANGL	E = 14.5		
6	-0.18	-0.70	-9.20 IMAX=	5.75 ANGL	E = 14.5		
-		0.00	0.00	1.06	-0.36		
TOP : SM	IAX= 5.90	SMIN=	-1.41 TMAX=	3 65 ANCT	V- 16 1		
BOTT: SM	IAX= 1.41	SMIN=	-5.90 TMAX=	3.65 ANGL	6- 13.1 F= 15.1		
				JICJ MIGH	- 1J.1		
30 5	-0.42	0.22	0.33	0.46	-0.59		
		0.00	0.00	0.00			
TOP : SM	AX = 5.06	SMIN=	-1.03 TMAX=	3.05 ANGL	E= 41.8		
BUTT: SM	AX = 1.03	SMIN=	-5.06 TMAX=	3.05 ANGL	E= 41.8		
6	-0.28	0.14	0.05	0.33	-0.38		
100 · 901	NY- 2 04	0.00	0.00	0.00			
107 . SM BOTT · SM	3.04	SMIN=	-1.06 TMAX=	2.05 ANGL	E= 34.7		
DOTT. SM	HV- 1.00	SMIN=	0.33 0.00 -1.03 TMAX= -5.06 TMAX= 0.05 0.00 -1.06 TMAX= -3.04 TMAX=	2.05 ANGL	E= 34.7		
31 5	0.22	0.18	-0.23	1.07	0 09		
_		0.00	0.00	0.00	0.05		
TOP : SM	AX= 5.48	SMIN=	-1.20 TMAX=	3.34 ANGL	E= 3.8		
BOTT: SM	AX= 1.20	SMIN=	-5.48 TMAX=	3.34 ANGL	E = 3.8		
6	0.19	0.16	0.01	0.85	-0.03		
		0.00	0.00	0.00			
TUP : SM	AX = 4.36	SMIN=	0.03 TMAX=	2.16 ANGL	E= 2.0		
BUIT: SM	AX = -0.03	SMIN=	-0.23 0.00 -1.20 TMAX= -5.48 TMAX= 0.01 0.00 0.03 TMAX= -4.36 TMAX=	2.16 ANGL	E= 2.0		
32 5	-0.29	0.93	0.74 0.00 3.77 TMAX= -7.35 TMAX= 0.72 0.00 3.60 TMAX= -6.68 TMAX=	1 44	0 01		
		0.00	0.00	1.44	-0.01		
TOP : SM	AX= 7.35	SMIN=	3.77 TMAX=	1.79 ANGLI	7- 0 C		
BOTT: SM	AX= -3.77	SMIN=	-7.35 TMAX=	1.79 ANGL	S= 0.6		
6	-0.29	0.81	0.72	1.29	0.08		
		0.00	0.00	0.00			
TOP : SM	AX= 6.68	SMIN=	3.60 TMAX =	1.54 ANGLI	E= 7.8		
BOTT: SM	AX = -3.60	SMIN=	-6.68 TMAX=	1.54 ANGLI	E= 7.8		
*********	*******END OF	ELEMENT H	FORCES********	*****			

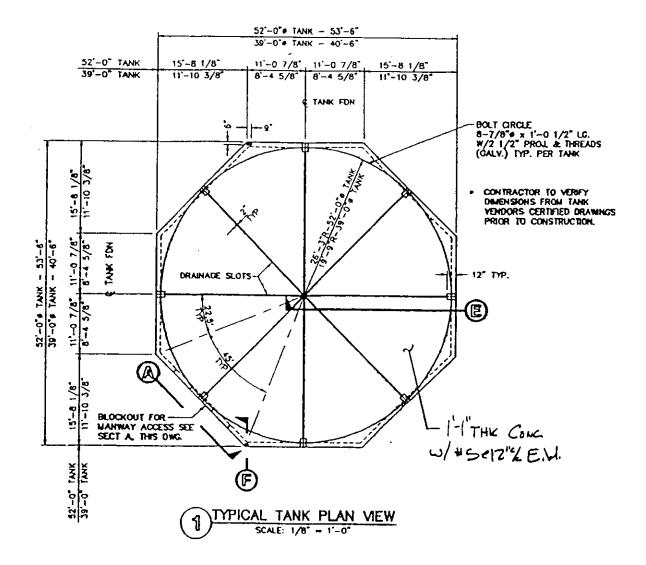
118. UNIT KIP INCHES 119. START CONCRETE DESIGN 1 120. CODE ACI 121. FC 3 122. TRACK 2.0 123. DESIGN ELEMENTS 1 TO 32

Exhibit C Page 24 of 52

۰.

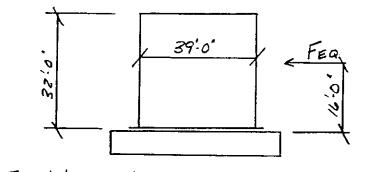
ELEMENT DESIGN SUMMARY

· · · · ·


•

ELEMENT	LONG. REINF	MOM-X /LOAD	TRANS. REINF	MOM-Y /LOAD
	(SQ.IN/FT)	(K-FT/FT)	(SQ.IN/FT)	(K-FT/FT)
1 TOP :	0.281	1.39 / 5	0.281	0.10 / 5
BOTT:	0.281	0.00 / 34	0.281	0.00 /***
2 TOP :	0.281	0.25 / 5	0.281	0.41 / 5
BOTT:	0.281	-0.05 / 6	0.281	0.00 /***
3 TOP :	0.281	0.05 / 6	0.281	0.00 / 5
BOTT:	0.281	-0.15 / 5	0.281	-0.26 / 5
4 TOP :	0.281	1.32 / 5	0.281	0.00 / 5
BOTT:	0.281	0.00 / 5	0.281	-1.08 / 5
5 TOP :	0.281	0.00 / 5	0.281	1.72 / 5
BOTT:	0.281	-1.15 / 5	0.281	0.00 / 5
6 TOP :	0.281	0.74 / 5	0.281	1.27 / 5
BOTT:	0.281	0.00 / 5	0.281	0.00 / 5
7 TOP :	0.281	0.15 / 5	0.281	0.20 / 5
BOTT:	0.281	-0.11 / 6	0.281	0.00 / 5
8 TOP :	0.281	0.03 / 6	0.281	0.00 / 5
BOTT:	0.281	-0.20 / 5	0.281	-0.15 / 5
9 TOP :	0.281	1.17 / 5	0.281	0.63 / 5
BOTT:	0.281	0.00 / 5	0.281	0.00 / 5
10 TOP :	0.281	1.00 / 5	0.281	1.24 / 5
BOTT:	0.281	0.00 / 5	0.281	0.00 / 5
11 TOP :	0.281	0.13 / 6	0.281	0.26 / 5
BOTT:	0.281	-0.22 / 5	0.281	0.00 / 5
12 TOP :	0.281	0.03 / 6	0.281	0.21 / 5
BOTT:	0.281	-0.15 / 5	0.281	0.00 / 5
13 TOP :	0.281	0.00 / 6	0.281	0.00 / 5
BOTT:	0.281	-0.27 / 6	0.281	-0.16 / 5
14 TOP :	0.281	0.00 / 6	0.281	0.00 / 5
BOTT:	0.281	-0.49 / 5	0.281	-0.20 / 5
15 TOP :	0.281	0.49 / 5	0.281	0.11 / 5
BOTT:	0.281	0.00 / 5	0.281	0.00 / 5
16 TOP :	0.281	1.10 / 5	0.281	0.26 / 5
BOTT:	0.281	0.00 / 5	0.281	0.00 / 5
17 TOP :	0.281	0.47 / 6	0.281	0.00 / 5
BOTT:	0.281	0.00 / 5	0.281	-0.17 / 5

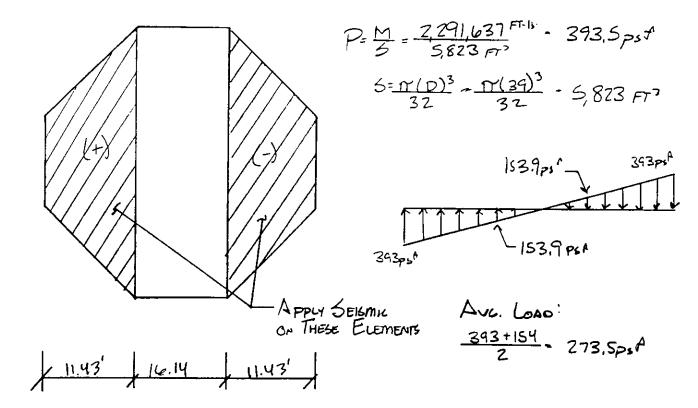
1		E MANAGEMENT"				PAGE NO.
	8 TOP : BOTT:	0.281 0.281	0.19 / 0.00 /		0.281 0.281	0.00 / 5 -0.26 / 5
1	9 TOP :	0.281	0.00 /	6	0.281	0.00 / 5
	BOTT:	0.281	-0.30 /	6	0.281	-0.48 / 5
2	0 TOP :	0.281	0.00 /	6	0.281	0.00 / 5
	BOTT:	0.281	-0.50 /	5	0.281	-0.49 / 5
2	1 TOP :	0.281	0.14 /	5	0.281	0.00 / 5
	BOTT:	0.281	0.00 /	5	0.281	-0.15 / 5
2	2 TOP : BOTT:	0.281 0.281	0.51 / 0.00 /		0.281 0.281	0.00 / 5 -0.20 / 6
2	3 TOP :	0.281	1.11 /	5	0.281	0.24 / 6
	BOTT:	0.281	0.00 /	5	0.281	-0.07 / 5
24	4 TOP :	0.281	1.18 /	5	0.281	0.70 / 5
	BOTT:	0.281	0.00 /	5	0.281	0.00 / 5
25	5 TOP :	0.281	0.21 /	5	0.281	0.11 / 5
	BOTT:	0.281	-0.05 /	6	0.281	0.00 / 5
20	5 TOP :	0.281	0.01 /	6	0.281	0.44 / 5
	BOTT:	0.281	-0.25 /	5	0.281	0.00 / 5
27	TOP :	0.281	0.67 /	5	0.281	1.13 / 5
	BOTT:	0.281	0.00 /	5	0.281	0.00 / 5
28	BOTT:	0.281 0.281	0.31 / -0.01 /	5 6	0.281 0.281	1.02 / 5 0.00 / 5
29	BOTT:	0.281 0.281	0.00 / -0.29 /	5 5	0.281 0.281	1.67 / 5 0.00 / 5
30	DITOP : BOTT:	0.281 0.281	0.33 / 0.00 /		0.281 0.281	0.46 / 5 0.00 / 5
31	TOP : BOTT:	0.281 0.281	0.01 / -0.23 /		0.281 0.281	1.07 / 5 0.00 / 5
32	TOP :	0.281	0.74 /	5	0.281	1.44 / 5
	BOTT:	0.281	0.00 /	5	0.281	0.00 / 5
32 ****	TOP : BOTT: TOP : BOTT:	0.281 0.281 0.281 0.281 0.281	0.01 / -0.23 / 0.74 / 0.00 /	6 5 5 5	0.281 0.281 0.281	0.00 / 1.07 / 0.00 / 1.44 / 0.00 /


Exhibit C Page 26 of 52

	CHEMICAL WASTE MANAGEMENT CO.											
EMELLE, ALABAMA FACILITY												
CALCULATION COVER SHEET												
UNIT:		1400										
TANK NO.:		T-1409 TO T-1420 FT-1425 TO T-1436										
DECRIPTION:		STORAGE TANKS										
		FOUNDATION CALCULATIONS										
PREPARED BY:		5.5	אדור		DATE:	9/2/94						
REV. NO.	DATE	BY	СНК	APPVD.	PAGES	REMARKS						
} 												
ATTACHMENTS: PRIOR CALCULATIONS HAVE BEEN INCLUDED TO SUPPLEMENT THE DATA USED IN THE CALCULATIONS.												
						SCOTTLR SMITH SCOTTLR SMITH						

ROSSER	ROSSER BOVAY ROSSER FABRAP	PROJECT CHEM. LASTE	MANAGEMENT	PROJ. NO.		
550	ROSSER JUSTICE SYSTEMS	EMELLE, ALA DESIGNED 6, SMITH	· · ·	SHEET SIZ-1 OF	F	
	IHT ROSSER	DESIGNED 5, SMITH	9121194	CHECKED	1	1

Exhibit C Page 28 of 52 FOUNDATIONS FOR TANKS T- 1409 TO T-1420 - T- 1425 TO T- 1436


 $\frac{T_{ANX}}{V} \frac{VELCHT}{V} (Empry)$ $T_{OP} = \frac{11}{9} \frac{(39.0)^2}{4} \times 10.2^{\#}/_{SF} = 12,184^{\#}$ $S_{HELL} = \frac{11}{9} (39.0)(32.0) \times 15.3^{\#}/_{SF} = 59,986^{\#}$ $B_{OTTOM} = \frac{11}{9} \frac{(39.0)^2}{4} \times 12.8^{\#}/_{SF} = 15,290^{\#}$ $S_{UISTOTA} = \frac{87,460^{\#}}{4}$ $N_{OZZLES} = V_{OLVES} (5\%) = \frac{4373^{\#}}{4}$ $V_{E} = 91,833^{\#}}$

WEIGHT OF CONTENTS Capacity 250,195 GAL Sp. Gr 1.10 We 250,195 GAL * 1.1 × 8.34 Mar = <u>2,295,288</u> +

ROSSER	ROSSER BOVAY ROSSER FABRAP	PROJECT CHEM HOSTE	MANAGEMENT PROJ. NO.	
250	ROSSER JUSTICE SYSTEMS	Francis ALA	SHEET	OF
R C N	ROSSER LOWE IHT ROSSER	DESIGNED 5 5m ITH	912194 CHECKED	1 1

Exhibit C Page 29 of 52 FOUNDATIONS FOR TAMES T-1409 TO T-1420 - T- 1425 TO T-1436

 $\frac{E_{ARTHQUAKE}(ODP)}{FEQ=A_{V} \times C_{L} \times P \times Q_{L} \times Ur}$ $A_{V} = 0.06$ $C_{c} = 2.00$ $B_{c} = 0.5$ $C_{c} = 1.0$ $F_{iKE0''}$ $Ur: Ue+UL_{c} = 91,833'' + 2,295,288'' - 2,387,121''$ $Feq = 0.06 \times 2.0 \times 0.5 \times 1.0 \times 2,387,121'' - 143,227'' = E_{c} - 166'0'$ $M = 143,227'' \times 16.0' - 2,291,637 \text{ Fr-lbs}$

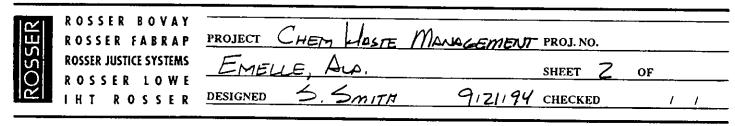
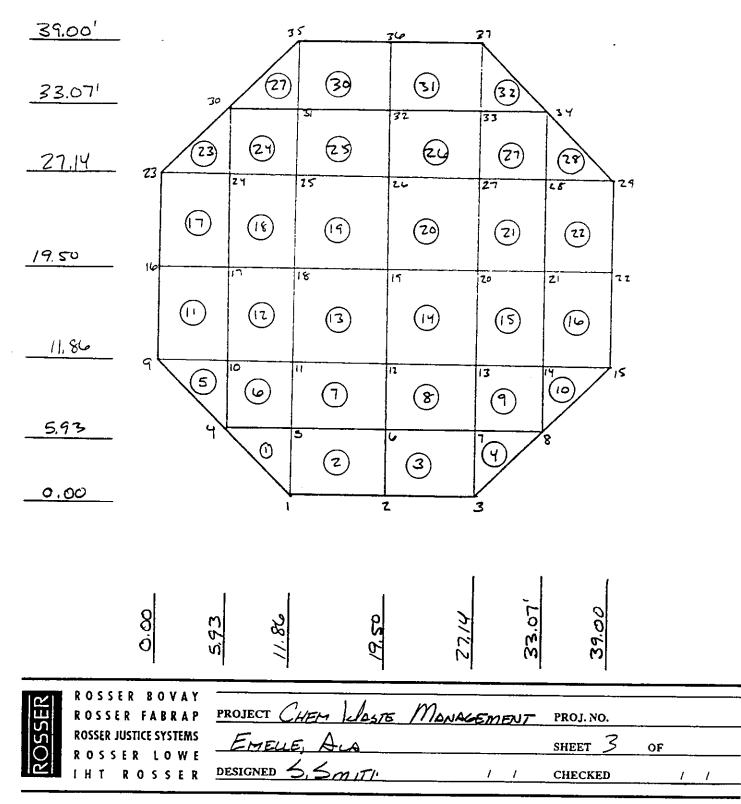



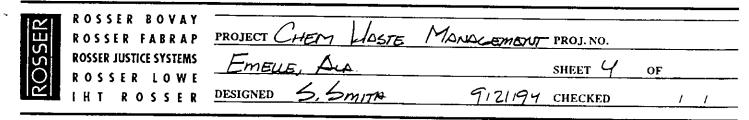
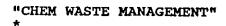
Exhibit C Page 30 of 52

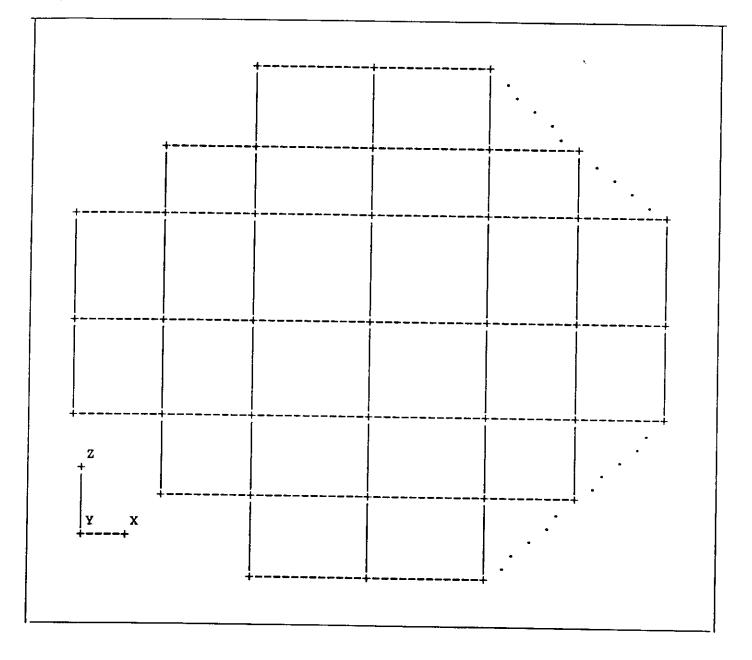
۰.

Exhibit C Page 31 of 52

•

FOUNDATIONS FOR TANKS T- 1409 T- 1420 . T-1425 TO T 1436 5000 III INDUR FON AREA = 0.8284 D2= 0.8284 (39.0)2- 1.259,955 LODOING (ELEMENT LODOS) DERO LORD = 91,833 = 72.9 pst = 0.073 KSr 1759.9 Frt LIVE LOAD = 2795,288# - 1,821psA 1.821KSF EARTHQUAKE ! CHECK Son BEDRING MAKIMUM JOINT DISPL. A= 0.113" e Jr & 5.B. O.113" × 0.073 KCi × 144" Fr = 1.187 KSF = 4.00 KSF ! OK CHECK BENDING. MEX. MOMENT ! MW = 1.45K-F e Ein 4 d= 13"- 3"- 0.625- 0.625/2. 9.06" As= # 5 = 12" % As = 0.31 ...~ $\frac{a = A_{s} f_{y}}{0.85(F_{s}) h} = \frac{0.31(60)}{0.85(3)(12)} = 0.60''$ \$Mn= \$ Asfy (d-9/2) = 0,9(0.31).60)(9.06-0.6/2) - 146.6 KIN- 12.2 K-F \$Mn=12.2K=F = Mu= 1.45KF Borone OK


Exhibit C Page 32 of 52

******* ÷ STAAD-III REVISION 15.0 (VERSION 15 LEVEL 0) * PROPRIETARY PROGRAM OF RESEARCH ENGINEERS, INC. ÷ SEP 21, 1994 DATE= ÷ TIME= 8:42:53 × ÷ *********************************** 1. STAAD SPACE "CHEM WASTE MANAGEMENT" 2. * 4. * CHEM WASTE MANAGEMENT 5. * EMELLE, ALABAMA 6. * 7. * TANK NO. T-1409 TO T-1420 ; T-1425 TO T-1436 8. * 9. * FILE NAME "T1409" 10. * 11. * DESIGNED BY SCOTT SMITH 12. * 14. UNIT KIPS FEET 15. * 16. * **17. JOINT COORDINATES** 0.00 ; 18. 1 11.86 0 0.00 ; 2 19.50 0 3 27.14 0.0 0.00 19.4 5.93 0 5.93 ; 5 11.86 5.93 19.50 0 6 0.0 5.93 ; 20.7 27.14 0 5.93 ; 8 33.07 5.93 ; 0 - 9 0.00 0.0 11.86 21. 10 22. 13 23. 16 24. 19 5.93 0 ; 11 11.86 11.86 0 11.86 ; 12 19.50 0.0 11.86 27.14 0 11.86 ; 14 33.07 0 11.86 15 39.00 ; 0.0 11.86 0.00 0 19.50 ; 17 5.93 0 19.50 18 ; 11.86 0.0 19.50 19.50 0 19.50 ; 20 27.14 0 19.50 ; 21 33.07 0.0 19.50 25. 22 39.00 0 19.50 ; 23 0.00 0 27.14 24 5.93 ; 0.0 27.14 26. 25 11.86 0 27.14 ; 26 19.50 0 27.14 ; 27 27.14 0.0 27.14 27.14 27. 28 33.07 0 ; 29 39.00 0 27.14 30 5.93 ; 0.0 33.07 11.86 0 28. 31 33.07 ; 32 19.50 0 33.07 33 27.14 0.0 ; 33.07 29. 34 33.07 0 33.07 ; 35 11.86 0 39.00 36 19.50 0.0 ; 39.00 30. 37 27.14 0 39.00 32. * 33. * MAT FOUNDATION ELEMENTS 34. * **36. ELEMENT INCIDENCES** 37. 1 5 4 1 ; 2 5 6 2 1; 3 6 7 2 з 38.4 7 8 ; 5 3 9 10 4 6 10 ; 11 5 4 39.7 11 12 6 5; 8 12 6; 13 7 9 13 14 8 7 40. 10 14 15 - 8 ;11 16 17 9; 10 12 17 18 11 10 41. 13 18 19 12 11;14 19 20 13 12 15 20 7 21 14 13 42. 16 21 22 15 14;17 23 24 16 ; 17 18 24 25 18 17 43. 19 25 26 19 18;20 26 27 21 20 19 ; 27 28 21 20 44. 22 28 29 22 21;23 30 24 23 ; 24 25 30 31 24 45. 25 32 31 26 ; 27 26 25;26 32 33 27 33 34 28 27 46. 28 34 29 28 ;29 35 31 30 ; 30 35 36 32 31 47. 31 48. * 36 37 33 32;32 37 34 - 33

```
"CHEM WASTE MANAGEMENT"
                                           -- PAGE NO.
                                                       2
*
50. UNITS KIP INCHES
51. *
52. *
                                            .
53. * MAT FOUNDATION ELEMENTS
54. *
55. ELEMENT PROPERTIES
56.1 TO 32
                   TH 13
58. SUPPORTS
59. 1 3 9 15 23 29 35 37
                                FIXED BUT MX MY MZ KFY
                                                   435.59
60. 2 16 22 36
61. 4 8 30 34
                                FIXED BUT MX MY MZ KFY
                                                   490.12
                                FIXED BUT MX MY MZ KFY
                                                   378.50
62. 5 7 10 14 24 28 31 33
                                FIXED BUT MX MY MZ KFY
                                                   868.25
63. 6 11 13 17 21 25 27 32
                                FIXED BUT MX MY MZ KFY
                                                   976.94
64. 12 18 20 26
                                FIXED BUT MX MY MZ KFY 1120.51
65. 19
                                FIXED BUT MX MY MZ KFY 1260.78
66. *
68. *
69. UNITS KIP FEET
70. *
71. *
     CONCRETE STRENGTH = 3000 PSI
CONCRETE UNIT WT. = 150 PCF
72. *
73. *
        E(CONC.) = 57000(SQ. RT. OF CONC. STRENGTH)
74. *
75. CONSTANTS
76. E 449571 ALL
77. POIS 0.2 ALL
78. DEN 0.15 ALL
80. PLOT PLAN XZ 0.
```

f. pierce a la comu

"CHEM WASTE MANAGEMENT" -- PAGE NO. 4 * 82. * 83. LOADING 1 DEAD LOAD 84. * **85. SELFWEIGHT** 86. * 87. ELEMENT LOAD 88. 1 TO 32 PR -0.073 91. LOADING 2 LIVE LOAD 92. * 93. ELEMENT LOAD 94. 1 TO 32 PR -1.821 95. * 97. LOADING 3 EARTHQUAKE LOAD 98. * 99. ELEMENT LOAD 100. 1 5 6 11 12 17 18 23 24 29 PR 0.273 101. 4 9 10 15 16 21 22 27 28 32 PR -0.273 102. * 104. LOAD COMBINATION 4 105. 1 1.0 2 1.0 3 1.0 107. LOAD COMBIMATION 5 108.11.4 2 1.7 110. LOAD COMBINATION 6 111. 1 1.05 2 1.275 3 1.275 113. PERFORM ANALYSIS PRINT ALL

PROBLEM STATISTICS

NUMBER OF JOINTS/MEMBER+ELEMENTS/SUPPORTS = 37/ 32/ 37 ORIGINAL/FINAL BAND-WIDTH = 8/ 8 TOTAL PRIMARY LOAD CASES = 3, TOTAL DEGREES OF FREEDOM = 222 SIZE OF STIFFNESS MATRIX = 11988 DOUBLE PREC. WORDS TOTAL REQUIRED DISK SPACE = 12.38 MEGA-BYTES LOADING 1 DEAD LOAD

SELFWEIGHT Y -1.000

ACTUAL WEIGHT OF THE STRUCTURE = 201.448 KIP

ELEMENT LOAD (UNITS ARE KIP FEET)

ELEMENT	PRESSURE	
1	-0.073000	
2	-0.073000	
3	-0.073000	
4	-0.073000	
5	-0.073000	
6	-0.073000	
7	-0.073000	
8	-0.073000	
9	-0.073000	
10	-0.073000	
11	-0.073000	
12	-0.073000	
13	-0.073000	
14	-0.073000	
15	-0.073000	
16	-0.073000	
17	-0.073000	
18	-0.073000	
19	-0.073000	
20	-0.073000	
21	-0.073000	
22	-0.073000	
23	-0.073000	
24	-0.073000	
25	-0.073000	
26	-0.073000	
27	-0.073000	
28	-0.073000	
29	-0.073000	
30	-0.073000	
31	-0.073000	
32	-0.073000	
	IED LOAD (KIP Force-X = Force-Y =	FEET) SUMMARY (LOADING 1) 0.00 -291.94
SUMMATION	FORCE-Z =	0.00
		· -
SUMMATION	OF MOMENTS ARO	UND THE ORIGIN-
MX=	5692.92 MY=	0.00 MZ= -5692.93
		JUJ2 . JJ

٩.

"CHEM WASTE MANAGEMENT" *

And other states of the

÷,

LOADING 2 LIVE LOAD

ELEMENT LOAD (UNITS ARE KIP FEET)

ELEMENT	PRESSURE	
1	-1.821000	
2	-1.821000	
3	-1.821000	
4	-1.821000	
5	-1.821000	
6	-1.821000	
7	-1.821000	
8	-1.821000	
9	-1.821000	
10 11	-1.821000	
11	-1.821000	
12		
13	-1.821000 -1.821000	
15	-1.821000	
16	-1.821000	
17	-1.821000	
18	-1.821000	
19	-1.821000	
20	-1.821000	
21	-1.821000	
22	-1.821000	
23	-1.821000	
24	-1.821000	
25	-1.821000	
26	-1.821000	
27	-1.821000	
28	-1.821000	
29	-1.821000	
30	-1.821000	
31	-1.821000	
32	-1.821000	
		-
***TOTAL APP	LIED LOAD (KIP N FORCE-X =	
		0.00
	N FORCE-Z =	-2257.46
JOHNATIO	T T T T T T T T T T T T T T T T T T T	0.00
SUMMATION	OF MOMENTS ARO	IND THE OBTOTAL
MX=	44020.45 MY=	
	M1-	0.00 MZ = -44020.45

LOADING 3 EARTHQUAKE LOAD

ELEMENT LOAD) (UNITS ARE KIP	FEET)		
ELEMENT	PRESSURE			x.
1	0.273000			
5 6	0.273000			
11	0.273000 0.273000			
12	0.273000			
17	0.273000			
18	0.273000			
23	0.273000			
24 29	0.273000			
4	0.273000 -0.273000			
9	-0.273000			
10 👘	-0.273000			
15	-0.273000			
16	-0.273000			
21	-0.273000			
22 27	-0.273000			
28	-0.273000			
32	-0.273000			
SUMMATION SUMMATION	LIED LOAD (KIP N FORCE-X = N FORCE-Y = N FORCE-Z =	FEET) SUN 0.00 0.00 0.00	MMARY (LOAD	DING 3)
SUMMATION MX=	OF MOMENTS AROUN 28.46 MY=		GIN- .00 MZ=	-2242.56
AA DROOFCCTNC				
++ PROCESSING	ELEMENT STIFFNES GLOBAL STIFFNESS	S MATRIX.		8:43: 0
++ PROCESSING	TRIANGULAR FACTO	MATRIX. RIZITION		8:43:10
				8:43:13
DIRECTION =		USE MODELT	INSTABILITY	AT JOINT 37 -0.224E-07
++ CALCULATING	JOINT DISPLACEM ELEMENT FORCES.	ENTS.		8:43:20
Childobhi ing	CHEFIENT FORCES.			8:43:22
***TOTAL REAC	TION (KIP FEET) SUMMARY		
LOADING 1				
SUM-X=	0.00 SUM-Y=	291.94	SUM-Z=	0.00
SUMMATION OF	MOMENTS AROUND OF	RIGIN-		
MX= -56	92.92 MY=	0.00	MZ=	5692.92

LOADING 2

"CHEM WASTE MANAGEMENT" -- PAGE NO. 8 * 0.00 SUM-Y= 2257.46 SUM-Z= SUM-X= 0.00 SUMMATION OF MOMENTS AROUND ORIGIN-MX= -44020.45 MY= 0.00 MZ= 44020.45 LOADING 3 SUM-X= 0.00 SUM-Y= 0.00 SUM-Z= 0.00 SUMMATION OF MOMENTS AROUND ORIGIN-MX= -28.46 MY= 0.00 MZ= 2242.56 LOAD COMBINATION NO. 4 LOADING-1. 2. 3. FACTOR - 1.00 1.00 1.00 LOAD COMBINATION NO. 5 1. LOADING-2. FACTOR - 1.40 1.70 LOAD COMBINATION NO. 6 LOADING- 1. 2. 3. FACTOR - 1.05 1.27 1.27 ************* END OF DATA FROM INTERNAL STORAGE ************ 114. LOAD LIST 1 2 3 4 115. PRINT JOINT DISPLACEMENTS

JOIN	T DISPI	LACEMENT (INCH RADIAN	IS) STRU	JCTURE TYPE		
JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
1	1	0.00000	-0.01012	0.00000	0.00001	0.00000	0.00000
	2	0.00000	-0.08395	0.00000	0.00000	0.00000	0.00004
	3	0.00000	0.00561	0.00000	-0.00001	0.00000	-0.00007
	4	0.00000	-0.08845	0.00000	0.00001	0.00000	-0.00003
2	1	0.00000	-0.01044	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08078	0.00000	-0.00003	0.00000	0.00005
	3	0.00000	0.00029	0.00000	0.00000	0.00000	-0.00004
	4	0.00000	-0.09093	0.00000	-0.00003	0.00000	0.00001
3	1	0.00000	-0.00961	0.00000	0.00002	0.00000	0.00000
	2	0.00000	-0.07126	0.00000	0.00018	0.00000	0.00004
	3	0.00000	-0.00374	0.00000	0.00003	0.00000	-0.00006
	4	0.00000	-0.08460	0.00000	0.00023	0.00000	-0.00002
4	1	0.00000	-0.01135	0.00000	-0.00001	0.00000	0.00001
	2	0.0000	-0.08959	0.00000	-0.00015	0.00000	0.00008
	3	0.00000	0.01240	0.00000	0.00003	0.00000	-0.00009
_	4	0.00000	-0.08854	0.00000	-0.00013	0.00000	0.00000
5	1	0.00000	-0.01059	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08234	0.00000	-0.00001	0.00000	0.00003
	3	0.00000	0.00570	0.00000	0.00000	0.00000	-0.00008
-	4	0.00000	-0.08722	0.00000	-0.00001	0.00000	-0.00004
6	1	0.00000	-0.01065	0.00000	0.00001	0.00000	0.00000
	2	0.00000	-0.08208	0.00000	0.00004	0.00000	0.00003
	3	0.00000	0.00013	0.0000	0.00000	0.00000	-0.00005
-	4	0.00000	-0.09261	0.00000	0.00005	0.00000	-0.00002
7	1	0.00000	-0.01050	0.00000	0.00001	0.00000	0.00000
	2	0.00000	-0.08003	0.00000	0.00007	0.00000	-0.00003
	3	0.00000	-0.00542	0.00000	0.00001	0.00000	-0.00008
8	4	0.00000	-0.09595	0.00000	0.00009	0.00000	-0.00011
8	1 2	0.00000	-0.01135	0.00000	-0.00001	0.00000	-0.00001
	3	0.00000 0.00000	-0.08959	0.00000	-0.00008	0.00000	-0.00015
	4	0.00000	-0.01244	0.00000	-0.00002	0.00000	-0.00010
9	1	0.00000	-0.11338	0.00000	-0.00011	0.00000	-0.00026
	2	0.00000	-0.00961 -0.07126	0.00000	0.00000	0.00000	-0.00002
	3	0.00000	0.01201	0.00000	0.00004	0.00000	-0.00018
	4	0.00000	-0.06886	0.00000	-0.00001	0.00000	0.00000
10	1	0.00000	-0.01050	0.00000	0.00004	0.00000	-0.00020
10	2	0.00000	-0.08003	0.00000 0.00000	0.00000	0.00000	-0.00001
	3	0.00000	0.01064	_	-0.00003	0.00000	-0.00007
	4	0.00000	-0.07989	0.00000	0.00001	0.00000	-0.00005
11	1	0.00000	-0.01087	0.00000 0.00000	-0.00002	0.00000	-0.00012
**	2	0.00000	-0.08363	0.00000	0.00000	0.00000	0.00000
	2 3	0.00000	0.00598	0.00000	0.00000	0.00000	-0.00002
	4	0.00000	-0.08852	0.00000	0.00000	0.00000	-0.00007
12		0.00000	-0.01087	0.00000	0.00000	0.00000	-0.00009
~ ~	1 2	0.00000	-0.08361	0.00000	0.00000	0.00000	0.00000
	3	0.00000	-0.00002	0.00000	0.00003	0.00000	0.00000
	4	0.00000	-0.09450	0.00000	0.00000 0.00004	0.00000	-0.00006
	-			0.0000	0.00004	0.00000	-0.00006

a provide an and provide a second

Exhibit C Page 41 of 52

.....

JOIN	T DISPI	ACEMENT (INCH RADIAN	IS) STR	UCTURE TYPE	= SPACE	
JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
13	1	0.00000	-0.01087	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08364	0.00000	0.00002	0.00000	0.00000
	3	0.00000	-0.00604	0.00000	0.00001	0.00000	-0.00007
	4	0.00000	-0.10055	0.00000	0.00002	0.00000	-0.00007
14	1	0.00000	-0.01059	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08234	0.00000	-0.00003	0.00000	-0.00001
	3	0.00000	-0.01100	0.00000	-0.00001	0.00000	-0.00006
	4	0.00000	-0.10394	0.00000	-0.00004	0.00000	-0.00007
15	1 2	0.00000	-0.01012	0.00000	0.00000	0.00000	0.00001
	2	0.00000	-0.08396	0.00000	-0.00004	0.00000	0.00000
	3	0.00000	-0.01391	0.00000	-0.00001	0.00000	-0.00003
	4	0.00000	-0.10799	0.00000	-0.00004	0.00000	-0.00001
16	1	0.00000	-0.01044	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08078	0.00000	0.00005	0.00000	0.00003
	3	0.00000	0.01337	0.00000	-0.00001	0.00000	-0.00003
	4	0.00000	-0.07785	0.00000	0.00005	0.00000	0.00000
17	1	0.00000	-0.01065	0.00000	0.00000	0.00000	-0.00001
	2	0.00000	-0.08208	0.00000	0.00003	0.00000	-0.00004
	3	0.00000	0.01089	0.00000	0.00000	0.00000	-0.00005
10	4	0.00000	-0.08185	0.00000	0.00003	0.00000	-0.00009
18	1	0.00000	-0.01087	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08361	0.00000	0.00000	0.00000	-0.00003
	3	0.00000	0.00607	0.00000	0.00000	0.00000	-0.00007
19	4	0.00000	-0.08840	0.00000	0.00000	0.00000	-0.00010
19	1 2	0.00000	-0.01098	0.00000	0.00000	0.00000	0.00000
	3	0.00000	-0.08473	0.00000	0.00000	0.00000	0.00000
	4	0.00000 0.00000	0.00000	0.00000	0.00000	0.00000	-0.00006
20		0.00000	-0.09571	0.00000	0.00000	0.00000	-0.00006
20	1 2	0.00000	-0.01087	0.00000	0.00000	0.00000	0.00000
	3	0.00000	-0.08357 -0.00607	0.00000	0.00000	0.00000	0.00003
	4	0.00000	-0.10051	0.00000	0.00000	0.00000	-0.00007
21	1	0.00000	-0.01065	0.00000 0.00000	0.00000	0.00000	-0.00003
	2	0.00000	-0.08209	0.00000	0.00000	0.00000	0.00001
	3	0.00000	-0.01089	0.00000	-0.00003	0.00000	0.00004
	4	0.00000	-0.10364	0.00000	0.00000	0.00000	-0.00005
22	i	0.00000	-0.01045	0.00000	-0.00004	0.00000	-0.00001
	1 2	0.00000	-0.08084	0.00000	0.00000	0.00000	0.00000
	3	0.00000	-0.01338	0.00000	-0.00005	0.00000	-0.00002
	4	0.00000	-0.10467	0.00000	-0.00001	0.00000	-0.00003
23		0.00000	-0.01012	0.00000	-0.00005 0.00000	0.00000	-0.00006
	2	0.00000	-0.08395	0.00000		0.00000	-0.00001
	1 2 3	0.00000	0.01391	0.00000	0.00004	0.00000	0.00000
	- 4	0.00000	-0.08015	0.00000	-0.00001 0.00003	0.00000	-0.00003
24	i	0.00000	-0.01059	0.00000		0.00000	-0.00004
	1 2	0.00000	-0.08234	0.00000	0.00000	0.00000	0.00000
	3	0.00000	0.01100	0.00000	0.00003 -0.00001	0.00000	0.00001
	4	0.00000	-0.08193	0.00000	0.00003	0.00000	-0.00006
				0.00000	0.00003	0.00000	-0.00005

-- PAGE NO. 11

٩.

JOINT DISPLACEMENT (INCH RADIANS) STRUCTURE TYPE = SPACE

						۰,	
JOINT	load	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
25	1	0.00000	-0.01087	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08364	0.00000	-0.00002	0.00000	
	3	0.00000	0.00603	0.00000	0.00001	0.00000	0.00000 -0.00007
	4	0.00000	-0.08848	0.00000	-0.00001	0.00000	-0.00008
26	1 2	0.00000	-0.01087	0.00000	0.00000	0.00000	
	2	0.00000	-0.08356	0.00000	-0.00003	0.00000	0.00000 0.00000
	3	0.00000	0.00003	0.00000	0.00000	0.00000	-0.00006
	4	0.00000	-0.09440	0.00000	-0.00004	C.00000	-0.00006
27	1	0.00000	-0.01087	0.00000	0.00000	0.00000	0.00000
	2	0.00000	-0.08358	0.00000	0.00000	0.00000	0.00002
	3	0.00000	-0.00598	0.00000	0.00000	0.00000	-0.00007
	4	0.00000	-0.10042	0.00000	-0.00001	0.00000	-0.00006
28	1 2	0.00000	-0.01051	0.00000	0.00000	0.00000	0.00001
	2	0.00000	-0.08015	0.00000	0.00004	0.00000	0.00006
	3	0.00000	-0.01064	0.00000	0.00001	0.00000	-0.00005
	4	0.00000	-0.10130	0.00000	0.00005	0.00000	
29	1	0.00000	-0.00955	0.00000	-0.00001	0.00000	0.00002
	2	0.00000	-0.07072	0.00000	-0.00007	0.00000	0.00002
	3	0.00000	-0.01188	0.00000	-0.00001	0.00000	0.00016
	4	0.00000	-0.09216	0.00000	-0.00009	0.00000	0.00000
30	1 2	0.00000	-0.01135	0.00000	0.00001	0.00000	0.00018
	2	0.00000	-0.08959	0.00000	0.00008	0.00000	0.00001
	3	0.00000	0.01244	0.00000	-0.00002	0.00000	0.00015
	4	0.00000	-0.08850	0.00000	0.00007	0.00000	-0.00010
31	1	0.00000	-0.01050	0.00000	-0.00001	0.00000	0.00006
	2	0.00000	-0.08004	0.00000	-0.00007	0.00000	0.00000
	3	0.00000	0.00542	0.00000	0.00001	0.00000	0.00003
	4	0.00000	-0.08512	0.00000	-0.00006	0.00000	-0.00008
32	1	0.00000	-0.01065	0.00000	-0.00001	0.00000	-0.00005
	2	0.00000	-0.08206	0.00000	-0.00004	0.00000	0.00000
	3	0.00000	-0.00012	0.00000	0.00000	0.00000	-0.00003
	4	0.00000	-0.09284	0.00000	-0.00004	0.00000	-0.00005
33	1	0.00000	-0.01060	0.00000	0.00000	0.00000	-0.00008
	2	0.00000	-0.08248	0.00000	0.00001		0.00000
	3	0.00000	-0.00573	0.00000	0.00000	0.00000	-0.00004
	4	0.00000	-0.09880	0.00000	0.00001	0.00000	-0.0008
34	1	0.00000	-0.01143	0.00000	0.00001	0.00000	-0.00012
	2	0.00000	-0.09025	0.00000	0.00015	0.00000	-0.00001
	3	0.00000	-0.01260	0.00000	0.00003	0.00000	-0.00010
	4	0.00000	-0.11428	0.00000	0.00019	0.00000	-0.00010
35	1	0.00000	-0.00961	0.00000	-0.00002	0.00000	-0.00021
	2	0.00000	-0.07126	0.00000		0.00000	0.00000
	3	0.00000	0.00374	0.00000	-0.00018 0.00003	0.00000	-0.00004
	4	0.00000	-0.07714	0.00000	-0.00017	0.00000 0.00000	-0.00006
36	1	0.00000	-0.01045	0.00000	0.00000	0.00000	-0.00010
	1 2	0.00000	-0.08081	0.00000	0.00002	0.00000	0.00000
	3	0.00000	-0.00030	0.00000	0.000002		-0.00006
	4	0.00000	-0.09155	0.00000	0.00002	0.00000	-0.00005
					0.00002	0.00000	-0.00010

?

٩.

JOINT DISPLACEMENT (INCH RADIANS) STRUCTURE TYPE = SPACE

JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
37	1	0.00000	-0.01007	0.00000	-0.00001	0.00000	0.00000
	2	0.00000	-0.08356	0.00000	0.00001	0.00000	-0.00001
	3	0.00000	-0.00551	0.00000	0.00000	0.00000	-0.00007
	4	0.00000	-0.09914	0.00000	0.00000	0.00000	-0.00008

- ,

The second second second second second second second second

116. LOAD LIST 5 6 117. PRINT ELEMENT FORCES ELEMENT FORCES FORCE, LENGTH UNITS= KIP FEET

FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH

			κ , MOMENT = FURC.	E-LENGTH/WIDTH	
ELEMENT LOAD		FX	FY	MY FXY	
1 5 TOP: SMAX= BOTT: SMAX=	1.19 6.48	0.21 0.00 SMIN=	0.73 0.00 -3.29 TMAX= -6.48 TMAX= 0.39 0.00 -2.23 TMAX= -3.79 TMAX=	-0.11 0.00 4.89 ANGLE	-0.86 -31.9
	0.70	0.10 0.00	-0.48 TMAX= 0.39 0.00	4.89 ANGLE= -0.09 0.00	= -31.9 -0.54
BOTT: SMAX=	2.23	SMIN= SMIN=	-2.23 TMAX= -3.79 TMAX=	3.01 ANGLE= 3.01 ANGLE=	= -33.0 = -33.0
2 5	-0.30	-0.19 0.00	0.01 0.00	0.36	-0.10
BOTT: SMAX= 6	0.08 -0.19	SMIN= -0.10 0.00	-0.08 TMAX= -1.95 TMAX= -0.20 0.00 -1.18 TMAX= -1.50 TMAX=	1.02 ANGLE= 1.02 ANGLE= 0.26	= 14.5 = 14.5 -0.13
TOP : SMAX= BOTT: SMAX=	1.50 1.18	SMIN= SMIN=	-1.18 TMAX= -1.50 TMAX=	1.34 ANGLE= 1.34 ANGLE=	14.3 14.3
3 5 TOP : SMAX=	0.59	-0.02 0.00	0.32 0.00	-0.31 0.00	-0.83
BOTT: SMAX= 6	4.48 0.52	$\frac{SMIN}{SMIN} = -0.04$	0.32 0.00 -4.48 TMAX= -4.57 TMAX= 0.40 0.00 -3.87 TMAX= -4.49 TMAX=	4.53 ANGLE= 4.53 ANGLE= -0.28	-34.6 -34.6 -0.74
TOP : SMAX= BOTT: SMAX=	4.49 3.87	SMIN= SMIN=	-3.87 TMAX= -4.49 TMAX=	4.18 ANGLE= 4.18 ANGLE=	-32.7 -32.7
4 5 TOP • SMAY-	-1.51	0.76	1.45 0.00	-1.42 0.00	0.52
BOTT: SMAX= 6	7.85 7.71 -1.35	SMIN= SMIN= 0.69 0.00	1.45 0.00 -7.71 TMAX= -7.85 TMAX= 1.31 0.00 -6.67 TMAX= -7.09 TMAX=	7.78 ANGLE= 7.78 ANGLE= -1.22	9.9 9.9 0.46
TOP : SMAX= BOTT: SMAX=	7.09 6.67	SMIN= SMIN=	-6.67 TMAX= -7.09 TMAX=	6.88 ANGLE= 6.88 ANGLE=	10.0 10.0
5 5 TOP : SMAX=	-0.76	-1.51 0.00	-1.42 0.00 -7.72 TMAX= -7.86 TMAX=	1.45	-0.52
BOTT: SMAX= 6	7.72 -0.37	SMIN= -0.92 0.00	-0.58	0.99 ANGLE=	9.9 9.9 -0.26
TOP : SMAX= BOTT: SMAX=	5.25 3.18	SMIN= SMIN=	0.00 -3.18 TMAX= -5.25 TMAX=	0.00 4.22 ANGLE= 4.22 ANGLE=	
6 5	0.17	-0.01 0.00	0.21 0.00	0.99 0.00	-1.14
TOP : SMAX= BOTT: SMAX=	9.19 3.10	SMIN= SMIN=	-3.10 TMAX= -9.19 TMAX=	6.14 ANGLE= 6.14 ANGLE=	35.5 35.5

ELEMENT FORCES	FORCE, L	ENGTH UNIT	S= KIP FEET		
FORCE OR STRESS	= FORCE/W	IDTH/THICK	, MOMENT = FORC	E-LENGTH/WIDTH	
ELEMENT LOAD		QY FX	FY	MY FXY	
6	0.01	-0.05	0.18	0.64	-0.66
TOP : SMAX= BOTT: SMAX=	5.65 1.45	SMIN= SMIN=	-1.45 TMAX= -5.65 TMAX=	0.64 0.00 3.55 ANGLE= 3.55 ANGLE=	35.3 35.3
75	-0.32	0.22	-0.07	0.00 0.00 2.12 ANGLE= 2.12 ANGLE= -0.05 0.00 1.76 ANGLE= 1.76 ANGLE=	-0.41
TOP : SMAX= BOTT: SMAX=	1.96 2.28	SMIN= SMIN=	-2.28 TMAX= -1.96 TMAX=	2.12 ANGLE= 2.12 ANGLE=	42.7
6 TOD • SHAY-	-0.20	0.13 0.00	-0.21 0.00	-0.05	-0.33
BOTT: SMAX=	2.44	SMIN= SMIN=	-2.44 TMAX= -1.08 TMAX=	1.76 ANGLE= 1.76 ANGLE=	38.3 38.3
8 5	0.16	0.20 0.00	0.23 0.00	-0.39	-0.01
TOP : SMAX= BOTT: SMAX= 6	1.16 1.98 0.16	SMIN= SMIN= 0.17	-1.98 TMAX= -1.16 TMAX= 0.32	-0.39 0.00 1.57 ANGLE= 1.57 ANGLE= -0.32 0.00 1.66 ANGLE= 1.66 ANGLE=	-1.2 -1.2
TOP : SMAX=	1.65	0.00 SMIN=	0.00 -1.67 TMAX=	0.00 1.66 ANGLE=	-3.8
9 5	-0.01	-0 17	-1.65 TMAX=	1.66 ANGLE=	-3.8
TOP : SMAX=	9 16	0.00 SMIN=	0.98	0.21	1.13
BOTT: SMAX= 6	3.10 -0.10	SMIN= -0.10	-9.16 TMAX= 0.79	6.13 ANGLE= 6.13 ANGLE= 0.17	35.6
TOP : SMAX= BOTT: SMAX=	8.04	0.00 SMIN= SMIN=	0.00 -3.14 TMAX=	0.21 0.00 6.13 ANGLE= 6.13 ANGLE= 0.17 0.00 5.59 ANGLE= 5.59 ANGLE=	36.7
10 5	0.20	-1.19	-0.10	5.59 ANGLE≕	36.7
10 5 TOP: SMAX= BOTT: SMAX= 6	6.53	0.00 SMIN=	0.00 -3.28 TMAX=	0.00 4.90 ANGLE=	-32.0
6	0.29	-1.08 0.00	-6.53 TMAX= -0.42 0.00	4.90 ANGLE= 0.58 0.00	-32.0 0.81
TOP : SMAX= BOTT: SMAX=	5.26 4.44	SMIN= SMIN=	-4.44 TMAX=	4.85 ANGLE= 4.85 ANGLE=	-29.2 -29.2
11 5	0.02	0.59 0.00	-0.31 0.00	0.33 0.00	0.83
TOP : SMAX= BOTT: SMAX=	4.57	SMIN= SMIN=	-4.48 TMAX= -4.57 TMAX=	4.53 ANGLE= 4.53 ANGLE=	
6 Top : Smax=	0.10 3.64	0.38 0.00 SMIN=	0.11 0.00	0.25 0.00	0.53
BOTT: SMAX=	1.79	SMIN= SMIN=	-1.79 TMAX= -3.64 TMAX=	2.72 ANGLE= 2.72 ANGLE=	-41.2 -41.2

days.

ş.

FORCE OR	STRESS	= FORCE/W	IDTH/THIC	K, MOMENT = FORC	E-LENGTH/WIDT	н
ELEMENT L			OY		MY FXY	 }
12	5	-0.20	0.15	-0.39	0.22	(
TOP :	SMAX=	1,15	0.00 SMIN=	0.00 -1 99 1743 V-	0.00	D
BOTT:	SMAX=	1.99	SMIN=	-1.99 TMAX= -1.15 TMAX=	1.57 ANGL	д= - Е= -
	6	-0.24	0.09	-0.06	0.18	(
TOP :	SMAX=	0.93	SMTN=	0.00 -0.32 TMAX=	0.00	D -
BOTT:	SMAX=	0.32	SMIN=	-1.15 TMAX= -0.06 0.00 -0.32 TMAX= -0.93 TMAX=	0.62 ANGL	Е= - Е= -
13	5	0.05	-0.02	-0.33 0.00 -2.07 TMAX= 0.98 TMAX= -0.32 0.00 -1.89 TMAX= 0.81 TMAX=	-0.27	-0
TOD •	CHAV-	0.00	0.00	0.00	0.00	
BOTT:	SMAX-	-0.98	SMIN=	-2.07 TMAX=	0.55 ANGL	E= 3
	6	0.05	-0.02	-0.32	0.55 ANGL -0.20	E= 3 _0
	A 171 17		0.00	0.00	0.00	-0
TOP : BOTT:	SMAX=		SMIN=	-1.89 TMAX=	0.54 ANGL	E= 2
		1.05	BHIN-	0.81 TMAX=	0.54 ANGL	E= 2
14	5	-0.02	-0.06	-0.27 0.00 -2.11 TMAX= 0.96 TMAX= -0.12 0.00	-0.34	0
TOP :	SMAX=	-0.96	SMIN=	U.UU −2.11 TMAY=	0.00 0.57 NOCT	- -
BOTT:	SMAX=	2.11	SMIN=	0.96 TMAX=	0.57 ANGL	E J E=- 3
	6	-0.01	-0.04	-0.12	-0.26	ŏ
TOP :	SMAX=	-0.48	SMIN=	0.00 -1 49 TWAV-	0.00	
BOTT:	SMAX=	1.49	SMIN=	0.00 -1.49 TMAX= 0.48 TMAX=	0.50 ANGL	5= 2 5= 2
15	5	0.21	0.32	0.00 0.00 -2.36 TMAX= -1.92 TMAX=	-0.09	0
TOD •	CMAV-	1 0 0	0.00	0.00	0.00	•
BOTT:	SMAX=	2.36	SMIN=	-2.36 TMAX=	2.14 ANGLI	E = 4 1
	6	0.07	0.29	-0.19	-0.11	s= 4;
	0 173.17	• • •	0.00	0.00	0.00	Ŭ
BOTT:	SMAX= SMAX=	1.19	SMIN= SMIN=	-2.36 TMAX= -1.92 TMAX= -0.19 0.00 -2.69 TMAX= -1.19 TMAX=	1.94 ANGLE	(= -4)
					1.94 ANGLI	= -4.
		-0.18	0 00	0.00	0.02 0.00	0
TOP :	SMAX=	1.79 0.01	SMIN=	-0.01 TMAX=	0.90 ANGLE	= 13
BOTT:	SMAX= 6	0.01	SMIN=		0.90 ANGLE	
		-0.07	0.26 0.00	-0.02 0.00	-0.03	0.
TOP :	SMAX=	0.20	SMIN=	-0.45 TMAX=	0.00 0.33 ANGLE	= 9(
BOTT:	SMAX=	0.45	SMIN=	-0.45 TMAX= -0.20 TMAX=	0.33 ANGLE	
17	5	0.19	-0.30	0.36	0.01	0.
mon -	010.17		0.00	0.00	0.00	
105 1	SURVE.	1.95 0.08	SMINH	-0.08 TMAX=	1.02 ANGLE	– 1

ELEMENT FORCES FORCE, LENGTH UNITS= KIP FEET

FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH

	D QX	FX		MY FXY	МХҮ
6	0.21	-0.20	0.53	0.05	0.07
TOP : S BOTT: S	SMAX= 2.78 SMAX= -0.20	SMIN= SMIN=	0.20 TMAX= -2.78 TMAX=	0.00 1.29 ANGLE= 1.29 ANGLE=	= 7.7 = 7.7
18 5	-0.22	-0.32 0.00	0.00	-0.06	0.41
TOP : S	MAX= 1.96	SMIN=	-2.27 TMAX=	0.00 2.11 ANGLE= 2.11 ANGLE= -0.01	42.7
BOTT: S	SMAX= 2.27	SMIN=	-1.96 TMAX=	2.11 ANGLE=	42.7
6	-0.25	-0.19	0.19	-0.01	0.24
TOP : S	MAX= 1.80	SMIN=	0.00 -0.88 JU.V-	2.11 ANGLE= -0.01 0.00 1.34 ANGLE= 1.34 ANGLE=	
BOTT: S	MAX= 0.88	SMIN=	-1.80 TMAX=	1.34 ANGLE=	34.0
				TICH MIGHT-	54.0
19 5	0.02	0.06	-0.27	-0.33	0.11
TOP : S	MAX= -0.97	U.UU SMIN=	- 0,00 -2 11 MMAX-	0.00	
BOTT: S	MAX= 2.11	SMIN=	-2.11 IMAX= 0.97 TMAX=	0.57 ANGLE=	37.8
6	0.03	0.04	-0.28	-0.24	37.8
		0.00	0.00	0.00	0.09
TOP : S	MAX= -0.84	SMIN=	-1.82 TMAX=	0.49 ANGLE=	-37.9
BOTT: S	MAX= 1.82	SMIN=	0.84 TMAX=	-0.33 0.00 0.57 ANGLE= 0.57 ANGLE= -0.24 0.00 0.49 ANGLE= 0.49 ANGLE=	-37.9
20 5	-0.05	0.02	-0.32	-0.26 0.00 0.55 ANGLE= 0.55 ANGLE= -0.19 0.00 0.35 ANGLE= 0.35 ANGLE=	0.10
		0.00	0.00	-0.26	-0.10
TOP : S	MAX= -0.92	SMIN=	-2.03 TMAX=	0.55 ANGLE=	37.2
BOTT: S	MAX= 2.03	SMIN=	0.92 TMAX=	0.55 ANGLE=	37.2
6	-0.03	0.01	-0.16	-0.19	-0.07
TOP : S	MAX= -0.54	U.UU SMIN-		0.00	
BOTT: S	MAX = 1.25	SMIN=	-1.25 TMAX= 0.54 TMAX=	0.35 ANGLE=	-39.0
	1100	011211-	0.54 IMAA-	0.35 ANGLE=	-39.0
21 5	0.21	- 0.17	-0.36	0.29	-0.01
0000 - 0 0		0.00	0.00	0.00	
BOTT SI	MAX = 1.48 $MAY = 1.04$	SMIN=	-1.84 TMAX=	1.66 ANGLE=	0.9
6	0.07	=0.15	-1.48 TMAX=	1.66 ANGLE=	0.9
Ŭ	0.07	0.00	-0.50	0.21	-0.03
TOP : SI	MAX= 1.10	SMIN=	-2.58 TMAX=	1.84 ANGLE-	7 4
BOTT: SI	MAX= 2.58	SMIN=	-1.10 TMAX=	0.00 1.66 ANGLE= 1.66 ANGLE= 0.21 0.00 1.84 ANGLE= 1.84 ANGLE=	2.4
22 5					
22 5	0.06	-0.57	-0.24	0.18	0.87
TOP : SI	AX= 4.42	0.00 SMIN=	0.00 -4.74 TMAX=	0.00	
	IAX= 4.74	SMIN=	-4.42 TMAX=	4.58 ANGLE= 4.58 ANGLE=	
6	0.14	-0.48	-0.51	4.58 ANGLE= 0.10	-38.3
		0.00	0.00	0.00	V./0
	(AX= 3.13	SMIN=	-5.22 TMAX=	4.17 ANGLE=	-34.1
BOTT: SM	AX= 5.22	SMIN=	-3.13 TMAX=	4.17 ANGLE=	

ELEMENT FORCES FORCE, LENGTH UNITS = KIP FEET

FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH

ELEMENT LOAD	QX	QY FX		MY FXY	МХҮ
23 5 TOP: SMAX= BOTT: SMAX= 6 TOP: SMAX= BOTT: SMAX=	1.19 6.48 3.29 0.72 4.57 0.55	0.21 0.00 SMIN= SMIN= 0.02 0.00 SMIN= SMIN=	0.73 0.00 -3.29 TMAX= -6.48 TMAX= 0.53 0.00 -0.55 TMAX= -4.57 TMAX=	-0.11 0.00 4.88 ANGLE= 4.88 ANGLE= 0.26 0.00 2.56 ANGLE= 2.56 ANGLE=	-0.86 -31.9 -31.9 -0.48 -37.2 -37.2
24 5 TOP: SMAX=	0.01 9.17	0.16 0.00 SMIN=	0.98 0.00 -3.11 TMAX= -9.17 TMAX= 0.68 0.00 -1.53 TMAX= -5.72 TMAX=	0.20 0.00 6.14 ANGLE=	1.14 35.5
25 5 TOP : $SMAX=$ BOTT : $SMAX=$ 6 TOP : $SMAX=$ BOTT : $SMAX=$	-0.16 1.03 2.01 -0.08 0.01 1.36	-0.19 0.00 SMIN= SMIN= -0.12 0.00 SMIN= SMIN=	0.20 0.00 -2.01 TMAX= -1.03 TMAX= 0.00 0.00 -1.36 TMAX= -0.01 TMAX=	-0.39 0.00 1.52 ANGLE= 1.52 ANGLE= -0.26 0.00 0.68 ANGLE= 0.68 ANGLE=	-0.01 -0.5 -0.5 0.03 6.6
26 5 TOP : SMAX= BOTT: SMAX= 6 TOP : SMAX= BOTT: SMAX=	0.34 2.43 2.10 0.30 2.34 0.87	-0.24 0.00 SMIN= SMIN= -0.23 0.00 SMIN= SMIN=	0.01 0.00 -2.10 TMAX= -2.43 TMAX= 0.19 0.00 -0.87 TMAX= -2.34 TMAX=	0.05 0.00 2.26 ANGLE= 2.26 ANGLE= 0.10 0.00 1.61 ANGLE= 1.61 ANGLE=	-0.44 43.8 43.8 -0.31 -41.1 -41.1
27 5 TOP: SMAX= BOTT: SMAX= 6 TOP: SMAX= BOTT: SMAX=	-0.12 9.91 3.21 -0.20 8.77	0.01 0.00 SMIN= SMIN= -0.02 0.00	0.29 0.00 -3.21 TMAX= -9.91 TMAX= 0.21 0.00 -3.30 TMAX=	1.02 0.00 6.56 ANGLE= 6.56 ANGLE= 0.86 0.00 6.04 ANGLE= 6.04 ANGLE=	-1.23 36.8 36.8 -1.13 37.0
28 5 TOP: SMAX= BOTT: SMAX=		0.69 0.00 SMIN= SMIN=	-0.22 0.00 -6.21 TMAX= -7.76 TMAX=	0.52 0.00 6.99 ANGLE= 6.99 ANGLE=	1.31 -37.1

ELEMENT FORCES FORCE, LENGTH UNITS= KIP FEET

FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH

	QX	FX	MX Fy		MXY
6	1.23	0.52 0.00	-0.45	0.34	1.26
TOP : S BOTT: S	MAX= 6.45 MAX= 7.04	SMIN= SMIN=	-0.45 0.00 -7.04 TMAX= -6.45 TMAX=	6.74 ANGLE 6.74 ANGLE	S = -36.3 S = -36.3
29 5	-0.76	-1.51 0.00	-1.42 0.00	1.45	-0.52
TOP: S BOTT: S 6	MAX= 7.87 MAX= 7.71 -0.46	SMIN= SMIN= -0.91	-1.42 0.00 -7.71 TMAX= -7.87 TMAX= -0.90 0.00 -4.90 TMAX= -4.70 TMAX=	7.79 ANGLE 7.79 ANGLE 0.86	C = 10.0 C = 10.0 -0.32
TOP : SI BOTT: SI	MAX= 4.70 MAX= 4.90	SMIN= SMIN=	-4.90 TMAX= -4.70 TMAX=	0.00 4.80 ANGLE 4.80 ANGLE	= 9.9 = 9.9
30 5	-0.59	0.02	0.34	-0.32	-0.84
TOP : SI BOTT: SI 6	MAX= 4.64 MAX= 4.58 -0.37	SMIN= SMIN= -0.01	0.34 0.00 -4.58 TMAX= -4.64 TMAX= 0.10 0.00 -2.96 TMAX= -2.45 TMAX=	4.61 ANGLE 4.61 ANGLE -0.20	= -34.3 = -34.3 -0.51
TOP : SI BOTT: SI	MAX= 2.45 MAX= 2.96	SMIN= SMIN=	-2.96 TMAX= -2.45 TMAX=	0.00 2.70 ANGLE 2.70 ANGLE	= -37.0 = -37.0
31 5	0.29	0.11	-0.08	0.40	-0.07
TOP: SI BOTT: SI 6	MAX= 2.11 MAX= 0.48 0.25	SMIN= SMIN= 0.11	0.00 -0.48 TMAX= -2.11 TMAX= 0.13 0.00 0.65 TMAX= -1.61 TMAX=	1.29 ANGLE 1.29 ANGLE 0.32	= 8.5 = 8.5 0.00
TOP : SN BOTT: SN	AX= 1.61 AX= -0.65	SMIN= SMIN=	0.65 TMAX= -1.61 TMAX=	0.48 ANGLE 0.48 ANGLE	= -0.5 = -0.5
32 5	-0.80	0.92	-0.16	1.18	-0.41
TOP: SM BOTT: SM 6	AX= 6.63 AX= 1.42 -0.74	SMIN= SMIN= 0.81 0.00	-0.16 0.00 -1.42 TMAX= -6.63 TMAX= -0.07 0.00 -0.98 TMAX= -6.12 TMAX=	4.02 ANGLE 4.02 ANGLE 1.08 0.00	= 15.9 = 15.9 -0.39
TOP : SM BOTT: SM	1AX= 6.12 1AX= 0.98	SMIN= SMIN=	-0.98 TMAX= -6.12 TMAX=	3.55 ANGLE 3.55 ANGLE	= 17.1 = 17.1

118. UNIT KIP INCHES 119. START CONCRETE DESIGN 1 120. CODE ACI 121. FC 3 122. TRACK 2.0 123. DESIGN ELEMENTS 1 TO 32

ELEMENT DESIGN SUMMARY

ELEMENT	LONG. REINF	MOM-X /LOAD	TRANS. REINF	MOM-Y /LOAD
	(SQ.IN/FT)	(K-FT/FT)	(SQ.IN/FT)	(K-FT/FT)
1 TOP :	0.281	0.73 / 5	0.281	0.00 /***
BOTT:	0.281	0.00 / 34	0.281	-0.11 / 5
2 TOP :	0.281	0.01 / 5	0.281	0.36 / 5
BOTT:	0.281	-0.20 / 6	0.281	0.00 / 5
3 TOP :	0.281	0.40 / 6	0.281	0.00 / 5
BOTT:	0.281	0.00 / 6	0.281	-0.31 / 5
4 TOP :	0.281	1.45 / 5	0.281	0.00 / 5
BOTT:	0.281	0.00 / 6	0.281	-1.42 / 5
5 TOP :	0.281	0.00 / 5	0.281	1.45 / 5
BOTT:	0.281	-1.42 / 5	0.281	0.00 / 5
6 TOP :	0.281	0.21 / 5	0.281	0.99 / 5
BOTT:	0.281	0.00 / 5	0.281	0.00 / 5
7 TOP :	0.281	0.00 / 5	0.281	0.00 / 5
BOTT:	0.281	-0.21 / 6	0.281	-0.05 / 6
8 TOP :	0.281	0.32 / 6	0.281	0.00 / 5
BOTT:	0.281	0.00 / 6	0.281	-0.39 / 5
9 TOP :	0.281	0.98 / 5	0.281	0.21 / 5
BOTT:	0.281	0.00 / 6	0.281	0.00 / 5
10 TOP :	0.281	0.00 / 5	0.281	0.74 / 5
BOTT:	0.281	-0.42 / 6	0.281	0.00 / 5
11 TOP :	0.281	0.11 / 6	0.281	0.33 / 5
BOTT:	0.281	-0.31 / 5	0.281	0.00 / 5
12 TOP :	0.281	0.00 / 6	0.281	0.22 / 5
BOTT:	0.281	-0.39 / 5	0.281	0.00 / 5
13 TOP :	0.281	0.00 / 6	0.281	0.00 / 5
BOTT:	0.281	-0.33 / 5	0.281	-0.27 / 5
14 TOP :	0.281	0.00 / 6	0.281	0.00 / 5
BOTT:	0.281	-0.27 / 5	0.281	-0.34 / 5
15 TOP :	0.281	0.00 / 5	0.281	0.00 / 5
BOTT:	0.281	-0.19 / 6	0.281	-0.11 / 6
16 TOP :	0.281	0.33 / 5	0.281	0.02 / 5
BOTT:	0.281	-0.02 / 6	0.281	-0.03 / 6
17 TOP :	0.281	0.53 / 6	0.281	0.05 / 6
BOTT:	0.281	0.00 / 6	0.281	0.00 / 6

•

.

÷

Exhibit C Page 51 of 52

"CI *	HEM WASI	'E MANAGEMENT"	2			PAGE NO. 20
18	B TOP : BOTT:	0.281 0.281	0.19 / 0.00 /	6 6	*****	0.00 / 6 -0.06 / 5
19	DOP :	0.281	0.00 /	6	0.281	0.00 / 6
	BOTT:	0.281	-0.28 /	6	0.281	-0.33 / 5
20	D TOP :	0.281	0.00 /	6	0.281	0.00 / 6
	BOTT:	0.281	-0.32 /	5	0.281	-0.26 / 5
21	L TOP :	0.281	0.00 /	6	0.281	0.29 / 5
	BOTT:	0.281	-0.50 /	6	0.281	0.00 / 5
22	2 TOP :	0.281	0.00 /	6	0.281	0.18 / 5
	BOTT:	0.281	-0.51 /	6	0.281	0.00 / 5
23	BOTT:	0.281 0.281	0.73 / 0.00 /		0.281 0.281	0.26 / 6 -0.11 / 5
24	TOP :	0.281	0.98 /	5	0.281	0.20 / 5
	BOTT:	0.281	0.00 /	6	0.281	0.00 / 5
25	TOP :	0.281	0.20 /	5	0.281	0.00 / 5
	BOTT:	0.281	0.00 /	6	0.281	-0.39 / 5
26	TOP :	0.281	0.19 /	6	0.281	0.10 / 6
	BOTT:	0.281	0.00 /	6	0.281	0.00 / 5
27	TOP :	0.281	0.29 /	5	0.281	1.02 / 5
	BOTT:	0.281	0.00 /	6	0.281	0.00 / 5
28	TOP :	0.281	0.00 /	5	0.281	0.52 / 5
	BOTT:	0.281	-0.45 /	6	0.281	0.00 / 5
29	TOP :	0.281	0.00 /	5	0.281	1.45 / 5
	BOTT:	0.281	-1.42 /	5	0.281	0.00 / 5
30	TOP :	0.281	0.34 /	5	0.281	0.00 / 5
	BOTT:	0.281	0.00 /	5	0.281	-0.32 / 5
31	TOP :	0.281	0.13 /	6	0.281	0.40 / 5
	BOTT:	0.281	-0.08 /	5	0.281	0.00 / 5
32	TOP :	0.281	0.00 /	6	0.281	1.18 / 5
	BOTT:	0.281	-0.16 /	5	0.281	0.00 / 5
*****	******	*****	**FND OF FIT	MERIN		*****
		CRETE DESIGN	LAD OF ELL	ALC N 1	L DESIGN********	*******
125.						
		*** END OF ST				
****	* DATE=	SEP 21,1994	TIME= 8:4	3:38	} ****	
**	******	******	* * * * * * * * * * * *	****	*****	
* *	FO RI	OR QUESTIONS (ESEARCH ENGIN	DN STAAD-III EERS. INC AT	/ISE (71	S, CONTACT:	*
* **	1	LLLX: 499438	D FAX•	(71	4) 974-4771 ***************	_
						; * *

Exhibit C Page 52 of 52

EXHIBIT D

CALCULATIONS OF TANK VENTING REQUIREMENTS

EXHIBIT D TANK VENTING CALCULATIONS (PER API 2000) CHEMICAL WASTE MANAGEMENT, INC., EMELLE, ALABAMA FACILITY

		Length/	Depth/	Tank		Tank	Tank	Tank	Tank		With-		IN-B	REATHING	6			OUT-	BREATHIN	G		EME	RGENC	Y
	Width/	Shell	Cone	Wetted	Tank	Rated	Relief	Rated	Relief	Fill	drawal	Normal	Thermal	Total Vent	Min.	Min.	Normal	Thermal	Total Vent	Min.	Min.	Vent	Min.	Min.
	Diameter	Height	Height	Surf. Area	Capacity	Press.	Press.	Vac.	Vac.	Rate	Rate	Venting	Venting	Capacity	Area	Size	Venting	Venting	Capacity	Area	Size	Capacity	Area	Size
Tank Nos.	(ft)	(ft)	(ft)	(sf)	(gal)	(in WG)	(in WG) ¹	(in WG)	(in WG) ¹	(gpm)	(gpm)	(cfh) ²	(cfh) ³	(cfh)	(sq in) ⁸	(in)	(cfh)⁴	(cfh)⁵	(cfh)	(sq in) ⁸	(in)	(cfh) ⁶	(sq in) ⁷	(in)
TANK MANAG	EMENT UN	NIT 1400																						
T-1405 thru																								
T-1408	52.00	32.00		5,228	508,333	14.00	7.00	2.00	1.00	300	300	2,400	12,103	14,503	34.33	7.00	2,571	7,262	9,833	8.80	4.00	NA	NA	NA
T-1409 thru																								
T-1420	39.00	28.00		3,431	250,195	14.00	7.00	2.00	1.00	300	300	2,400	5,957	8,357	19.78	6.00	2,571	3,574	6,146	5.50	3.00	NA	NA	NA

NOTES:

1. Pressure and vacuum relief is assumed to be set to relieve at 50% of the design rated pressure or vacuum, unless noted. Emergency relief is assumed to be set at 75% of design pressure.

2. Normal in-breathing at 5.6 scfh per 42 gal barrel per hour of withdrawal, as specified in API 2000, 4th Edition.

3. Thermal in-breathing at 1 scfh per 42 gal barrel of tank volume, up to 20,000 barrel (840,000 gal) volume, as in API 2000.

4. Normal out-breathing at 12 scfh per 42 gal barrel per hour of fill for volatile liquids (flash point <100 deg F), as in API 2000. For non-volatile liquids 6 scfh per 42 gal barrel may be used.

5. Thermal out-breathing at 1 scfh per 42 gal barrel of tank volume for volatile liquids, up to 20,000 barrel volume, as in API 2000. For non-volatile liquids 0.6 scfh per 42 gal barrel may be used.

6. From API 2000 Appendix B on Emergency Venting, for four ranges of tank surface area, heat absorption, Q, is calculated. Vent capacity in SCFH is then calculated from the heat absorption according to the equation:

SCFH = 70.5 * Q / [L * sqrt(M)] assuming a conservative "L * sqrt(M)" value of 1,337, that of hexane.

- 7. Formula for emergency vent area adapted from Protectoseal Technical Manual, on flow capacity of tank emergency venting devices for nozzles 8 in. and larger: CFH = 1,667 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank emergency relief setting and atmospheric conditions.
- 8. Formula for vent area for smaller nozzles such as normal breather vents, adapted from Crane Flow of Fluids, Eq. 2-24, very similar to, but more conservative, than Protectoseal equation: CFH = 845 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank relief setting and atmospheric conditions. The factor 845 was derived using unit conversion factors, a vapor density of 0.1875 lb/cf, and a conservative Y of 0.80 from charts on Crane p. A-21.

EXHIBIT E

TANK MATERIAL OF CONSTRUCTION COMPATIBILITY INFORMATION

Compatibility Information

Unit 1400: T-1405 to T-1436

Devoe Chemline 253 Epoxy coating

Or Equivalent for Proposed Tanks

Devchem[®] 253

Chemical Resistant Lining

Catalog Number 253-K-XXXX

FEATURES

- Exceptional resistance to a wide range of chemicals and solvents
- Provides exceptional resistance over a wide range of temperatures and pressures
- Realistic application properties and cure schedules
- Does not require baking to cure
- High volume solids; two coat system

RECOMMENDED USES

- Cargo tanks in chemical tankers and barges
- Industrial storage and process chemical tanks and pipelines
- High pressure crude oil pipe and separation tanks
- Protective coating for highly corrosive environments

See the Devoe Coatings Tank Lining Chemical Resistance Table for specific resistance properties.

SPECIFICATION DATA

Coating Type	Advanced technology epoxy	VOC	1.67 Lbs/Gal
Colors	Catalog Number	EPA 24	(200 Grams per liter)
Tank White	253-K-3530	Temp. Resistance	300°F (149°C) dry
Tank Pale Blue Tank Pastel Red	253-K-4132 253-K-7130	Volume Solids ASTM D2697 (7 day	72% -
Packaging	5 Gallon Two-component kits	Theoretical Spreading	g Rate
Component Ratio	4 to 1 by volume		1155 Sq. Ft/Gal at 1 mil 28.4 Sq. m/l at 25 microns
Gloss	Semigloss	Recommended Film	Thickness
Flash Point	100°F (38°C) Setaflash	Two Coat System	
Thinner	Devoe T-10 Thinner	6.9-8.3 mils wet to obt (173-208µ wet to obt	-
Pot Life	4 hours at 77°F (25°C)	Three Coat System 5.5 mils wet to obtain	4 mils dry
Induction Time	15 minutes	$(140\mu$ wet to obtain 10	
Shelf Life	More than 2 years	Total recommended d 10-12 mils (250 - 300µ	
Density	11.6 Lbs./Gal (1.39 kg/l)		ickness is 20 mils (500µ)
		Application	Spray

Application Guide

Surface Preparation

All surfaces must be free of oil, grease, salts and moisture before abrasive blasting to near whit metal equivalent to Steel Structures Painting Council SP10 or Swedish Standard Sa 2½. The steel profile after blasting should be $1\frac{1}{2}$ to $2\frac{1}{2}$ mils (38 to 63μ) in depth and be of a jagged nature as opposed to a peen pattern. Surfaces must be free of grit dust. Dehumidification equipment should be employed to prevent rerusting. Before applying the first coat, be sure all surfaces are clean and dust free.

Mixing and Thinning

Devchem 253 Lining is a two component product supplied in 5 Gallon kits which contain the proper ratio of ingredients, the entire contents of each container must be mixed together. Stir the base portion first to obtain a smooth, homogeneous condition. After mixing the base portion, add the convertor slowly while continuing to mix at slow speeds. Be sure all convertor is added. After the convertor add is complete, continue to mix slowly until the combined components are thoroughly mixed. Thinning is not normally required or desired; however, at lower temperatures, small amounts (5% or less) of the solvent on the reverse page can be added depending on local VOC and air quality regulations. Any solvent addition should be made after the two components are thoroughly mixed. The pot life of the mixed material is 4 hours at 77°F (25°C); 2 hours at 90°F (32°C); and 1 hour at 100°F ((38°C). Higher temperatures will reduce working life of the coating; lower temperatures will increase it.

Application

Devchem 253 Lining should be applied only by air or airless spray. Brushing can be used for touch up or striping, do not use rollers. For air spray, use agitated spray pots, 1/2" 1D air hoses and 1/2" fluid hose. DeVilbiss MBC-510 gun with and E or D tip and needle and a 704 air cap, or equivalent. equipment is recommended. For airless spray application, use 100 PSI air pressure, 3/8" ID fluid hoses not exceeding 100 feet in length, a 30 to 1 or larger heavy duty Graco pump or equivalent, and 0.021" to 0.025" range tip sizes.

Ventilation —It is very important for the safety of the applicator and the proper performance of the Devchem 253 Coating that good ventilation be provided to all portions of the enclosed area. Recommended tank ventilation involves two important phases. Phase one is to pump fresh, dehumidified air into all areas of the tank, especially "dead air" areas. Phase two is to exhaust, via an explosion proof exhaust fan, the solvent vapors from the lowest portion of the tank. This practice of pumping fresh air into the tank and exhausting solvent vapors out of the lowest part of the tank should be provided throughout the application and curing processes. This practice is to insure that all solvents are removed from the coating. Tanks must be cured 7 days at 77°F (25°C) with ventilation before being put into service. At lower temperatures, longer cure times are required.

—2 stripe coats on all sharp edges, cutouts and welds.

-2 coats of Devchem 253 Lining, 5-6 mils (125-150µ) per coat. Use contrasting colors for each coat and strip coat.

Note: The maximum dry film thickness of the Devchem 253 system is 20 mils (500μ) . Dry film thickness above 20 mils (500μ) could reduce the (service life of the coating. See the Devce Coatings Tank Lining Chemical Resistance Table or your Devce Coatings Representative for additional Information.

Recoating Schedule:

System

	Surface Temperature	Recoat	Time
	*Fahrenheit	Minimum	Maximum
	40—49	36 hours	7 days
If paint and surface temperatures	50—59	24 hours	6 days
exceed 90°F (37°C), reduce recoat	60—6 9	16 hours	5 days
time by one half.	70—79	10 hours	4 days
	80—89	7 hours	60 hours
See Application Guide Supplement	90—99	4 hours	24 hours
See Application Guide Supplement	100-109	3 hours	18 hours
	110-120	3 hours 🐨	18 hours

Cure to put tank into service: 7 days with ventilation at 77°F (25°C) for maximum chemical resistance. If forced heat cure is desired, contact your Devoe Coatings Representative

Precautions

See the material safety data sheet and product label for complete safety and precaution requirements.

253/Nov, 1993

REGIONAL HEACOUARTERS

KENTUCKY P.O. Box 7600 Louisville 40257-0600 (502) 897-9861

TEXAS 515 North Sam Houston Parkway Suite 250 Houston 77060 (713) 999-4188 NEW JERSEY 800 Ferndale Pi Rahway 07065 (908) 388-5100

CALIFDRNIA 2625 Durahart St Riverside 92507 (714) 686-6930

DEVOE COATINGS COMPANY Division of GROW GROUP, INC. RSEY CANADA THE NETHERLANDS

Devoe Coatings Canada Dwol Grow Group Canada, Ltd 55 MacDonald Ave. Dartmouth, Nova Scotia Canada 83B 119 (902) 468-9888 THE NETHERLANDS Devoe Coatings B V Rotterdamseweg 144A 2628 AP DELET-Holland (15) 569212 SINGAPORE Devoe Coalings Singapore 20 Penjuru Lane Singapore 2260 (65) 2641772 DISCLAIMER

This is not a specification and all information is given in good tath. Since conditions of use are beyond the manulacturer's control information conlained herein is without warranty, impled or otherwise, and final determination of the suitability of any information or material for the use contemplated, the manner of use and whether there is any infringement of patents is the sole responsibility of the user. Manufacturer does not assume any liability in connection with the use of the product relative to coverage, performance or injury. For application in special conditions, consult the manufacturer for detailed recommendations.

CONSULT YOUR DEVOE CATALOG FOR COMPLETE LIST OF OFFICES

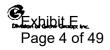
Exhibit E Page 3 of 49

Catha-Coat[®] 305 Coating Devchem[®] 253 Lining Devchem[®] 255 Lining Tank Lining Chemical Resistance Table

This table contains a listing of most of the solvents and chemicals which are transported in bulk quantities and a coatings resistance rating for Catha-Coat 305 Water Based Inorganic Zinc Coating, Devchem 253 Chemical Resistant Lining, and Devchem 255 FDA Epoxy Lining. The indicated resistance ratings are based on laboratory tests, actual field experience and other studies believed by Devoe Coatings to be reliable.

Since many of the commercial products contained in this cargo resistance table may vary in composition, and product specifications may change, Devoe Coatings cannot assume any responsibility for the condition of the coating and/or the products carried or stored in Devoe Coatings lined tanks. The listed resistance ratings are based solely on the effects of the cargoes on tank linings themselves. Neither the contamination of cargoes by tank linings nor the effects of contaminated cargoes on tank linings has been tested and is not implied by the listed resistance tables.

Devoe maintains an ongoing research and tank lining testing program. If there are chemicals or solvents, or special conditions not found in this table, please contact a Devoe Coatings Representative.


Devoe Coatings reserves the right to alter this resistance table without notice.

Tank Lining Systems

Lining	Dry Film Thickness ⁽¹⁾	Alternate Dry Film Thickness ⁽¹⁾
Catha-Coat 305 System ⁽²⁾ Catha-Coat 305 Coating	3—5 mils (75—125 microns)	
Devchem 253 System		-ua.
Devchern 253 Lining	5 mils (125 microns)	4 mils (100 microns)
Devchem 253 Lining	5 mils (125 microns)	4 mils (100 microns)
Devchem 253 Lining		4 mils (100 microns)
Devchem 255 System		
Devchem 255 Lining	5 mils (125 microns)	
Devchem 255 Lining	5 mils (125 microns)	

Stripe coats in way of edges, cutouts, welds, pits, brackets and other difficult to paint areas are required.

- (1) Surface roughness or special resistance requirements may alter the film thickness specification or number of coats.
- (2) To insure a holiday-free lining and obtain extended service life, two coats of Catha-Coat 305 Coating at 3 mils (75 microns) per coat are recommended.

General Remarks

When using this cargo resistance table, the following points should be read very thoroughly and noted.

- A. All cargoes having low viscosities, like solvents which do not require heating to be loaded or unloaded, are tested at 120°F (49°C). High viscosity cargoes which are normally heated to facilitate loading are tested at 180°F (82°C). Cargoes carried or loaded in excess of these temperatures can be detrimental to the lining. Devoe Coatings should be consulted for specific recommendations where these temperatures are exceeded.
- B. All cargo resistance ratings, including ballast water, are based upon a normal shipping and storage period not to exceed sixty days. Ratings are not based upon prolonged periods of time nor repeated storage or shipping of the same product. Should the possibility of shipping and storage periods in excess of sixty days arise, a Devoe Coatings Technical Representative should be consulted.
- C. Tank cleaning may be accomplished by employing normal Butterworthing procedures, with solution temperatures up to but not exceeding 190°F (88°C). Special care must be exercised in choosing solvents or detergents used in tank cleaning so as not to cause damage to the lining. If the coating is soft, forced ventilation for at least 24 hours after discharge, or longer if the coating system has not yet fully recovered, is mandatory to allow the coating to recover prior to cleaning.

Alkaline and acidic cleaning compounds can damage Catha-Coat 305 Coating and should be avoided.

Cleaning chemicals which are normally used in the industry have all been tested and are approved for use. Special cleaning chemicals should be tested and approved prior to use.

D. Catha-Coat 305 Coating, as all inorganic zinc coatings, is sensitive to, and may be damaged by, strong acids or alkalies. The pH of the cargo must fall within the 5.5-10.0 range.

When any zinc coating is used as a tank lining, the possibility exists for a cargo to pick up slight metallic zinc contamination. Sour crude oil cargoes are not recommended for Catha-Coat 305 Coating.

E. Due to the large number of possible combinations of cargo sequence, it is nearly impossible to predict overall resistance in practice. Most problems can be avoided by using common sense, employing measures such as forced ventilation and thorough cleaning of tanks between cargoes.

Non-aggressive cargoes of similar generic types should not usually cause problems. Such cargoes as fuels and oils are examples of these types.

Limited service category 1 (LS-1) water miscible cargoes should not be followed by water cleaning, ballast or aqueous cargoes until the tank has been completely ventilated and freed of all traces of the LS-1 cargo. All traces of water must also be removed from a tank before LS-1 water miscible cargoes or chlorinated solvents or ester solvents (LS-4) are loaded. The improper sequence of cargoes or improper tank cleaning and preparation can have adverse effects on tank linings.

F. In the majority of cargoes, cargo contamination from the coating is highly unlikely, and is limited to initial cargoes after coating application. Avoid loading high purity chemicals before the coating is properly cured as per manufactuer's recommendation.

Cargo contamination is also possible from improper cleaning of tanks after carriage. To prevent contamination of subsequent cargoes and the chance of by-product forming chemical reaction, tanks must be properly cleaned between cargoes.

-ţ

ŧ.

(

- G. This Cargo Resistance Table is not based on the use of shop primers under the tank coatings listed. Devoe Coatings requires that all tank coatings be applied directly to blasted steel.
- H. A Devoe Coatings Representative should be consulted for the cargo resistance rating of chemicals not included in this list.
- Certain cargoes, such as carbon containing cargoes or impure or crude cargoes, may discolor the lining and may be very difficult to clean. There may be delays until the inspector is satisfied that the discoloration cannot be removed.
- J. The normal requirement is to cure a tank lining for 7 days after application. Most coating systems do not completely cure or crosslink in 7 days, especially if the temperatures during this period are below normal.

The chemicals on the attached list were all tested after a 7 day cure at 77°F (25°C). The tank linings will, however, become more resistant with time, or if a hot, weak solvent cargo, such as mineral oils or heavy fuel oils, is carried. Very strong solvent cargoes (LS-1) should not be loaded as the first cargo after lining a tank.

K. Although Devoe Coatings Company believes the recommendations given in this Cargo Resistance Table to be reliable, due to the wide variation in product composition and specification, good engineering practice may indicate field testing the coating prior to large scale application.

(

Key to Resistance Table

S	Suitable
LS	Limitations on service (see Limited Service Notes)
LS (X 30)	Recommended for maximum of 30 days continuous immersion
LS (X 60)	Recommended for maximum of 60 days continuous immersion
U	Unsuitable
x	Not tested at this time Contact your Devoe Coatings Representative for the latest test information.

Limited Service Notes

LS-1 These products will cause some softening of the Devoe Coatings system, leading to reduced mechanical resistance. LS-1 products, and especially methanol, ethylene dichloride, acetone, vinyl acetate monomer, and cyclohexanone, should not be loaded in newly lined tanks before the coating system is fully cured.

Full cure will be obtained after a service period of one month with Suitable (S notation) cargoes. Full cure can also be achieved by carrying hot cargoes such as lubricating oil, mineral oil, vegetable oils, animal oils or molasses for a period of at least four days at 50°C or 3 days at 60°C. LS-1 cargoes, LS(X30) cargoes that are limited to 30 day carriage, or LS(X60) cargoes that are limited to 60 day carriage can not be carried until tanks have been fully cured.

After carriage of LS-1, LS(X30), and LS(X60) cargoes, the next immediate cargo must be a Suitable (S) cargo—without a LS, LS(X30), or LS(X60) notation—and be loaded after the tanks have been forced-air ventilated for at least 24 hours, or longer if the coating system has not yet fully recovered. Under no circumstances must water or ballast be introduced into the tanks before ventilating.

Water containing cargoes like caustic soda or potash should not be loaded immediately after LS-1, LS(X30), or LS(X60) cargoes.

LS-2 Crude Oil

Catha-Coat 305 Coating can safely carry sweet crude oil. Sour crudes, however, are acidic and will attack zinc, and are not recommended. Crude oils with a hydrogen sulfide content in excess of 300 ppm or a neutralization number greater than 0.4 are considered unsatisfactory.

LS-3 Fats, Oils, Greases

Animal and vegetable fats and oils contain variable amounts of free fatty acids. The free fatty acid (f.f.a.) content limitation is 2.5% or less; the acid number limitation is 5.0 or less.

Free radical acids can form with age or under warm storage conditions, and therefore, we also recommend measuring the pH before loading into a Catha-Coat 305 lined tank. A ph of 5.5 to 10.0 is suitable.

Products like lard and tallow have to be carried at elevated temperatures. The formation of free organic acids occurs rapidly, especially around heating coils. Rancid products are very high in f.f.a.

LS-4 Hydrolyzable Cargoes

Certain classes of chemicals will hydrolyze in the presence of water to form aggressive acidic by-products. Cargoes such as esters (acetates) and halogenated compounds (chlorinated or brominated solvents) must be kept stabilized and kept moisture-free. The water content must be limited to 100 ppm. The temperature of the cargo should not exceed 100°F (38°C).

LS-5 Molasses

Crude molasses may be quite acidic. Molasses can be carried in a Catha-Coat 305 Coating lined tank if the pH is between 5.5 and 10.0. After discharging, the residual molasses has to be completely washed and rinsed. An alkaline buffer compound can be added to the rinse to insure any acid residues are neutralized.

LS-6 Beverages and Potable Water

Although Devchem 253 Lining is unaffected by these liquids, no warranties can be made with regard to taste or odor.

LS-7 Phenoi

Phenol (carbolic acid) and phenol compounds can form staining color bodies when exposed to oxygen, sunlight or trace alkalies. The lining may become discolored. A nitrogen gas blanket may prevent discoloration.

LS-8 Discoloration

Certain chemicals, crude cargoes and carbon containing products can stain the lining and may be very difficult, if not impossible, to clean. The effect of this discoloration on subsequent cargo cannot be generalized.

LS-9 Monomers and Other Non-Stable Chemicals

The linings are resistant and inert to these products. If the products are not properly stabilized, contain a foreign contaminant or if the heat limitations are exceeded, these products may polymerize or break down. Care should be taken to insure the stabilizing agents are compatible with the tank lining.

LS-10 pH

Cargoes for Catha-Coat Coating lined tanks must fall within a pH range of 5.5 to 10.0. Traces of zinc metal or zinc salts may contaminate the cargo.

LS-11 Crude Cargoes

Products like coal tar and xylenol can vary in composition from grade to grade and even batch to batch. Samples of the specific cargo should be tested or evaluated before loading.

LS-12 Similar Cargoes

These products are believed to be suitable for transport in the indicated lining since they are reportedly similar to cargoes successfully carried. No confirming tests have been conducted.

í

{

LS-13 Water Immersion

Catha-Coat 305 Coating withstands intermittent exposure to seawater, but continuous immersion over a long period will reduce the life of the coating.

LS-14 Cargoes Sequenced with Methanol

Methanol and the following cargoes—ethylene dichloride, vinyl acetate monomer, acetone or cyclohexanone—should not be sequenced more than once, without prior approval from the coating manufacturer. If in doubt about loading a cargo after methanol, please contact the Devoe Coatings Company Laboratory for advice.

LS-15 Organic Fatty Acids

Organic fatty acids will hydrolize in the presence of water to form aggressive acidic by-products. Cargoes such as tall oil fatty acid and palm oil fatty acid must be kept stabilized and moisture-free. The water content must be limited to 1% maximum with no traces of inorganic acids or mineral acids.

LS-16 Amines

Amines can be carried when free from moisture. If water is present, alkalinity may increase to a pH of more than 9.

To prevent contamination by water, both the cargo and the tank must be completely dry at the time of loading, and the amines must be transported under a dry nitrogen or carbon dioxide blanket

Devoe Coatings Company Tank Lining Chemical Resistance Table

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Acetaidehyde	U	U	U
Acetic acid 5%	U	Ū	Ű
Acetic anhydride	U	U	Ū
Acetone	S	LS-1, 14, (X30	-
Acetone cyanohydrin	LS-12	x	x
Acetonitrile	LS-4	LS-1, 4, (X 60)	U
Acetophenone (Phenyl methyl ketone)	S	LS-8, (X 60)	U
Acetylene, gas	S	S	S
Acetylene dichloride (Dichlorethylene)	LS-4	X	U
Actinol	U	S	x
Acrolein	U	U	U
Acropol (Mixed linear alcohols)	S	S	x
Acrylic acid	ប	LS-1, 4, (X30)	x
Acrylic monomers	LS -4, 9	U	U
Acrylonitrile	LS-9	U	U
Acrylonitrile-styrene copolymer dispersion in polyether po	•	LS-12	x
Adiponitrile	X	U	U
Aircraft gasoline	S	S	S
Airturbo fuel	S	S	S
Alcohol, linear primary C12-C15	S	S	x
Alcohol ethoxylate, linear primary	S	S	x
Alcohol ethoxylate, ammonium salt solution	S	S	x
Alcohol ethoxysulfate, sodium salt solution	S		- X
Alcoholic Beverages, N.O.S.	х	S	U
Aldol	U	U	U
Alkalate	×	LS-12	x
Alkali soybean oil	LS-3	S	S
Alkane (Dodecyl benzene)	S	S	S
Alkyl benzene	S	S	S
Alkyl benzene sulfonic acid	U	LS-8	x
Alkyl phosphate	s	LS-11	х
Alkyl phthalate	x	S	x
Alkylate bottom (Dodecyl benzene)	S	S	S
Alkylate detergent	S	S	x
Alkylate 22 (Dodecyl benzene)	S	S	S

Exhibit E Page 10 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Alkylate 130 (Monsanto)	S	S	S
Allyl alcohol	S	S	U
Allyl aldehyde	U	Ŭ	Ŭ
Allyl chloride (3-Chloroprene)	U	LS (X 60)	U
Almond oil, sweet	LS-3	S	S
Alpha olefins	S	S	S
Alpha olefin C-6/7	S	s	S
Alpha olefin C-7/8	S	S	S
Alpha olefin C-7/14	S	S	S
Alpha olefin C-10/15	S	S	S
Alpha olefin C-15/18	S	<u> </u>	
Alpha-hydroxytoluol (Benzyl alcohol)	S	S	S
Alpha-N-amylene (1-Pentene)	S	S	X
Alum solution 15%	U	S	X
Alumina slurry concentrate	U	S S	X X
Aluminum chloride 10%			
Aluminum chloride 30%	U	LS-8	X
Aluminum hydroxide dry	U	LS-8	х
Aluminum nitrate 30%	U	S	X
Juminum sulfate 10%	U	S	Х
Some and Subale TO %	U	S	. X
Aluminum sulfate 30%	U	S	×
Aluminum sulfide 100%	Ū	Ŭ	Û
Aminoethane (Ethylamine)	Ū	Ŭ	U
Aminoethanolamine	Ū	Ŭ	U
Aminoethoxy ethanol	U	Ŭ	U
Aminoethyl ethanolamine	U		
Aminoethyl piperazine	x	U X	U
Aminoform (HMTA)	û	~	X
2-Amino-2-methyl-1-propanol (90% or less)	x	U S	U
Ammonia, anhydrous	Û	S U	X U
Ammonia 26° Bé (< 25°C)	U		
Ammonia 28% aqueous solution/ammonium hydroxide (< 2	0 25°C) U	LS-1, (X30)	U
Ammonia fertilizer solutions		LS-1, (X30)	U
Ammonia water 10% (not overº25C)	U	S	X
Ammonium carbonate 50%	U	LS-1, (X30)	U
	U	S	x
Ammonium chloride, quarternary	х	LS (X 30)	U
Ammonium hydrogen phosphate solution	x	X	x
Ammonium hydroxide/ammonia 2B%aqueous solution (<25	°C) U	LS-1 (X30)	x
Ammonium hydroxide (10% solution in water)	U	LS (X60)	x
mmonium hydroxide (25% solution in water)	Ŭ	LS (X60)	x

April, 1993

ţ

~

(

Exhibit E Page 11 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Ammonium nitrate 10% solution in water	U	S	x
Ammonium nitrate 30% solution in water	U	S	х
Ammonium nitrate 50% solution in water	U	S	Х
Ammonium phosphate, urea solution	x	х	Х
Ammonium phosphate solution	x	x	x
Ammonium sulfate 40% (no heat)	x	S	x
Ammonium thiocyanate (25% or less)/ammonium thiosulfate solution (60% or less)	X	x	X
Amyl acetate (iso, normal, secondary)	LS-4	LS-1,4	U
Amyl alcohol (iso, normal, secondary, tertiary)	S	S	×
Amyl aldehyde	U	U	U
Amyl carbinol (Hexanol)	S	S	х
Amylene (1-Pentene)	S	S	S
Amylene hydrate (Amyl alcohol)	S	S	х
Amyl hydride (Pentane)	S	S	S
Anchovy oil	LS-3	S	S
Anglanoil 99	LS-8	LS-8	х
Aniline	U	U	U
Animal oil	LS-3	S	S
Anivax SX 3158	S	S	x
Ansulite FFF	×	S	×
Anthracene (C14) nonliquid	S	S	X
Anthracene oil	x	S	S
Antifreeze (glycol based)	S	S	х
Apricot kernel oil	x	S	S
Arachis oil	LS-3	S	S
	⊷ S	S	X
Aroma (Extender oils)	S	S	S
Aromatic 100	S	S	_ S
Aromatic concentrate (Carbon black/feed stock)	S	S	x
Aromatic hydrocarbons	S	S	S
Aromatic oils (Extender oils)	S	S	S
Aromatic petroleum solvents	S	S	S
Aromatic sulfonic acids	U	U	U
Asphalt	X	LS-8	X
Asphalt cut back (Mix-asphalt, Gasoline, Naphtha and solv		S	S
Atrazine	U	S	X
Aviation alkylates (C8 paraffins and iso-parraffins, BP 95-1		S	S
Aviation gasoline	S	S	S
Aviation kerosene	S	S	S

:

≎argoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Avocado Oil	x	S	S
Axle oil (Lube oil)	S	S	S
Babassu oil	LS-3	S	S
Beechnut oil	LS-3	S	S
Benzaldehyde	U	Ŭ	Ŭ
Benzene	S	S	S
Benzene, industrial nitration grade	S	S	S
Benzene trimethyl	S	S	S
Benzenesulfonyl chloride	х	х	X
Benzol	S	S	S
Benzyl acetate	LS-4	LS-1,4	U
Benzyl alcohol	S	S	x
Benzyl chloride	X	S	x
Beta-methacrylic acid	U	U	U
Black oil	LS-2	S	S
Blandol (White mineral oil)	s	S	S
Blown oils	L S -3	S	S
Boric acid 10%	U	S	Ū
Brake fluid (glycol base)	S	S	S
Trake fluid (glycol ether base)	U	S	S
Brandy	X	LS-6	x
Brine	U	S	S
Bromine	U	U	U
Bunker C oil and solvent	S	S	S
Bunker oil	S	S	S
Butadiene	S	S	x
Butadiene, inhibited	X	x	x
Butane	S	S	S
1,3-Butane diol (Butylene glycol)	S	S	х
Butanoic acid (Butyric acid)	U	Ū	U
Butanol (iso, normal, secondary, tertiary)	S	S	x
Butene oligomer	X	S	X
Butenoic acid (Crotonic acid)	U	U	U
2-Butoxy ethanol (Butyl cellosolve)	S	S	х
Butyl acetate (iso, normal, secondary)	LS-4	LS-1,4	U٠
Butyl acrylate (inhibited)	LS-4	LS-4	×
Butyl alcohol (iso, normal, secondary, tertiary)	S	S	x
Butyl amines	U	U	U
Butyl benzyl phthalate (BBP)	S	S	×
^q utyl butyrate	S	S	×

Page 4 of 40

April, 1993

(

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchern 253 Lining	Devchem 255 Lining
Butyl carbinol (N-Amyl alcohol)	S	s	x
Butyl carbitol (Diethylene glycol monobutyl ether)	S	S	x
Butyl carbitol acetate	LS-4	LS-1,4	U
(Diethylene glycol monobutyl ether acetate)		*	-
Butyl cellosolve (Ethylene glycol monobutyl ether)	S	S	x
Butyl cellosolve acetate	LS-4	LS-1,4	U
(Ethylene glycol monobutyl ether acetate)			
Butyl chloride	X	LS-4	х
Butyl/decyl/cetyl eicosyl methacrylate mixture	LS-4,9	x	х
Butyl decyl phthalate	S	S	X
Butyl dioxitol	S	S	×
Butylene, alpha, 2	S	S	S
Butylene giycol	S	S	x
Butylene, poly	S	S	S
n-Butyl ether	S	x	X
Butyl formate	×	x	x
Butyl glycidyl ether (BGE)	S	Х	x
Butyl glycol acetate	LS-4	LS-1, 4	U
Butyl glycol ether	S	S	x
Butyl heptyl ketone	S	S	U
Butyl lactate (no heat)	U	LS-8	x
Butyl methacrylate monomer	LS-4,9	LS-1,4,9	U
Butyl oxitol (Ethylene glycol monobutyl ether)	S	S	x
Butylphenol (ortho, tertiary)	S	S	x
Butyl phthalate	S	S	x
n-Butylraldehyde	U	x	×
Butyl stearate	X	S	x
Butyric acid	U	U	U
Butyrolactone	_ U	X	x
gamma-Butyrolactone	U	x	x
Butyrone (Heptanone)	S	S	U
Cajaputene (Dipentene)	S	S	S
Calcium alkyl salicylate	S	S	x
Calcium bromide 48%	S	S	x
Calcium bromide 53%	x	S	x
Calcium carbonate solution (130°F maximum)	x	S	x
Calcium chloride (saturated)	U	S	X
Calcium hydroxide 10%	U	S	S
Calcium hydroxide 30%	U	S	S
Calcium hydroxide 50%	U	S	S

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Calcium hypochlorite 15%	U	S	x
Calcium hypochlorite solution (over 15%)	Ŭ	x	Â
Calcium naphthenate (in mineral oil)	x	S	s
Camphor oil	x	S	S
Candelilla oil (Montan)	x	s	S
Candlenut oil	LS-3	S	S
Canola oil, refined	х	LS-6	S
Capoc oil	LS-3	S	S
Capric acid	U	S	U
Caproic acid	U	S	Ŭ
Caprolactone	x	U	U
Capryl alcohol	S	Š	x
Caprylic acid (Oxylic acid)	Ū	S	Û
Carbitol acetate	LS-4	LS-1, 4	U
Carbitol solvent (Diethylene gylcol monoethyl ether)	S	S	x
Carbolic Acid (Phenol 100%)	LS-7	U	U
Carbolic oil (Middle oil)	S	S	s
Carbon black oil	LS-8	LS-8	5 LS-8
Carbon dioxide (gas) 100%	S	S	S
Carbon disulfide 10%	Ŭ	Ŭ	S U
Carbon disulfide 100%	LS-4	U	
Carbon tetrabromide	LS 4	S	U
Carbon tetrachloride	LS-4	S	X
Carbonic acid 10%	S	S	×
Carbowax 200	S	S	U X
Carbowax 300 (Polyethylene glycol)	c		
Carbowax 600	S S	S	X
Cardura E		S	X
Carnation oil (Petrolatum)	LS-4 S	S	X
Carnation white mineral oil	S	S	S
	3	S	S
Carnauba wax	x	S	S
Cashew nutshell oil	Х	S	S
Castor oil	LS-3	S	S
Caustic potash	U	S	S
Caustic soda (NaOH) 10%	U	S	S
Caustic soda (NaOH) 20%	U	S	S
Caustic soda (NaOH) 50%	U	S	S
Caustic soda 50% spent (no heat)	U	S	x
Cellosolve (Ethylene glycol monoethyl ether)	S	S	x
Cellosolve acetate (Ethylene glycol monoethyl ether acetate	e) LS-4	LS-1,4	U U

April, 1993

ţ

ĺ

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Cement	U	S	x
Certrex's mineral spirits	S	S	S
Cetyl alcohol (Primary hexadecyl alcohol)	S	S	х
Chinawood oil (Tung oil)	LS-3	S	S
Chlorinated diphenyl	LS-4	S	x
Chlorinated paraffins	LS-4	S	U
Chlorine, available in solution as NaClO (up to 200 ppm)	U	LS (X 30)	U
Chlorine, wet (saturated)	U	U	U
Chlorine dioxide	U	U	U
Chloroacetic acid	U	U	U
Chloracetyl chloride	U	U	U
Chlorobenzene	LS-4	LS-4	U
p-Chloro-m-cresol	S	U	U
2-Chloroethanol	LS-4	X	U
Chloroethene	LS-4	U	U
Chloroethylene	LS-4	U	U
Chloroform	LS-4	Х	U
Chloropropionic acid	U	U	U
Chloropropylene oxide (Epichlorohydrin)	LS-4	U	U
Chlorosulfonic acid	U	U	U
Chlorothene (1,1,1-Trichlorethane)	LS-4	LS-1, 4	U
Chlorotoluene (all isomers)	LS-4	S	U
Choline chloride	U	S	U
Chromic acid 5%	U	LS-8	U
Chromic acid 10%	U	LS-8	U
Chromic acid 20%	U	U	U
Chromic acid 50%	· U	U	U
Cinene (Dipentene)	S	S	S
Circo light oils -	S	S	S
Circo light oil (extender oil)	S	S	S
Circo process oil (extender oil)	S	S	S
Circosol oil (extender oil)	S	S	S
Citric acid 5%	U	S	υ
Citric acid 25%	U	S	U
Citroflex A-4	S	S	X .
Clorox	U	S	υ
Coal tar benzene	S	S	S
Coal tar naphtha	S	S	S
Cocoa butter	X	S	S
Cocoa butter oil	LS-4	S	S

April, 1993 Exhibit E Page 16 of 49

-

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining	
Cocoa nut oil, crude	LS-3	S	S	
Cocoa oil	LS-3	S	S	
Coco fatty acid	U	LS-15	U	
Coco fatty alcohol	S	S	x	
Coco methyl ester	LS-3	S	x	
Coconut fatty acid, topped	U	LS-15	U	
Coconut fatty acid, whole distilled	U	LS-15	U	
Coconut oil, esterfied	U	S	S	
Cod liver oil	LS-3	S	S	
Cohune oit	x	S	S	
Colza oil	LS-3	S	s	
Copra oil (Coconut oil)	LS-3	S	S	
Coray 40 (lubricant)	S	S	S	
Core Lube 670 catalyst	Х	U	Х	
Core Lube 674 catalyst	X	U	U	
Corn oil	LS-3	S	s	
Corn syrup	Х	S	S	
Cotton seed fatty acid	X	LS-15	U	
Cottonseed oil (sulfuric acid free)	LS-3	S	S	1
Cottonseed oil stearine	S	S	x	(
Coumarone naphtha solvent	S	S	S	
Creosote	LS-1,4	LS-1,4	U	
Creosote (coal tar)	S	U	U	
Cresol (ortho, meta, para)	LS-7	U	U	
Cresyl diphenyl phosphate (Santicizer 140)	S	S	x	
Cresylic acid 10%	U	U	U	
Cresylic acid 100%	X	U	U	_ .
Crotonaldehyde	U	U	Ų	
Croton oil	LS-3	S	S	
Crude condensate (naphtha, petroleum)	S	S	S	
Crude glycerine	U	S	S	
Crude hard fraction PKO (Palm kernel oil)	U	S	S	
Crude oil (high and low sulfur)	LS-2	S	X	
Cumene	S	S	Х	
Cumene, pseudo	S	S	x	
Cumol	S	S	x	
Cyclo-Sol 53	S	S	х	
1,5,9-Cyclododecatriene	х	х	х	
Cycloheptane	S	S	S	ţ
Cyclohexane	S	S	S	

Page 8 of 40

April, 1993

Non -

Exhibit E Page 17 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Cyclohexanol	S	S	×
Cyclohexanone	S	LS-1, 14, (X3)	
Cyclohexanone/cyclohexanol mixture	S	LS-1, 14, (X3	
Cyclohexene	S	S	5) 0 S
Cyclohexyi acetate	LS-4	LS-1,4	U U
Cyclohexylamine	U	U	U
Cyclopentane	S	S	s
Cyclopentene	S	S	s
Cycosol (Mineral spirits)	S	S	s
Cylinder bright stock oil	S	S	S
Cylinder steam refined stock oil	S	S	S
p-Cymene (Isopropyltoluene)	S	S	S
Dalapon (2,2-Dichloropropionic acid)	U	U	Ŭ
Dalatinol (Di-(2-ethylhexyl) phthalate)	S	S	x
Dasanit	S	S	x
Decahydronaphthalene	x	S	x
Decalin (Decahydronaphthalene)	S	S	x
Decane (Decyl hydride)	S	S	S
Decanoic acid (Capric acid)	U	LS-4, (X60)	U
Decanol	S	S	x
Decene	s	S	S
Decyl alcohol (all isomers)	S	S	x
Decyl acrylate	LS-4,9	LS-1,4	Û
Decyl benzene	x	S	S
Decyl carbinol (1-Undecanol)	S	S	S
Decyl octyl alcohol	S	S	x
D-D-Soil fumigant (1,3-Dichloro propylene and Propylene dichloride)	U	U .	- U
De-icing fluids (glycol based)	S	s	×
De-Monomer (Shell)	S	x	x
Detergent alkylate (Dodecyl benzene)	S	S	S
Dextrose solution	Х	S	S
Diacetone alcohol	S	S ·	x
Dialkyl benzene	Х	S	x
Dialkyl phthalate	S	S	x
Diallyl phthalate (DAP)	LS-4	S	x
Dibenzofuran (Diphenylene oxide)	S	Ŭ	x
1,2-Dibromo-3-dichloropropane	LS-4	x	x
Dibutylamine	U	U	Û
Dibutyl carbitol (Diethtylene glycol dibutyl ether)	S	S	x

•--

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Dibutyl Cellosolve (Ethylene glycol dibutyl ether)	S	LS-1	U
Dibutyl Maleate	LS-4	x	x
Dibutyl phthalate (DBP)	S	S	x
Dibutyl sebacate (DBS)	LS-4	S	Х
Dicaprocate (Triethylene glycol)	S	S	×
Dichloroaniline	U	×	x
Dichlorobenzene (all isomers)	LS-4	U	U
Dichlorodifluoromethane	LS-4	X	Х
Dichloroethane (Ethylene dichloride) (no heat)	LS-4	LS-1,4, 14	U
Dichloroethylene	LS-4	U	U
Dichloroethyl ether	LS-4	U	U
Dichlorohexane	LS-4	U	U
Dichloromethane (Methylene chloride)	LS-4	U	U
Dichlorophenol	LS-4	X	U
Dichloropropane	LS-4	U	U
Dichloropropene	LS-4	S	U
Dichloropentane	LS-4	S	U
Dichloropropionic acid	U	X	Ŭ
Dicyclohexylamine	U	Ŭ	Ŭ
Dicylopentadiene	S	S	S
Diesel fuel	S	S	S
Diesel oil	S ·	S	S
Diethanolamine (DEA)	U	S	X
Diethylamine (no heat)	U	U	U
Diethylaminoethanol (no heat)	×	LS-1, (X60)	U
2,6-Diethylaniline	x	x	x
Diethylbenzene	S	S	X
Diethyl carbonate	LS-4	S	Х
Diethylethanolamine (no heat)	Ū	LS-1, (X60)	U
Diethyl ether	S	U	U
Diethyl phthalate	s	S	x
Diethyl sulfate	x	x	х
Diethylene alcohol	S	S	X
Diethylene chloride	LS-4	U	U
Diethydichloroformal	×	×	U
Diethylene ether (Dioxane)	S	S	S
Diethylene glycol (Dihydroxydiethyl ether)	S	S	x
Diethylene glycol butyl ether acetate	LS-4	LS-1,4	U
Diethylene glycol dibutyl ether	S	S	х
Diethylene giycol diethyl ether	S	S	x

Page 10 of 40

April, 1993

i

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Diethylene glycol ethyl ether acetate	LS-4	LS-1,4	U
Diethylene glycol methyl ether	S	S	X
Diethylene glycol methyl ether acetate	LS-4	LS-1,4	U
Diethylene glycol monobutyl ether	S	S	X
Diethylene glycol phenol ether	S	x	X
Diethylene glycol phenyl ether	S	S	x
Diethylene glycol phthalate	х	S	X
Diethylenetriamine	X	U	U
Di(2-ethylhexyl)adipate	X	S	X
Di(2-ethylhexyl)phosphoric acid	U ···	U	U
Di(2-ethylhexyl)phthalate	S	S	х
Diglycidyl ether of bisphenol A	Х	S	х
Diglycidyl ether of bisphenol F	X	S	X
Di-hard-tallow-methylamine	X	S	X
Di-n-hexyl adipate	LS-4	S	x
Diisobutylene	S	S	S
Diisobutyl ketone (DIBK)	S	S	U
Diisobutyl phthalate	S	S	X
Diisodecyl phthalate	S	S	x
Diisononyl adipate	LS-4	S	X
Diisooctyl adipate	LS-4	S	x
Diisooctyl phthalate (DIOP)	S	S	x
Diisopropanolamine	X	X	x
Diisopropylamine	X	U	X
Diisopropylbenzene	S	S	X
Diisopropylether	S	x	x
Diisopropyl naphthalene	- S	S	×
Dimethanolamine	X	U	U
Dimethyl adipate	×	S	_ X
Dimethylamine (DMA)	U	U	U
Dimethylamine, 40% aqueous solution	U	U	U
Dimethylaminoethanol	U	U	U
Dimethylcarbinol (Isopropyl alcohol)	S	S	X
n,n-Dimethyl cyclohexyl amine	U	×	. ×
Dimethylethanolamine	U	U	.Ω
Dimethyl formamide	LS-1, (X60)	U	U
Dimethylglutarate (no heat)	S	LS (X 60)	x
Dimethylketone (Acetone)	S	LS-1, 14, (X3	
Dimethyl naphthalene sulfonic acid sodium salt solution		LS-12	x
Dimethyl phthalate	S	S	X

adio avi i

Page 11 of 40

Exhibit E Page 20 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
2,2-Dimethyl-1,3-propanediol	x	x	x
Dimethyl sebacate	LS-4	S	X
Dimethyl succinate	LS-4	S	x
Dimethyl sulfoxide (DMSO)	S	x	x
Dimonene (Dipentene)	S	s	ŝ
Dinitrotoluene (DNT)	LS-4	S	x
Dinonyl phthalate (DNP)	S	S	x
Dioctyl adipate	LS-4	S	X
Dioctyl phthalate (DOP)	S	S	х
Diol 80 (lube oil)	S	S	S
Dioxane	S	S	×
Dioxitol (Diethylene glycol monoethyl ether)	S	S	x
Dipentene	S	S	S
Diphenyl ether	S	LS-1	U
Diphenylmethane 4,4-diisocyanate (MDI)	S	S	x
Diphenylmethane isocyanate	x	U	U
Diphenyl oxide (Diphenyl ether)	S	LS-1	U
Diphenylene oxide	S	U	x
Diphenylol propane-epichlorohydrin resins	х	S	S
Diphenyl oxide/diphenyl phenyl ether mixture	S	U	Ŭ
Di-n-propylamine	U	U	U
Dipropyl ketone (Heptanone)	S	S	U
Dipropylene glycol	S	S	x
Dipropylene glycol methyl ether	S	LS-1	U
Dipropylene glycol monomethyl ether	S	LS-1	U
Distearyl dimethyl ammonium chloride	x	s	x
Distilled water	S	S	S
Ditallow dimethyl ammonium chloride	X	S	х
Ditridecyl phthalate (DTDP)	S	S	х
Diundecyl phthalate	S	S	×
Divinyl acetate	LS-4,9	U	U
Dobanes	S	S	S
Dobanols (fatty alcohols)	S	S	X
Dodecane	S	S	S
Dodecanoic acid (Lauric acid)	U	S	U
Dodecanol (Lauryl alcohol)	S	s	×
Dodecene (Tetrapropylene)	S	S	x
Dodecyl alcohol	S	S	х
Dodecyl amine	U	X	х
Podecyl amine/tetradecyl amine mixture	×	x	x

Page 12 of 40

April, 1993

1

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Dodecylbenzene (Alkane)	S	S	S
Dodecyl methacrylate	LS-4,11	х	x
Dodecyl/pentadecyl methacrylate solution	LS-4,11	Х	х
Dodecylphenol	LS-7	S	х
Dow Corning FX16	S	S	X
Dowanol DB (Diethylene glycol butyl ether)	S	S	x
Dowanol DE (Diethylene glyclol ethyl ether)	S	S	x
Dowanol DESG (Modified Dowanol DE)	S	S	x
Dowanol DM (Diethylene glycol methyl ether)	S	S	x
Dowanol EB (Ethylene glycol n-butyl ether)	S	S	x
Dowanol EE (Ethylene glycol ethyl ether)	S	S	×
Dowanol EM (Ethylene glycol methyl ether)	S	S	х
Dowanol EP (Ethylene glycol phenyl ether)	S	S	х
Dowanol PM (Propylene glycol methyl ether)	S	S	x
Dowanol PMIX (PM + DPM + TPM)	S	S	×
Dowanol TPM (Tripropylene glycol methyl ether)	S	S	×
Dow 6X (Hexachlorodiphenyl oxide)	LS-4	S	· X
Dow Epoxy Resin 331 (DGE)	X	S	x
Drilling brine	X	S	S
Drilling mud	×	S	S
Emulsified vegetable oils	LS-3	S	S
Engine oil	S	S	S
Epichlorohydrin	LS-4	U	U
Ervol (Petrolatum)	S	S	S
Ethanol (technical)	S	S	U
Ethanolamine (MEA)	U	U	U
Ether -	S	U	U
Ethidene (Norbonene)	S	S	X
Ethoxol (Ethylene glycol monoethyl ether)	<u> </u>	S	x
Ethoxyethanol (Cellosolve)	S	S	×
Ethoxyethyl acetate (Cellosolve acetate)	LS-4	LS-1,4	U
beta-Ethoxyethylmethacrylate monomer	LS-4	S	x
Ethoxylated fatty alcohols (Shell)	LS-3	S	x
Ethyl acetate (no heat)	LS-4	LS-1,4	U
Ethylacetic acid (Butyric acid)	U	U	U
Ethyl acetoacetate	LS-4	LS-1,4	U
Ethyl alcohol (denatured)	S	S	U
Ethylamine 70%	U	U	U
Ethyl amino toluol	X	U	U
Ethyl amyl ketone (EAK)	S	S	U

.

Exhibit E Page 22 of 49 Page 13 of 40

.

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Ethylbenzene	S	S	S
2-Ethylbutanol	S	S	х
Ethyl-n-butylamine	U	х	х
Ethyl butyrate	х	S	X
Ethyl Cellosolve	S	S	x
Ethyl chloride	LS-4	x	x
Ethylcyclohexane	S	S.	S
Ethyl cyclohexanone	S	U	U
Ethyl cyclohexylamine	U	х	X
Ethylene (Ethene)	S	S	S
Ethylene carbonate	x	x	×
Ethylene chloride (Ethylene dichloride) (no heat)	LS-4	LS-1,4, 14	U
Ethylene chlorohydrin	LS-4	U	U
Ethylene cyanohydrin	X	X	X
Ethylenediamine	U	U	x
Ethylenediaminetetraacetic acid 10% (EDTA)	U	S	U
Ethylenediaminetetraacetic acid, tetrasodium salt solution	n X	X	X
Ethylene dibromide	LS-4	U	U
Ethylene dichloride (no heat)	LS-4	LS-1,4, 14	U
Ethylene glycol (Ethylene alcohol)	S	S	x
Ethylene glycol (fiber grade)	S	S	x
Ethylene glycoł acetate	LS-4	LS-1,4	U
Ethylene glycol butyl ether acetate	LS-4	LS-1,4	U
Ethylene glycol diacetate (Glycol diacetate)	LS-4	LS-1,4	U
Ethylene glycol dibutyl ether	S	LS-1	U
Ethylene glycol isopropyl ether	S	LS-1	U
Ethylene glycol methyl butyl ether	S	LS-1	U
Ethylene glycol methyl ether	S	S	X
Ethylene glycol monobutyl ether (2-Butoxyethanol)	S	S	X
Ethylene glycol monobutyl ether acetate	LS-4	LS-1,4	U
Ethylene glycol monoethyl ether (2-Ethoxyethanol)	S	S	x
Ethylene glycol monoethyl ether acetate	LS-4	LS-1,4	U
Ethylene glycol monomethyl ether (2-Methoxyethanol)	S	S	Х
Ethylene glycol monomethyl ether acetate	LS-4	LS-1,4	U
Ethylene glycol monophenyl ether	S	S	x
Ethylene glycol phenyl ether	S	s	x
Ethyleneimine	x	х	х
Ethylene oxide (Epoxyethane)	U	U	U
Ethylene polyglycol	S	S	х
Ethyl ether	S	S	x

Page 14 of 40

April, 1993

(

4_

(

Exhibit E Page 23 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Ethyl-3-ethoxypropionate	S	S	x
Ethylhexanoic acid	U	X	x
Ethylhexanol	S	S	X
2-Ethylhexanol	S	S	x
Ethyl hexoic acid (2-Ethyl hexoic acid)	U	×	x
2-Ethylhexyl acetate	LS-4	LS-1,4	U
2-Ethylhexyl acrylate	X	X	X
2-Ethylhexyl alcohol	S	S	X
2-Ethylhexylamine	U	U	U
2-Ethylhexyl 2-mercapto acetate	x	x	X
Ethylidene chloride (1,1-Dichloroethane)	x	×	x
Ethyl lactate	LS-4	LS (X 30)	x
Ethyl methacrylate monomer	X	U	U
Ethyl ortho silicate	S	S	x
Ethyl PCT	x	×	x
Ethyl phthalate	S	S	×
o-Ethylphenol	х	U	U
Ethyl propionate	S	S	x
2-Ethyl-3-propylacrolein	x	x	×
Ethyl silicate, condensed	S	S	x
Ethyltoluene	S	S	S
Extender/process oils	S	S	S
Fatty acids, refined (animal and vegetable derived)	LS-3	LS-15	U
Fatty alcohol, natural	LS-3	S	X
Fatty alcohols, synthetic	LS-3	S	x
Ferric chloride 20%	U	LS-8	x
Ferric sulfate (up to 20%)	U	S	×
Fertilizer solutions	U	S	X
Fire fighting foams: Aer-O-Lite 3 (Chubb National)	x	S	x
Aer-O-Lite 3 Cold Foam (Chubb National)	×	S	x
Aer-O-Water (Chubb National)	х	S	x
High Expansion (Chubb National)	x	S	x
Universal Gold (Chubb National)	X	S	x
Universal Plus (Chubb National)	×	S	X
Fish liver oil	×	S	S
Fish oil	LS-3	S	S
Fish oil solubles	LS-3	LS-15	x
Flexindra (process extender oil)	S	S	x
Flexol DIOP (Diisooctyl phthalate, 10-10 Diisodecyl phtha	alate) S	S	x

Exhibit E Page 24 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Flexol DOP (Di-2-ethylhexyl phthalate)	S	S	x
Flexol EOP (Epoxidized soybean oil)	LS-3	S	x
Flexol NHDP (Normal, hexyl, n-octyl, n-decyl phthalate)	S	S	x
Flexon process oil	S	S	х
Fluorosilicic acid (Fluosilicic acid)	U	U	U
Foots soapstock oil (sulfuric acid free)	U	S	S
Formaldehyde 100% (HCHO)	U	U	U
Formaldehyde solution 37%	U	U	U
Formaldehyde solution 38%-50% by weight	U	U	U
Formalin	U	U	U
Formamide	U	U	U
Formic acid 10%	U	U	U
Fuel, jet JP4, JP5	S	S	S
Fuet oil	S	S	S
Fuel oil #2	S	S	S
Fumaric adduct of rosin (water dispersion)	x	x	x
Furfural, corn, oat or rice extract (Ant oil)	LS-3,4	U	х
Furfuryl alcohol (Furyl carbinol) (no heat)	S	LS-1 (X30)	U
Fusel oil, acid free (Amyl alcohol)	S	S	х
Gas oil	S	S	S
Gasoline	S	ŚŚ	S
Gasoline (with tetraethyl lead)	S	S	S
Gas plant naphtha (Petroleum naphtha)	S	S	S
Gentrex (Lube oil)	S	S	S
Getty antifreeze	S	S	×
Glacial acetic acid	U	U	U
Gluconic acid 50%	U	S	U
Glucose	S	S	_S
Glucose Syrup	X	S	S
Glutaraldehyde solution	x	x	x
Glycerin, crude (Glycerine)	U	S	x
Glycerin, synthetic	S	S	x
Glycerol	LS-3	S	x
Glyceryl triacetate (Triacetin)	LS-4	S	x
Glycine, sodium salt solution	×	×	x
Glycol (Dihydric alcohol)	S	S	x
Glycol alkyl ethers	S	S	х
Glycol diacetate	LS-4	LS-1,4	U
Glycol monoethers	S	S	x
Glyoxal solution (40% or less)	U	LS-12	x

Page 16 of 40

April, 1993

(

_

Exhibit E Page 25 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Grain oil (Fusel oil)	S	S	S
Grapeseed oil	LS-3	S	S
Grapestone oil	LS-3	S	S
Gravex (lube oil)	S	S	S
Grease, animal	x	S	S
Grease, yellow	U	S	S
Gulf (Lube oils)	S	S	S
Gulf Base Stock 900	5	S	x
Hard fraction oil	LS-3	S	х
Hazelnut oil	LS-3	S	S
Heart cut distillate (Exxon solvent blend)	S	S	S
Heavy aromatic naphtha	S	S	S
Heptadecane	S	S	S
Heptadecane 3-heptanol	S	S	X
Heptane (all isomers)	S	S	S
Heptanoic acid	U	LS (X 30)	U
1-Heptanol (Enanthic alcohol)	S	S	Х
3-Heptanol	S	S	х
2-Heptanone (Methyl n-amyl ketone)	S	S	U
3-Heptanone (Ethyl butyl ketone)	S	S	U
1-Heptene (1-Heptylene)	S	S	S
Heptyl acetate	LS-4	LS-1,4	U
Heptyl alcohol (all isomers)	S	S	х
Hexachlorocyclopentadiene	х	X	U
Hexachloropentadiene	S	S	U
Hexachlorodiphenyl oxide	S	x	U
Hexadecane (Cetane)	S	-	<u>-</u> S
1-Hexadecanoi (Hexadecyl alcohol)	S	_ S	S
Hexadecanoic acid (Palmitic acid)	U	S	U
Hexadecenoic acid (Palmitoleic acid)	U	S	U
Hexahydroaniline (Cyclohexylamine)	U	U	U
Hexahydrobenzene (Cyclohexane)	S	S	S
Hexahydro cymol	S	S	х
Hexahydrophenol (Cyclohexanol)	S	S	х
Hexalin	S	S	X
Hexamethylene (Cyclohexane)	S	S	S
Hexamethylenediamine	U	U	U
Hexamethylenediamine solution	U	U	U
Hexamethylenediamine adipate (50% in water)	U	U	U
Hexamethylenimine	×	x	X

April, 1993

Page 17 of 40

.

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Hexamethylenetetramine (HMTA)	U	U	U
Hexanaphthene (Cyclohexane)	S	S	S
Hexane (all isomers)	S	S	S
Hexane triol	S	S	х
Hexanol (all isomers)	S	S	X
Hexanoic acid (Caproic acid)	U	S	U
Hexene	S	S	S
Hexoic acid (Caproic acid)	U	S	U
Hexone (Methyl isobutyl ketone)	S	LS-1 (X60)	U
Hexyl acetate	LS-4	LS-1,4	U
Hexyl alcohol (iso, normal)	S	S	x
Hexylene glycol	S	S	x
Hexylic acid (Caproic acid)	U	S	U
Hydrazine 5%	LS (X 60)	S	x
Hydrazine 30%	LS (X 30)	x	x
·			
Hydrocarbons, aliphatic	S	S	S
Hydrocarbons, alpha	S	S	S
Hydrocarbons, aromatic	S	S	S
Hydrochloric acid 5%	U	U	U
Hydrochloric acid 10%	U	U	U
Hydrochloric acid 20%	U	U	U
Hydrochloric acid 37%	U	U	U
Hydro crackate (gasoline)	S	S	S
Hydrofluoric acid 10%	U	U	U
Hydrogen chloride gas, dry	U	U	U
Hydrogen fluoride	U	U	U
Hydrogen sulfide, saturated		- S	x
Hydroxyethyl acrylate	- X	x	x
Hydroxylamine, solution	U	S	x
Hydroxymethyl benzene (Cresol)	S	U	Û
	0	Ũ	Ũ
2-Hydroxy-4-(methylthio)butanoic acid	x	x	U
Illipe butter (Mowrah butter)	x	S	S
Inedible tallow (01986)	U	S	x
Intermediate detergent (fatty alcohol)	LS-3	s	x
Isoamyl acetate	LS-4	LS-1,4	Û
,			2
Isoamyl alcohol	S	S	x
Isoamylene	S	S	S
Isobutyl acetate	LS-4	LS-1,4	U
Isobutyl acrylate	x	LS-4	x
Isobutyl alcohol	S	S	x

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
lsobutyl aldehyde	U	U	U
isobutyl carbinol (Isoamyl alcohol)	S	S	х
Isobutyl formate	Х	LS-12	Х
Isobutyl isobutyrate	S	S	х
Isobutyric acid	U	U	U
Isodecane	S	S	S
Isodecanol	S	S	X
Isohexanol	S	S	X
Isononanoic acid	x	x	U
Isononyl alcohol	S	S	X
Isooctane	S	S	S
Isooctyl alcohol (Isooctanol)	S	S	X
Isopar E (Esso Iso paraffin)	S	S	S
Isopar G (Esso Iso paraffin)	S	S	S
Isopar H (Esso Iso paraffin)	S	S	S
lsopar K (Esso Iso paraffin)	S	S	S
Isopar L (Esso Iso paraffin)	S	S	S
lsopar M (Esso Iso paraffin)	S	S	S
Isopentane	S	S	S
Isophorone	S	U	U
Isophorone diamine	U	U	U
Isophorone diisocyanate	X	X	X
Isoprene	S	S	x
Isopropanolamine	U	U	X
Isopropyl acetate	LS-4	LS-1,4	U
Isopropyi alcohol	S	S	×
Isopropylamine 50%	0	U	U
Isopropylamine 100% (no heat)	U	U	U
Isopropyl benzene (Cumene)	S	S	_ X
Isopropyl cyclohexane	S	S	S
Isopropyl ether	s	S	X
Isopropyl oxitol	S	S	. X
Japan wax	LS-3	S	S
Jeffersol (Ethylene glycol monomethyl ether)	S	S	X
Jet fuel, JP4, JP5, JP6	S	S	· S
Jojoba oil	X	S	S
Kapoc oil	LS-3	S	S
Kasil (Potassium silicate)	U	s	X
Kaydol (mineral oil)	S	S	S
Kaydol (petrolatum)	S	S	S

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Kellin (Linseed oil)	LS-3	S	S
Kerex (Mineral spirits)	S	S	S
Kerosene	S	S	S
Ketohexamethylene (Cyclohexanone)	S	LS-1, 14 (X3	IO) U
Klearol (petrolatum)	S	S	S
KMC-113 Solvent (Diisopropyl naphthalene)	S	S	s
KMC Oil (Diisopropyl naphthalene)	S	S	S
Kodaflex (Hexanol isobutyrate)	S	S	х
Lactic Acid	U	LS-8	U
Laktane (normal paraffin solvent)	S	S	S
Lamp oil (Kerosene)	S	S	S
Lanolin	LS-3	S	S
Lard	LS-3	S	S
Lard oil	LS-3	S	S
Larex	LS-3	S	×
Lasso herbicide (no heat)	×	S	x
Latex rubber, natural (Ammonia stabilized)	U	S	х
Lauric acid (fatty acid)	U	LS-15	U
Lauric/myristic acid mixture	U	LS-15	U
auryl alcohol	LS-3	S	x
Law (Mineral spirits)	S	S	S
Lignosite (50% lignin liquor)	U	S	Х
Ligroin	S	S	х
Lime sturry	X	S	х
Limonene (Dipentene)	S	S	S
Linear alcohols (Tergitols)	S	S	x
Linear paraffin (Tridecane)	S	S	S
Linevol	S	S	x
Linoleic acid (fatty acid)	U	LS-15	U
Linolenic acid (fatty acid)	U	LS-15	U
Linseed oil	LS-3	S	S
Low aromatic white spirit (Mineral spirits)	S	S	S
Lube Oil	S	S	S
Lycopersicum esculentum oil (Tomato seed oil)	Х	S	S
Lye, potassium 50% (KOH, Potassium hydroxide)	U	S	S
Lye, sodium 50% (NaOH, Sodium hydroxide)	U	S	S
M-300 (lube additive)	S	S	S
M-400	S	S	S
MDI (Diphenyl methane 4,4 diisocyanate)	X	S	x
Magnesium chloride 35%	U	S	×

.

April, 1993

(

į

(

.

Cargoes to be carried:	Catha-Coat 305 Coating	Devchern 253 Lining	Devchem 255 Lining
Magnesium hydroxide	U	S	x
Magnesium sulfonate	X	S	x
Maize oil	LS-3	S	S
Maleic acid 10%	U	LS (X 30)	U
Maleic anhydride	x	S	x
Margaric acid (Heptadecanoic acid)	U	LS (X 30)	U
Meadow foam oil	X	S	х
Menhaden oil	LS-3	S	S
Mercaptans	U	LS (X 30)	х
Mercaptobenzothiazol sodium salt solution	x	x	x
Mesamoll (Phenol/cresol alkyl sulfonic esters)	S	x	x
Mesitylene	S	S	х
Mesityl oxide	U	S	x
Metam sodium solution	Х	S	х
Meta-toluene diisocyanate (TDI)	LS-9	LS-9	x
Methacrylate monomer	U	U	x
Methacrylic acid	U	U	U
Methacrylonitrile	LS-9	х	x
Methallyl alcohol	S	S	х
Methanol (1% maximum water content)	S	LS-1, 14	U
Methenamine (HMTA)	U	U	U
3-Methoxybutyl acetate	LS-4	LS-1,4	U
2-Methoxyethanol (Methyl Cellosolve)	S	S	х
Methoxypropylene glycol	S	S	х
Methyl acetate	LS-4	LS-1,4	U
Methyl acetoacetate	LS-4	LS-1,4	U
Beta-methyl acrolein (Crotonaldehyde)	U	U	U
Methyl acrylate, inhibited	LS-4	LS-4	х
Methyl acrylic acid	. U	U	U
Methyl alcohol (1% maximum water content)	S	LS-1, 14	U
Methylallyl alcohol	S	S	x
Methylallyl chloride	LS-4	S	x
Methylamine solutions	х	S	x
2-Methylamyl acetate	LS-4	LS-1,4	U
2-Methylamyl alcohol	S	S	x
Methylamyl ketone	S	LS-1	U
Methylbenzene (Toluol)	S	S	S
Methyl bromide	x	x	x
2-Methyl butanol	S	S	x
Methyl butenol	S	S	х

,**--**-

Exhibit E Page 30 of 49

argoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Methyl tertiary-butyl ether (MTBE)	S	S	S
Methyl butyl ketone	S	LS-1	U
Methyl butynol	S	S	х
Methylbutyraidehyde	U	U	х
Methyl butyrate	S	S	x
Methyl carbitol (Diethylene glycol monomethyl ether)	S	S	x
Methyl cellosolve (Ethylene glycol monomethyl ether)	S	S	х
Methyl cellosolve Acetate	LS-4	LS-1,4	U
(Ethylene glycol monomethyl ether acetate)			
Methyl chloride	x	x	X
Methylchloroform (1,1,1-Trichlorethane)	LS-4	S	U
Methylcyclohexane	S	S	S
Methylcyclopentadiene	S	X	S
Methyldiethanolamine (MDEA)	U	U	x
Methyl dioxitol (Diethylene glycol monomethyl ether)	S	S	x
Methyl ester CE810 (Cocoa methyl ester)	LS-3	S	x
Methylene chloride	LS-4	U	U
Methylene diisocyanate	Х	Х	х
Methylene dichloride	LS-4	U	U
Methyl-6-ethylaniline (Ethylamino toluol)	×	X	X
Methylethylcarbinol	S	S	x
Methyl ethyl ketone (MEK)	S	LS-1, (X 30)	U
2-Methyl-5-ethylpyridine	X	U	х
Methyl formate	U	U	X
Methyl glycol (Propylene glycol)	S	S	x
Methyl glycol acetate	LS-4	LS-1, 4	U
Methyl heptyl ketone	S	S	U
2-Methyl hexyl acrylate	S	S	x
2-Methyl-2-hydroxy-3-butene	LS-12	LS-12	х
2-Methyl-2-hydroxy-3-butyne	LS-12	LS-12	x
Methyl isoamyl ketone (MIAK)	S	LS-1, (X 60)	U
Methylisobutyl carbinol	S	S	x
Methyl isobutyl ketone (MIBK)	S	LS-1, (X 60)	U
Methyl laurate	S	S	X
Methyl methacrylate monomer	LS-4,9	x	X
Methył naphthalene (alpha/beta)	S	S	×
Methyl naphthalene fractions	S	S	x
Methyl oxitol (Methyl Cellosolve)	S	S	x
Methyl oxitol acetate	S	LS-1,4	U
Aethyl-1-pentene	S	S	S

Page 22 of 40

April, 1993

ł

(

Exhibit E Page 31 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
4-Methyl-1-pentene	S	S	S
Methyl phenol (Cresol)	LS-7	U	х
2-Methylpropionic acid	U	U	U
Methyl propyl glycol	S	S	х
2-Methylpyridine	U	U	x
n-Methyl-2-pyrrolidone	U	U	U
Methylpyrrolidone	U	U	U
Methyl salicylate	X	X	х
Methylstyrene, alpha (inhibited)	LS-9	LS-9	x
Methyl sulfoxide (DMSO)	S	×	x
Methyl tertiary butyl ether (MTBE)	S	S	S
Middle oil (Coal tar)	S	S	x
Mineral oil—white (petrolatum)	S	S	S
Mineral seal oil (lube oil)	S	S	S
Mineral spirits	S	S	S
Mineral spirit #3	S	S	s
Mineral spirit #4	S	S	S
Mineral spirit #10	S	S	S
Molasses	LS-5	S	S
Monobutylamine	U	U	U
Monochlorobenzene	LS-4	S	U
Monoethanolamine	U	U	U
Monoethylamine 70% in water	U	U	U
Monoethylene gylcol	S	S	x
Monoethylene glycol ether	S	S	×
Monoisopropanolamine	U	U	U
Monomethylamine	U	U	U
Mononitrobenzene	LS-4	S	×
Monopropylene glycol	S	S	x
Monsanto Resin Plasticizer HB40	S	S	x
Monsanto Santicizer 140	S	s	X
Monsanto Santicizer 148	S	S	X
Morpholine (Tetrahydro-1,4-oxazine)	X	X	X
Motor fuel antiknock compounds	X	X	S
Motor oils	S	S	S
MTBE	S	S	S
Murumuru fat	x	S	S
Myrcene	S	S	×
Myristic acid	U	S	U
Myristyl alcohol	S	S	x

Apri, 1993 Exhibit E Page 32 of 49

,

-

argoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Nalkylene (detergent alkylates)	S	S	x
Naphtha	S	S	S
Naphtha, crude condensate	S	S	S
Naphtha, gasplant	S	S	S
Naphtha, grade	S	S	S
		-	
Naphtha, heavy (Coal tar)	S	S	X
Naphtha, light	S	S	S
Naphtha, M50	S S	S	S
Naphtha, natural liquid	s S	S S	S
Naphtha, petroleum	5	5	S
Naphtha solvent (160° benzol)	S	S	S
Naphtha, unfinished	S	S	S
Naphtha, unfinished virgin	S	S	S
Naphtha, whole	S	S	S
Naphthalene 100%	S	S	S
Naphthalene oil (maximum heat 80°C)	x	x	x
Naphthenic acid (C6H11COOH)	U	S	U
Naphthenic oils (extended oils)	S	S	S
Naprex 50 (lube oil)	S	S	S
atrium (Sodium)	×	x	x
Natural liquid gas (Petroleum naphtha)	S	S	S
Natural rubber fatex	Ŭ	LS-9	x
Neatsfoot oil	LS-3	S	S
Necton 78	S	S	x
Neodecanoic acid	Ŭ	S	U
Neodol (fatty acid)	LS-3	LS-15	U
NeoLine	S	S	Χ
Neu-Tri (Dow Trichlorethylene)	LS-4	LS-4	. U
Niax Diol	S	S	X
Nitration grade toluene	x	S	S
Nitric acid 5%	U	U	U
Nitric acid 15%	U	U	U
Nitric acid 30%	U	U	U
Nitric acid 70% aqueous solution	U	U	U
Nitrobenzene	LS-4	S	x
o-Nitrochlorobenzene	LS-4	x	x
Nitroethane	LS-4	S	S
Nitrogen fertilizers	U	S	x
Nitromethane	LS-4	LS-1, (X-30)	U
*rophenol (ortho, meta, and para)	×	x	x

Page 24 of 40

April, 1993

ł

(

(

Exhibit E Page 33 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
1-Nitropropane	LS-4	S	S
2-Nitropropane	LS-4	S	S
Nitropropane 60%/nitroethane 40% mixture	LS-4	S	S
Nitrotoluene (ortho and para)	S	s	x
Nonane (all isomers)	S	s	ŝ
Nonanol	S	s	x
Nonene	S	S	S
n-Nonanoic acid (n-Nonic acid)	U	S	Ū
Nonyi alcohol	S	S	x
Nonylenes	S	S	x
n-Nonylic acid	U	S	U
Nonyl methacrylate monomer	LS-9	х	х
Nonyl phenol	LS-7	S	х
Nonyl phenol ethoxylate	S	S	х
Normal amyl acetate	LS-4	LS-1,4	U
Normal amyl alcohol	S	S	x
Normal hexanol	S	S	S
Normal paraffin	S	S	S
Normal propyl acetate	LS-4	LS-1,4	U
Normal propyl alcohol	S	S	x
Nutmeg butter	x	S	S
Octadecane	S	S	S
1-Octadecanol	U	S	х
Octadecene	S	S	S
Octane (iso and normal)	S	S	S
Octadecatrienoic acid (Linolenic acid)	U	S	U
Octadecenoamide solution	х	Х	x
Octanoic acid (Caprylic acid)	U	- S	U
Octanol	S	S	X
Octene	S	S	S
Octyl acetate	LS-4	LS-1,4	U
Octyl alcohol (iso and normal)	S	S	Х
Octyl aldehydes	x	X	X
Octylol	S	S	Х
Octyl chloride	LS-4	LS-8	×
n-octyl n-decyl adipate (NODA)	LS-4	S	x
Oiticica oil	LS-3	S	S
Olefins	S	S	S
alpha-Olefin mixture (C6-C18)	S	S	S
Olefin mixture (C5-C7)	S	S	S

April, 1993 Exhibit E Page 34 of 49

-

Cargoes to be carried:	Catha-Coat 305 Coating	Devchern 253 Lining	Devchem 255 Lining
Olefin mixture (C8-C12)	S	S	S
Oleic acid (fatty acid)	U	LS-15	U
Oleum (Fuming sulfuric acid)	U	U	U
Oleyl alcohol	S	S	х
Olive oil	U	LS-6	S
Orange oil (Dipentene)	S	S	S
Ortho cresol	S	U	U
Ortho dichlorobenzene (no heat)	LS-4	LS (X 60)	U
Ortho nitrochlorobenzene	LS-4	X	U
Ortho nitrotoluene	S	S	x
Oxalic acid, dry	U	S	U
Oxirane (Ethylene oxide)	X	U	U
Oxitol (Ethylene glycol monoethyl ether)	S	S	х
Oxo alcohol (Isooctyl alcohol)	S	S	х
Palatinol AH (Diethyl hexyl phthalate)	S	S	x
Palatinol BB (Butylbenzylphthalate)	S	S	x
Palatinol C (DibutyIphthalate)	S	S	X
Pale oil (lube oil)	LS-12	LS-12	S
Palmac 55-16	X	S	X
^o almac 98-12	×	S	x
Palmac 505	x	S	x
Palm acid oil	U	LS-15	X
Palm kernel fatty acid, split	Х	LS-15	U
Palm kernel oil (sulfuric acid free)	LS-3	S	S
Palm kernel residue	x	S	x
Palm nut oil	LS-3	S	S
Palm nut oil fatty acid	S ,	LS-1, 15	U
Palm nut oil fatty acid methyl ester	_ X	X	X
Palm oil, crude (sulfuric acid free)	LS-3	S	S
Palm oil fatty acid (C12-C18)	x	LS-15	U
Palm oil, processed (sulfuric acid free)	LS-3	s	s
Palm oil, refined (sulfuric acid free)	LS-3	S	S
Palm oil, sterin (sulfuric acid free)	LS-3	S	S
Palm oil fatty acid methyl ester	X	X	X
Palm oil methyl ester	x	LS-4	x
Palm olein, crude	LS-3	S	S
Palm olein, neutralized	LS-3	S	S
Palm residue	X	S	X
Palmitic acid	U	S	U
Paper mill green liquor	X	S	X

Page 26 of 40

April, 1993

l

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchern 253 Lining	Devchem 255 Lining
Paper mill heavy liquor	x	S	х
Paper mill white liquor	х	S	х
Paper mill white/green liquor	х	S	х
Paraldehyde	LS-4	U	U
Para chlorometacresol	S	U	U
Para cresol	×	U	U
Paraffin	S	S	S
Paraffin, chlorinated	LS-4	LS-4, 12	x
Paraffins	S	S	S
Paraffin sulfonates	S	S	х
Paraffin wax	S	S	S
Paraffinic oil, white (petrolatum)	S	S	S
Paraffinic sulfonate (petrolatum)	S	S	S
Peanut oil	LS-3	S	S
Peel oil (oranges and lemons)	LS-3	S	S
Pelargonic acid	U	S	U
Pentachlorethane	LS-4	S	U
1,3-Pentadiene	LS-9	х	х
Pentaerythritol 10%	S	S	х
Pentaethylene hexamine	U	U	U
Pentalin (Pentachloroethane)	S	S	U
Pentane (iso and normal)	S	S	S
Pentanoic acid	X	X	U
1-Pentene	S	S	S
Pentoxone	S	S	X
Perchloric acid	U	x	U
Perchlorethylene	LS-4	LS-4	U
Perilla oil	LS-3	S	S
Petrol	S	S _	S
Petrolatum	S	S	S
Petrolatum liquid (white mineral oil)	S	S	S
Petroleum, crude	LS-2	S	S
Petroleum, refined	S	S	S
Petroleum ethers	S	LS-11	S
Petroleum naphtha	S	S	۰s
Petroleum solvents	S	S	S
Petroleum solvents, aromatic	S	S	S
Petroleum sulfonate oils (lube additive)	S	S	x
Petroleum wax	S	S	S
Phenol 10%-99%	LS-7	U	U

Exhibit E Page 36 of 49 Page 27 of 40

.

.....

argoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Phenol 100% (Carbolic acid)	LS-7	U	U
Phenol, dodecyl	LS-7	S	x
Phenol, nonyl	LS-7	S	X
Phenolate lye	LS-7	S	Х
Phenolic oil (Cresylic acid)	U	U	U
Phenylamine (Aniline)	U	x	x
Phenylcarbinol (Benzyl alcohol)	S	S	x
Phenylethane (Ethyl benzene)	S	S	S
Phenylether (Diphenyl oxide)	S	U	X
Phenylethylene (Styrene monomer)	LS-9	LS-9	LS-9
Phenylformic acid (Benzoic acid	U	S	U
Phenylglycidyl ether	S	U	X
Phenyimethane (Toluoi)	S	S	S
Phenylmethanol (Benzyl alcohol)	S	S	X
Phenylmethyl acetate (Benzyl acetate)	U	S	×
1-Phenyi-1-xylyl ethane	S	S	×
Phosgene	LS-4	U	U
Phosphate ester	S	S	X
Phosphoric acid 10%	U	U	U
osphoric acid 20%	U	U	U
Phosphoric acid 30%	U	U	U
Phosphoric acid 85% aqueous solutions	U	U	U
Phosphorus trichloride	U	U	U
Phosphoryl chloride (Phosphorous oxychloride)	U	U	U
Phthalate plasticizers	LS-4	S	×
Phthalate 79 (Diisooctyl phthalate)	S	S	x
Phthalate 911 (DIOP)	S	S	X
Phthalic anhydride.	U	x	X
Pilchard oil	LS-3	S	S
Pinene (alpha, beta and mixed)	S	S	S
Pine oil	S	S	S
Pine tar	S	S	S
Piperylene (1,3-Pentadiene)	LS-9	X	X
Pluracol	S	S	X
Pluronic (Wyandotte polyol)	S	S	x
Polyalkyl (C18-C22) acrylate in xylene	x	x	x
Polyalkylene glycols/polyalkylene glycol monoalkyl ethers mixture	x	x	×
emers mixture Polyalkylene oxide polyol	x	x	x
lybutene	S	ŝ	x
y out on the second	-	~	~

Page 28 of 40

April, 1993

i

1

(

Exhibit E Page 37 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Polybutylene	S	S	x
Polybutylene 24, Chevron	S	S	Х
Polyether glycols	S	S	х
Polyethylene pellets (dry)	S	S	S
Polyethylene glycol	S	, S	- X
Polyethylene glycol monoalkyl ether	S	S	x
Polyethylene polyamines	X	х	X
Polyisobutylene (Polybutene)	S	S	S
Poly (20) oxyethylene sorbitan monooleate	x	X	x
Poly pluracol	S	S	×
Polypropylenebenzene	S	S	×
Polypropylene glycol	S	S	х
Poly Solv D	S	S	x
Poppy seed oil	LS-3	S	S
Potassium chloride (50%)	×	S	×
Potassium hydroxide 20%	U	S	S
Potassium hydroxide 50%	U	S	S
Potassium oleate	х	S	х
Potassium silicate	U	S	x
Potato oil (Fusel oil)	LS-3	S	S
Premium mogas 98	S	S	×
Priminox R-1M	x	S	x
Process-H oils (extender oils)	S	S	S
Process naphtha	S	S	S
Propane	S	S	S
Propane diol	S	S	x
Propanol **	S	S	x
n-Propanolamine	x	U	U
2-Propenal (Acrolein)	U	U	U
Propenenitrile (Acrylonitrile)	LS-4	U	U
Propiolactone (USAN, BPL)	U	U	U
Propionaldehyde	U	U	U
Propionic Acid	U	U	U
Propionic anhydride	X	U	U
Propionitrile	LS-4	x	X
Propyl acetate (iso and normal)	S	LS-1,4	U
n-Propyl alcohol	S	S	X
Propylamine (iso and normal)	U	U	×
Propylbenzene, (iso and normal)	S	S	×
Propylcarbinol (n-Butyl alcohol)	S	S	×

-

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Propylene	S	S	S
Propylene chloride	LS-4	S	Ŭ
Propylene dichloride	LS-4	S	U
Propylene dimer	S	S	S
Propylene glycol	S	S	x
Propylene glycol ethyl ether	S	LS-1	U
Propylene glycol monoalkyl ether	S	LS-1	U
Propylene glycol monomethyl ether	S	LS-1, (X 30)	U
Propylene glycol monomethyl ether acetate	LS-4	LS (X 30)	Х
Propylene glycol-poly	S	S	×
Propylene oxide	S	U	×
Propylene polymer	S	S	S
Propylene tetramer	S	S	S
Propylene trimer	S	S	S
Pseudo-cumene	S	S	x
Pumpkinseed oil	LS-3	S	S
Pyridine	U	U	U
Pyrolsis fuel (fuel oil)	S	S	S
Quakersol	S	S	х
Ouaternary ammonium chloride	x	LS (X 30)	X
Quenching oil	S	S	S
Raisin seed oil	LS-3	S	S
Rape oil (Rapeseed oil)	LS-3	S	S
Rapeseed oil, hydrogenated	X	S	S
Rectified spirit (Ethyl alcohol)	S	S	U
Red oil (Oleic acid)	U	S	U
Reproxal (Texaco Alfol 610 Phthalate)	S	S	х
Resin oil (Coumarone oil)	S	S	х
Resin concentrate (Esso)	S	S	х
Resin Plasticizer HB40	S	S	x
(Monsanto partially hydrogenated terphenyl)			
Resolube	S	S	x
Retardsol	S	S	х
Rexonic N7	Х	S	X
Rhoplex AC388	LS-9	S	x
Rice bran oil	LS-3	S	S
Ricinus oil (Castor oil)	LS-3	S	S
Rohm & Haas Emulsion E-1440	U	S	х
Rohm & Haas Solvent 2026	S	S	х
Posin	S	S	x

.

Page 30 of 40

April, 1993

(

!

(

Exhibit E Page 39 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Rosin soap	x	S	x
SA 119 (Exxon)	U	U	U
Safflower oil	LS-3	LS-6	S
Sal fat	х	S	S
Salad oil	LS-3	S	S
Sangajol	S	S	s
Santalol	S	S	S
Santicizer 140 (Monsanto Mixed cresyl diphenyl phospha		S	X
Santicizer 148 (Monsanto Iso decyl diphenyl phosphate)		S	Х
Santicizer 160 (Monsanto Butyl benzyl phthalate)	S	S	×
Santicizer 711 (Monsanto Di normal alkyl phthalate)	S	S	x
Santicizer 790 (Monsanto)	S	S	х
Santochlor (Monsanto p-Dichloro benzene)	LS-4	U	U
Sardine oit	LS -3	S	S
Savory oil	LS-3	S	S
Sea water (ballast)	LS-13	S	S
Sea water (hot Butterworthing)	LS-13	S	S
Secondary amyl acetate	LS-4	LS-1,4	U
Secondary amyl alcohol	S	S	х
Secondary butyl acetate	LS-4	LS-1,4	U
Secondary butyl alcohol	S	S	x
Sesame oil	S	S	S
Shark Oil	X	S	S
Shea Oil	X	S	S
Shell Brand A	S	S	x
Shell Cardura ester	S	S	x
Shell Cerex	S	S	х
Shell AC45C (lube additive)	S	S	S
Shell Kerex (mineral spirits)	S	S	S
Shellflex N (process extender oil)	LS-12	LS-12	LS-12
Shellflex 312 (process extender oil)	LS-12	LS-12	LS-12
Shell lube oils:			
Shell HVI-55	LS-12	LS-12	LS-12
Shell HVI-56	LS-12	LS-12	LS-12
Shell HVI-57	LS-12	LS-12	LS-12
Shell HVI-58	LS-12	LS-12	LS-12
Shell HVI-59	LS-12	LS-12	LS-12
Shell HVI-60	LS-12	LS-12	LS-12
Shell HVI-61	LS-12	LS-12	LS-12
Shell HVI-62	LS-12	LS-12	LS-12

Page 31 of 40

-

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Shell HVI-63	LS-12	LS-12	LS-12
Shell HVI-64	LS-12	LS-12	LS-12
Shell HVI-65	LS-12	LS-12	LS-12
Shell HVI-95	LS-12	LS-12	LS-12
Shell HVI-160	LS-12	LS-12	LS-12
Shell HVI-1605	LS-12	LS-12	LS-12
Shell HVI-1608	LS-12	LS-12	LS-12
Shell HVI-270-HVI-350	LS-12	LS-12	LS-12
Shell HVI-650	LS-12	LS-12	LS-12
Shell LVI-50	LS-12	LS-12	LS-12
Shell LVI-143	LS-12	LS-12	LS-12
Shell LVI-375—LVI-450	LS-12	LS-12	LS-12
Shell LVI-1100	LS-12	LS-12	LS-12
Shell MVI-N-40	LS-12	LS-12	LS-12
Shell MVI-N-41	LS-12	LS-12	LS-12
Shell MVI-N-42	LS-12	LS-12	LS-12
Shell MVI-N-43	LS-12	LS-12	LS-12
Shell MVI-N-44	LS-12	LS-12	LS-12
Shell MVI-N-45	LS-12	LS-12	LS-12
Shell MVI-N-65	LS-12	LS-12	LS-12
Sheli MVI-N-170	LS-12	LS-12	LS-12
Shell MVI-P-50	LS-12	LS-12	L\$-12
Shell MVI-P-1300	LS-12	LS-12	LS-12
Shell Diala B	LS-12	LS-12	LS-12
Shell Diala D	LA-12	LA-12	LS-12
Shell Limea Oil 968	LS-12	LS-12	LS-12
Shell S6412	LS-12	LS-12	LS-12
Aero Shell 100	LS-12	LS-12	LS-12
Aero Shell 120	LS-12	LS-12	LS-12
Aero Shell W80	LS-12	LS-12	LS-12
Aero Shell W100	LS-12	LS-12	LS-12
Shell Heavy Axle Oil 65809	LS-12	LS-12	LS-12
Shell Rotella 30	LS-12	LS-12	LS-12
Shell NSR 45	LS-12	LS-12	LS-12
Shell NSR-S-5789	LS-12	LS-12	LS-12
Shell NND-40	LS-12	LS-12	LS-12
Shell NND-225	LS-12	LS-12	LS-12
Shell NND-240	LS-12	LS-12	LS-12
Shell NND-260-LVI	LS-12	LS-12	LS-12
Sheil 100 ES Neutral	LS-12	LS-12	LS-12

Page 32 of 40

April, 1993

Exhibit E Page 41 of 49 (

, ·

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Shell 501 Spindle 69110	LS-12	LS-12	LS-12
Shell HW9B 69961	LS-12	LS-12	LS-12
Shell Cabismas Distillate	LS-12	LS-12	LS-12
Shell Dutrex 33 (aromatic process/extender oils)	LS-12	LS-12	LS-12
Shell Dutrex 55C	LS-12	LS-12	LS-12
Shell Dutrex 713	LS-12	LS-12	LS-12
Shell Dutrex 726	LS-12	LS-12	LS-12
Shell Dutrel 786	LS-12	LS-12	LS-12
Sheil HVI-N-40	LS-12	LS-12	LS_12
Shell HVI-100 Neutral	LS-12	LS-12	LS-12
Shell HVI-150-D Bright Stock	LS-12	LS-12	LS-12
Shell HVI-170	LS-12	LS-12	LS-12
Shell HVI-210C	LS-12	LS-12	LS-12
Shell HVI-250 Neutral	LS-12	LS 12	LS-12
Shell HVI-500 Neutral	LS-12	LS-12	LS-12
Shell HVI-575-C Neutral	LS-12	LS-12	LS-12
Shell LVI-100C Neutral	LS-12	LS-12	LS-12
Shell LVI-570	LS-12	LS-12	LS-12
Shell LVI-750	LS-12	LS-12	LS-12
Shell MVI-P	LS-12	LS-12	LS-12
Shell Nassa 89	LS-12	LS-12	LS-12
Shell NVI-76	LS-12	LS-12	LS-12
Shellsols:			
Shellsol 350	LS-12	LS-12	LS-12
Shellsot 360	S	S	S
Shellsol A (Minersl spirits)	S	S	s
Shellsol B (Mineral spirits)	S	S ~-	S
Shellsol E (Mineral spirits)	S	- S	S
Shellsol H (Mineral spirits)	S	S	S
Shellsol K (Mineral spirits)	S	S	S
Shellsol N (Mineral spirits)	S	s	s
Shellsol PD (Mineral spirits)	S	S	S
Shellsol PP (Mineral spirits)	S	S	S
Shellsol R (Mineral spirits)	S	S	S
Shellsol RA (Mineral spirits)	S	S	S
Shellsol T (Mineral spirits)	s	S	S
Shellsol TD-7 (Mineral spirits)	S	S	S
Shell Spray oil	LS-12	LS-12	LS-12
Shell Tergol 180L-BS	LS-12	LS-12	LS-12
Shell Transformer Oil	LS-12	LS-12	LS-12

Page 33 of 40

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Shell Veova 10	LS-12	LS-12	10.10
Shellflex (extender oils)	LS-12	LS-12	LS-12
Silica slurry	x	X	LS-12
Silicon tetrachloride (Silicon chloride)	LS-4	x	X
Sirlene (Dow Propylene glycol)	S	s	X X
Skellysolv	S	S	
Skydrol 500	S	S	X
Skydrol Y-91	LS-12	S	X
Slackwax (petrolatum)	S	S	×
Sodium acetate solution	x	x	S S
Sodium alkyinaphthalene sulfonate	LS-12	LS-12	
Sodium benzoate	X	S LS+12	X
Sodium alumina silicate slurry	x	X	X
Sodium bisulfide (50% or less)	x	ŝ	x
Sodium bisulfite (50% or less)	Û	S	×
Sodium borohydrate solution (also Sodium borohydride)	x	×	
Sodium borohydride (15% or less)/sodium hydroxide soluti	ion X	X	X
Sodium carbonate (saturated)	U	LS-12	X
Sodium chlorate R-2 solution	x	S	X
Sodium chloride 10% in water	ŝ	S S	X S
Sodium chloride (saturated)	<u> </u>		
Sodium dichromate	S	S	S
Sodium formate 10%	U	U	U
Sodium hydrogen sulfide (50% or less)	U	S	x
Sodium hydrogen sulfide (6% or less), sodium	U	S	x
carbonate (3% or less) solution	U	S	x
Sodium hydrogen sulfite solution			
Sodium hydrosulfide (50% or less)	U	X	X
Sodium hydrosulfide (32%), sodium sulfide (2%) solution	x	S	X
Sodium hydroxide 10% - 20%	U	S	X
	U	S	S
Sodium hydroxide 50%	U	S	S
Sodium hypochlorite (15% or less)	Ŭ	LS-1, (X60)	U
Sodium nitrite solution	x	S	x
Sodium pentachlorophenate	LS-4	LS (X 30)	x
Sodium perborate	U	U	Û
Sodium silicate	U	c	v
Sodium sulfate (50% or less)	U	S	X
Sodium sulfhydrate (50% or less)	x	S	X
Sodium sulfide solution (50% or less)	Û	S S	X
Sodium sulfide spent caustic	Ŭ	S	×

Page 34 of 40

April, 1993

١

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Sodium sulfite (50% or less)	х	S	x
Sodium tetraborate	X	S	x
Sodium thiocyanate (56% or less)	Х	S	x
Softanois (fatty alcohol)	S	S	x
Solinox (treated soybean oil)	LS-3	S	S
Solvenot	S	s	x
Solvent naphtha	S	S	S
Solvesso (Mineral spirits)	S	S	S
Solvesso 100 (Mineral spirits)	S	S	S
Solvesso 150 (Mineral spirits)	S	S	S
Sorbitol	S	S	S
Sorbitol 70% solution	S	S	S
Sour crude oil	LS-2	S	Х
Soybean oil (crude degummed)	LS-3	S	S
Special palm oil, bleachable	LS-3	S	S
Spent caustic (no heat)	U	S	x
SPB (Palm oil)	LS-3	S	S
Sperm oil	LS-3	S	S
Sperm oil pressings	LS-3	S	S
Sperm oil residue	LS-3	S	S
Spike oil	LS-3	S	S
Spindle oil (lube oil)	LS-3	S	S
Spirits (aromatic)	S	S	S
Stearic acid (fatty acid)	U	LS-15	U
Stearin (dry, 80°C)	LS-3	S	×
Stearyl alcohol	s	S	x
Stoddard solvent	S	S	Х
Styrene, inhibited	LS-9	LS-9	LS-9
Styrene butadiene	U	U	U
Styrene monomer	LS-9	LS-9	LS-9
Styrene monomer, inhibited	LS-9	LS-9	LS-9
Sulfonate oils (lube additive)	S	S	S
Sulfonic acid 86%-90% (Exxon)	U	U	U
Sulfonic alkylate (Exxon SA119)	U	U	x
Sulfonyl chloride	U	U	• U
Sulfur (liquid or molten)	U	S	x
Sulfur dioxide	U	U	U
Sulfur trioxide	U	U	U
Sulfuric acid 10%	U	U	U
Sulfuric acid 30%	U	U	U

--

Page 35 of 40

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Sulfuric acid 65%	U	U	
Sulfuric acid 98%	Ŭ	Ŭ	U
Sulfurous acid	Ŭ	Ŭ	U
Sulfuryl chloride	Ŭ	Ŭ	U
Sulfur crude	Ŭ	s	U X
Sulfur solvent	x	LS-1,8 (X30)	U
Sundex 8125 (extender oil)	S	S	x
Sunflower oil	LS-3	LS-6	s
Supersol (Mineral spirits)	S	S	S
Surchem 306 (Sulfonate oil)	S	S	X
Sweet oil (Olive oil)	LS-3	<u>c</u>	_
Synthenol (Refined castor oil)	LS-3	S	S
Tall oil (crude and refined)	U	S	S
Tall oil fatty acid (Rosin acids less than 5%)	U	LS-15	U
Tall oil soap solution	U	LS-15	U
	0	LS-15	U
Tallow	U	S	x
Tallow acid (crude and refined)	U	LS-15	Ű
Tallow acid (acidulated oil)	U	LS-15	Ŭ
Tallow alcohoi	S	S	x
Tallow fatty acid	U	LS-15	Û
Tap water	S	S	c.
Tartaric acid 10%	Ŭ	S	S
Tar acid	Ŭ	U	U
Tar oil (Creosote coal tar)	S	U	U
Teaseed oil	x	S	U S
Tergitols (Union Carbide linear detergent alcohol):			
Tergitol 15-S-3	S	C	
Tergitol 15-S-7	s	S	X
Tergitol 15-S-9		S S	X
Tergitol 15-S-12	S S	S	X X
Tergitol 45-S-3	S	S	v
Terpenes	S	5 S	x
Terpentine (Turpentine)	S	5 S	S
Terpineol	s	S	S
Tertiary amyl alcohol	s	5 S	X X
Tertiary butyl alcohol	S	c	
Tetrachloroethane	S LS-4	S	×
Tetrachloroethylene	LS-4 LS-4	S	U
Tetrachloro pentamine	L3-4 U	S	U
Tetradecanol	x	U S	U X

Page 36 of 40

April, 1993

ł

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining	
Tetradecylamine	U	x	x	
Tetradecylbenzene	S	S	x	
Tetraethylenepentamine	U	U	Û	
Tetraethyl lead	U	S	x	
1,2,3,4-Tetrahydrobenzene (Cyclohexene)	S	S	S	
Tetrahydrofuran	s	U	U	
Tetrahydrofurfuryl alcohol	S	U	U	
Tetrahydronaphthalene	S	S	x	
Tetraline	S	S	х	
1,2,3,5-Tetramethylbenzene	S	S	x	
Tetramethylene sulfone	S	υ	U	
Tetramethyl lead	Х	х	х	
Tetra propylene	S	S	х	
Tiglium oil (Croton oil)	LS-3	S	S	
Toluene diamine	U	x	х	
Toluene diisocyanate (TDI)	LS-9	LS-9	x	
Toluene, industrial	S	S	S	
Toluene, nitration grade	x	S	S	
p-Toluenesulfonic acid	U	U	U	
o-Toluidine	x	x	x	
Toluol (Toluene)	S	S	S	
Transformer oil (insulating oil)	LS-12	LS-12	S	
Transmission oil (lube oil)	S	S	S	
Triacetin	S	S	х	
1,1,2-Trichloro-1,2,2-trifluoroethane	LS-4	LS-4	x	
Trialkyl phosphate	S	S	x	
Tribasic sodium phosphate (TSP)	LS-4	S	х	
Tributylethylhexyl phosphate	S	S	х	
Tributyl phosphate	S	S	х	
Trichlorobenzene	LS-4	x	U	
1,1,1-Trichloroethane	L S-4	LS-1,4	U	
1,1,2-Trichloroethane	LS-4	LS-1,4	U	
Trichlorethylene	LS-4	LS-1,4	U	
Trichloropropane (all isomers)	LS-4	LS-1,4	U	
Tricresyl phosphate	LS-4	S	x	
Tridecane	S	S	S	
Tridecanol	S	S	x	
Tridecene	х	S	S	
Tridecyl alcohol	S	S	Х	
Tridecyl benzene	S	S	S	

April, 1993

-

Page 37 of 40

Exhibit E Page 46 of 49

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining	
Triethane (Trichloroethane)	S	LS-1, 4	U	
Triethanolamine	U	S	x	
Triethylene glycol	S	S	x	
Triethylene glycol ethyl ether	S	LS-1	Ŭ	
Triethylene glycol di-2-ethylbutyrate	S	S	x	
Triethylene glycol methyl ether	S	LS-1	U	
Triethylene tetramine (TETA), no heat	U	U	Ŭ	
Triethyl amine	U	U	Ŭ	
Triethyl benzene	S	S	s	
Triethyl phosphate	LS-4	S	×	
Triisobutylene	S	S	ĉ	
Triisopropanolamine	x	x	S	
Trimethylacetic acid	U	Ŭ	X U	
Trimethylamine	U	U	U	
Trimethyl benzene	S	S	s	
Trimethyl cyclohexanol	S	S	x	
Trimethylhexamine diamine	U	x	x	
Trimethyloi propane polyethoxylate	S	S	x	
2,2,4-Trimethyl-1,3-pentanediol-1-isobutyrate	S	S	x	
Trimethyl phosphite	x	×	x	
Trimethyl propane glycol	S	S	x	
Trimethylene glycol	S	S	ŝ	
Tripropylene	S	S	X	
Tripropylene glycol	S	S	x	
Tripropylene glycol monomethyl ether	S	LS-1	Û	
Triptane	S	S	S	
Trisodium phosphate	LS-4	S	X	
Tritolyl phosphate	LS-4	S	x	
Triton GR7	х	S	S	
Triton X100	S	S	x	
Trixylenyl phosphate (Trixylyl phosphate)	S	S	x	
Troluoil	S	S	x	
TSP (Trisodium phosphate)	LS-4	s	x	
Tucum oil	LS-3	S	S	
Tung oil	LS-3	S	S	
Turkey red oil	LS-3	S	S	
Turpentine, oil and gum	S	s	S	
U-Cane alkylate II (Dodecyl benzene)	S	S	S	
Undecane	S	S	3 S	
Undecanoic acid	x	S	U	

Page 38 of 40

April, 1993

ı

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Undecanol (all isomers)	S	S	х
Undecanone	S	S	x
1-Undecene	S	S	x
Undecyl alcohol	S	S	x
Undecyl benzene	S	S	s
Unfinished kerosene (Kerosene)	S	S	S
Uran 32 (fertilizer)	U	S	×
Urea (saturated)	U	S	x
Urea, ammonium nitrate solutions	U	S	x
Urea ammonium phosphate solution	U	S	x
Urea water	U	S	x
U.S. White oil	S	S	S
VM&P Naphtha	S	S	S
Valeraldehyde	U	U	Ŭ
Valeric aldehyde	U	U	U
Varsol (Mineral spirits)	S	S	S
Vaseline	LS-3	S	S
Vegetable oils	LS-3	S	S
Vegetable protein solution (hydrolyzed)	. X	x	x
Versene (Dow)	X	x	x
Versenex	x	x	x
Versenol	х	x	x
Vestal LPH	S	U	Ũ
Vidden-D (Dichloropropane and dichloropropene)	LS-4	U	Ű
Vinegar	U	Ŭ	U
Viny! (pellets, dry)	S	S	S
Vinyl acetate	х	x	x
Vinyl acetate monomer (no heat)	LS-4, 9	LS-1,9, 14, (X3)	
Vinyl acetate monomer (Borden 400PPM20) (no heat)	LS-9	LS-1,9, 14, (X30	
Vinyl chloride	LS-4, 9	U	U
Vinyl ethyl ether	LS-4	U	U
Vinylidene chloride	LS-4, 9	U	Ū
Vinylmethyl ether liquid	LS-4	U	Ŭ
Vinyl neodecanoate (VNDC, Veova)	LS-4, 9	S	×
Vinyl propionate	U	Ŭ	. U
Vinyl trichloride (Trichloroethane)	S	LS-1, 4	U
Vinyl toluene	LS-9	LS-9	x
Virgillio 50 (Union Carbide)	S	S	x
Vitriol (Sulfuric acid)	Ŭ	Ŭ	Û
Voranoł (Polyols)	S	S	x

April, 1993

Sheep b ...

Page 39 of 40

~

Exhibit E Page 48 of 49

argoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Walnut oil	LS-3	S	0
Water, ballast	S	S	S
Water, deionized	S	S	S
Water, distilled	S	S	S
Water, sea	LS-13	3 S	S
Water, sea (hot Butterworthing)	LS-13	S	S
Wax, petroleum (maximum temperature 80°C)	S	S	
Wax, paraffin (maximum temperature 80°C)	S	S	S
Well pack fluid (Calcium bromide)	U	S	S
Wetting agent, nonionic	S	S	x x
Whale oil			~
	LS-3	S	S
White mineral oil (Petrol, liquid) White oil	S	S	S
	S	S	S
White spirits (Mineral spirits)	S	S	S
White spirit 100 (Mineral spirits)	S	S	S
White spirit 150 (Mineral spirits)	S	S	6
White spirit 160/180	S	S .	S
Wood oil	S	S	S
Wool fat	LS-3	S	S
pil (petrolatum, liquid)	· S	S	S S
Xylene (meta, ortho and para)	_		-
Xylenol	S	S	S
Yarmor oils	LS-11	х	Х
Yellow grease	LS-3	S	S
Zinc Bromide 9% (No heat)	U	S	S
	X	S	x
Zinc Calcium Bromide (50%)	х	S	x
Zolex	S	S	v
Zymol	LS-3	S	_ X
	20 0	0	- ^

Page 40 of 40

April, 1993

ŧ

.

(

ATTACHMENT D-2-4-7 APPENDIX D-2-4 SECTION D-2

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNITS 1700A, B, & C

Revision No. 5.0

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNITS 1700A, B, & C TANKS T-A AND T-1701 THROUGH T-1704

TABLE OF CONTENTS

I. Introduction	1
II. Tank Design	2
III. Tank Foundation Design	2
IV. Ancillary Equipment Design	2
V. Secondary Containment System Design	3
VI. Tank Venting Requirements	3
 VII. Hazardous Characteristics of the Waste Managed VII.A. Tank T-A VII.B. Tank T-1701 through T-1704 	4
VIII. Certification of Tank System Design Assessment	6

LIST OF EXHIBITS

- Exhibit A Tank Data Sheets
- Exhibit B Tank Design Calculations
- Exhibit C Tank Foundation Design Calculations
- Exhibit D Calculations of Tank Venting Requirements
- Exhibit E Tank Material of Construction Compatibility Information

LIST OF REFERENCED DRAWINGS

1700-010-001	Leachate Tank Storage Unit 1700B & C (T-1701 Thru T-1704) - P&ID
1700-010-003	Leachate Tank Storage Unit 1700A (Tank T-A) - P&ID
1700-020-001	Underground Pipe Chase Unit 1700A, B, & C – Site Plan
1700-020-002	Leachate Tank T-A, Unit 1700A - Plan & Sections
1700-020-003	Leachate Tanks T-1701 & T-1702 Unit 1700B - Plan, Sections, & Details
1700-020-004	Leachate Tanks T-1703 & T-1704 Unit 1700C - Plan, Sections, & Details
1700-040-001	Leachate Tank T-A, Unit 1700A - Details
1700-080-001	Tank Data Sheet - T-1701
1700-080-001A	Tank Data Sheet - T-A
1700-080-002	Tank Data Sheet - T-1702
1700-080-003	Tank Data Sheet - T-1703 through T-1704

TANK SYSTEM DESIGN ASSESSMENT AND CERTIFICATION TANK MANAGEMENT UNITS 1700A, B, & C TANKS T-A AND T-1701 THROUGH T-1704

I. Introduction

This document provides the assessment and certification for the design of the hazardous waste storage tank system(s) at Tank Management Units 1700A, B, & C at the Chemical Waste Management, Inc. Facility in Emelle, Sumter County, Alabama. The assessment was performed to address the applicable requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), regarding the design of the system within
Tank Management Units 1700A, B, & C which is comprised of the tanks (i.e., Tanks T-A and T-1701 through T-1704), the tank foundation, the associated ancillary equipment and the secondary containment system.

The general layout of and location of the underground pipe chase and the components of Units
1700A, B, & C are shown on Drawing No. 0100-020-001 and on Drawing No. 1700-020-001 in
Appendix D-1 to Section D of the RCRA Part B Permit Application. Units 1700A, B, & C tank systems and the Underground Pipe Chase are constructed in phases as required to support the management of leachate generated from new landfill trenches and other wastewaters generated on-site. The primary function of the tank systems within Unit 1700 is to accumulate and store
leachate and berm surface waters resulting from the disposal in landfill trenches 19, 21, and 22.

The following drawings were used in the preparation of this Assessment and Certification and are provided either in Exhibit A (Tank Data Sheets) or in Appendix D-1 to Section D of the RCRA Part B Permit Application:

20		
	Drawing No.	Drawing Title
	1700-010-001	Leachate Tank Storage Units 1700B & C (T-1701 thru T-1704) - P&ID
	1700-010-003	Leachate Tank Storage Unit 1700A (Tank T-A) - P&ID
	1700-020-001	Underground Pipe Chase Unit 1700A, B, & C Site Plan
30	1700-020-002	Leachate Tank T-A, Unit 1700A - Plan & Sections
	1700-020-003	Leachate Tanks T-1701 & T-1702, Unit 1700B - Plan, Sections, & Details
	1700-020-004	Leachate Tanks T-1703 & T-1704, Unit 1700C - Plan, Sections, & Details
	1700-040-001	Leachate Tank T-A, Unit 1700A – Details
	1700-080-001	Tank Data Sheet - T-1701
35	1700-080-001A	Tank Data Sheet - T-A
	1700-080-002	Tank Data Sheet - T-1702
	1700-080-003	Tank Data Sheet - T-1703 through T-1704
	AttachD-2-4-7Text.	docx Attachment D-2-4-7 Revision 5.0

II. Tank Design

Tanks T-A and T-1701 through T-1704 have been designed in accordance with the design codes and standards indicated within the DESIGN DATA section of the Tank Data Sheets (i.e., Drawing Nos. 1700-080-001, -001A, -002 and -003) provided in Exhibit A to this tank system design assessment. The criteria utilized in the assessment of the design of the shell, structural support, and anchorage for Tanks T-A and T-1701 through T-1704 are also provided within the DESIGN DATA section of the Tank Data Sheets, as well as within the tank design calculations provided in Exhibit B to this tank system design assessment.

The calculations provided in Exhibit B to this tank system design assessment demonstrate that 10 the tank shell, structural supports and anchorages are, as designed, adequate to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as applicable, at the design conditions indicated on the tank data sheets. 15

III. Tank Foundation Design

The designs of the reinforced concrete foundations for Tanks T-A and T-1701 through T-1704 are indicated in Detail 3 on Drawing No. 1700-040-001 and Detail 7 on Drawing Nos. 1700-020-003 through -004 which are provided in Appendix D-1 to Section D of the RCRA Part B Permit Application. The criteria utilized in the assessment of the design of the foundation for Tanks T-A and T-1701 through T-1704 are provided within the tank foundation design calculations provided in Exhibit C to this tank system design assessment.

25

20

5

The tank foundation design calculations provided in Exhibit C demonstrate that the tank foundation is, as designed, adequate to support the load of the full tanks and to withstand associated environmental stresses at the design conditions indicated on the tanks data sheets and provided within foundation design calculations.

IV. Ancillary Equipment Design

30

All tank system ancillary piping systems shall be designed, installed and tested in accordance with the American Society of Mechanical Engineers (ASME) Standard B31.3, "Chemical Plant and Petroleum Refinery Piping", or an equivalent nationally recognized standard, and in accordance with recognized good engineering practices to ensure that they are supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

All other ancillary equipment for the tank system shall be designed, installed and tested in accordance with appropriate recognized standards, if any, and in accordance with recognized good engineering practices to ensure that it is supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

5

In order for this tank design assessment and associated certification to be maintained, and prior to the tank system being placed in use, the Facility shall ensure that the tank system ancillary equipment is properly installed and that all required inspections, tests and repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f). Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were

15

30

10

properly designed, installed and tested.

V. Secondary Containment System Design

The design features of the secondary containment system for the tank systems within Units 1700A, B, & C are indicated on Drawing Nos. 1700-020-002 through -004 and 1700-040-001 which are located in Appendix D-1 to Section D of the RCRA Part B Permit Application. As shown on these drawings and in accordance with the applicable requirements of 40 CFR 264.193 and ADEM Administrative Code Rule 335-14-5-.10(4), the secondary containment system design is comprised of a reinforced concrete base, with all joints sealed with chemicalresistant waterstops, and all concrete surfaces sealed with chemical-resistant concrete coating system. Information on the concrete coatings available for use on the secondary containment system is provided within Appendix D-1-3 to Section D-1 of the RCRA Part B Permit Application.

Calculations demonstrating that the design secondary containment capacity meets or exceeds the applicable requirements 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e) are provided in Appendix D-2-2 to Section D-2 of the RCRA Part B Permit Application.

VI. Tank Venting Requirements

As indicated on the P&ID's for Units 1700A, B, & C (i.e., Drawing Nos. 1700-010-001 and -003 which are located in Appendix D-1 to Section D of the RCRA Part B Permit Application), Tanks T-A and T-1701 through T-1704 are designed as closed top tanks that passively vent to atmosphere. The Tank Data Sheets (i.e., Drawing Nos. 1700-080-001, -001A, -002 and -003) provided in Exhibit A to this tank system design assessment specify the diameter of the atmospheric vent nozzle on each of the tanks.

The requirements for normal (i.e., liquid displacement and thermal effects) venting capacities for
the Unit 1700A, B, & C tanks were evaluated in accordance with American Petroleum Institute
Standard 2000, Venting Atmospheric and Low-Pressure Storage Tanks (i.e., API 2000). As
shown in the venting calculations provided in Exhibit D to this tank system design assessment,
the size of the atmospheric vent nozzle on each of the tanks is adequate to allow the tank under
normal conditions to be maintained within the design limitations for pressure and vacuum as
specified on the Tank Data Sheets provided in Exhibit A and within the tank design calculations
provided in Exhibit B to this tank system design assessment. The venting calculations provided in Exhibit D to this tank system design assessment also indicate the design maximum tank fill and withdrawal rates which were used in the evaluation of the tank venting requirements.

VII. Hazardous Characteristics of the Waste Managed

15 VII.A. Tank T-A

In accordance with the requirements of 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., this section presents an evaluation of the compatibility of the wastes managed within the Unit 1700A tank system with the materials of construction of Tank T-A and the ancillary equipment (i.e., pumps and piping) to determine their suitability for service in this unit.

The Unit 1700A tank system is only used to accumulate and store leachate and berm surface waters resulting from the disposal in landfill trench 19of more than one of the restricted wastes classified as hazardous under Subpart D of 40 CFR Part 261 and ADEM Administrative Code
Rule 335-14-2-.04 (e.g., EPA Hazardous Waste No. F039). The EPA Hazardous Waste No. F039 waste generated in the landfill trenches is a dilute, aqueous solution which is listed in 40 CFR 261.31(a) and ADEM Administrative Code Rule 335-14-2-.04(2)(a) based solely on a Toxic Waste (T) Hazard Code. However, as indicated in Appendix D-2-1 of this Application, the F039 wastes generated in landfill Trench 19 at the Facility have been (or are expected to be) determined to be capable of also meeting the characteristics of corrosivity (C) and/or toxicity characteristic (E), but have not been (and are not expected to be) determined to be capable of ignitability (I) or reactivity (R). Tank T-A and the ancillary equipment that contact wastes within this system are constructed of corrosion resistant high-density polyethylene plastic.

35

20

Exhibit E to this tank system design assessment presents information which provides an indication of the relative compatibility of Cross-Linked High-Density Polyethylene (XLHDPE) with a wide variety of chemical compounds and other substances. The table in Exhibit E

provides corrosion/compatibility information for XLHDPE exposed to pure chemical compounds which, in general, tend to have a more severe corrosive effect than wastes which contain mixtures and complexes of these compounds. Although this table may not provide corrosion data and service recommendations for all of the potential constituents of the wastes or waste

- mixtures which may be managed within the tank system in Unit 1700A, the table does 5 demonstrate that XLHDPE is generally compatible with and, under normal conditions, should not experience an accelerated rate of corrosion or deterioration when exposed to a majority of the types and classes of wastes which are managed within the Unit 1700A tank system. In addition to the compatibility/corrosion data provided in Exhibit E, the compatibility of XLHDPE
- 10

with the types of wastes managed within Unit 1700A is further validated by the empirical data provided by many years of comparable service applications within a variety of units at the Facility.

VII.B. Tank T-1701 through T-1704

In accordance with the requirements of 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., this section presents an evaluation of the compatibility of the wastes 15 managed within the Unit 1700B & C tank systems with the materials of construction of Tanks T-1701 through T-1704 and the ancillary equipment (i.e., pumps and piping) to determine their suitability for service in this unit.

The Unit 1700B & C tank systems are only used to accumulate and store leachate and berm 20 surface waters resulting from the disposal in landfill trenches 21 and 22 of more than one of the restricted wastes classified as hazardous under Subpart D of 40 CFR Part 261 and ADEM Administrative Code Rule 335-14-2-.04 (e.g., EPA Hazardous Waste No. F039). The EPA Hazardous Waste No. F039 waste generated in the landfill trenches is a dilute, aqueous solution which is listed in 40 CFR 261.31(a) and ADEM Administrative Code Rule 25 335-14-2-.04(2)(a) based solely on a Toxic Waste (T) Hazard Code. However, as indicated in Appendix D-2-1 of this Application, the F039 wastes generated in landfill Trenches 21 and 22 at the Facility have been (or are expected to be) determined to be capable of also meeting the characteristics of corrosivity (C) and/or toxicity characteristic (E), but have not been (and are not expected to be) determined to be capable of meeting the characteristics of ignitability (I) or 30 reactivity (R). Tanks T-1701 through T-1704 are constructed of carbon steel with internal corrosion protection.

Exhibit E to this tank system design assessment presents information which provides an indication of the relative compatibility of epoxy coating, such as Devoe Chemline 253 or 35 demonstrated equivalent, with a wide variety of chemical compounds and other substances. The table in Exhibit E provides corrosion/compatibility information for Chemline 253 epoxy coating exposed to pure chemical compounds which, in general, tend to have a more severe corrosive effect than wastes which contain mixtures and complexes of these compounds.

AttachD-2-4-7Text.docx

Although this table may not provide corrosion data and service recommendations for all of the potential constituents of the wastes or waste mixtures which may be managed within the tank systems in Units 1700B & C, the table does demonstrate that Chemline 253 is generally compatible with and, under normal conditions, should not experience an accelerated rate of corrosion or deterioration when exposed to a majority of the types and classes of wastes which are managed within the Unit 1700B & C tank systems. In addition to the compatibility/corrosion data provided in Exhibit E, the compatibility of Chemline 253 with the types of wastes managed within Units 1700B & C is further validated by the empirical data provided by many years of comparable service applications within a variety of units at the Facility.

10

25

30

5

Based on the information provided in Exhibit E of this tank system design assessment and the empirical data compiled at the Facility for comparable service applications, it is the conclusion of this evaluation that the XLHDPE and Chemline 253 coated carbon steel tank system components are generally compatible with the types of waste managed within the Unit 1700 tank system. It is further concluded that these materials of construction are suitable for this service if the tank systems are operated within the design limitations set forth within this assessment, and that, if the tank systems are managed in accordance with the following minimum practices, these materials of construction should not experience an accelerated rate of corrosion or deterioration which may result in a catastrophic failure of the tank systems, throughout their useful life:

- Prior to placement of a waste into the tank system the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. References other than Exhibit E of this document, such as other recognized sources of corrosion data, may also be used to evaluate compatibilities. The Facility shall prohibit the placement into the Unit 1700 tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components; and
 - The Facility shall perform an annual inspection of the tank shells to ensure that minimum code thicknesses are maintained, and that adequate corrosion allowance is available for continued service.

VIII. Certification of Tank System Design Assessment

In accordance with the requirements of 40 CFR 264.192(a) and ADEM Administrative Code Rule 335-14-5-.10(3)(a), this section provides a certification by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), that an assessment of the design of the following tank system(s)

AttachD-2-4-7Text.docx

demonstrates that the tank system foundation, structural supports, seams, connections, and pressure controls are adequate, and that the tanks have sufficient structural strength, compatibility with the wastes to be managed and/or protection from corrosion so that they will not collapse, rupture or fail, if properly installed, operated within the design limits, and properly inspected and maintained:

Tank System Location:	Chemical Waste Management, Inc.		
	Emelle, Alabama		
Tank System Identification:	Tank Management Units 1700A, B, & C		
Applicable Tanks:	T-A, T-1701, T-1702, T-1703, and T-1704		

10

5

At a minimum, the assessment of the tank system design, which is incorporated herein by reference, addresses and considers the following factors with respect to the intended use of the tank system:

15

20

25

30

- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tank designs have been evaluated for structural integrity with regards to the ability of the designed tank shell, structural supports and anchorages to withstand the static and dynamic stresses associated with pressures resulting from vapor and liquids heads, filling and withdrawal of liquids, diurnal heating and cooling of the tank and contents, roof and wall loads, and associated environmental stresses such as wind and seismic loads, as applicable;
- In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which the tanks have been evaluated with regards to the adequacy of the designed tank to provide the necessary capacity for normal venting;
 - In accordance with 40 CFR 264.192(a)(1) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)1., the assessment of the tank system design provides the standards according to which piping and other ancillary equipment shall be designed and constructed to maintain this certification;
 - In accordance with 40 CFR 264.192(a)(2) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)2., the assessment of the tank system design considers the compatibility of the tank's materials of construction and/or internal coatings with the types of hazardous wastes to be managed;
 - In accordance with the applicable requirements of 40 CFR 264.192(a)(5) and ADEM Administrative Code Rule 335-14-5-.10(3)(a)5., the assessment of the tank

system design considers the ability of the designed tank system foundation to support the load of the full tanks and to withstand associated environmental stresses; and

 The assessment of the tank system design considers the adequacy of the capacity of the designed tank secondary containment system as required by the applicable requirements of 40 CFR 264.193(e) and ADEM Administrative Code Rule 335-14-5-.10(4)(e).

In order for this certification to be maintained, the Facility shall comply with the applicable requirements of 40 CFR 264 Subpart J and ADEM Administrative Code Rule 335-14-5-.10, and shall perform all routine management procedures, periodic inspections and reviews, and tank system functionality and integrity tests as required by the permit including, but not limited to, the following:

- The Facility shall ensure that the tank system is properly installed and that, prior to placing the tank system in use, all required inspections, tests and necessary repairs are performed in accordance with the applicable requirements of 40 CFR 264.192(b) through (f) and ADEM Administrative Code Rules 335-14-5-.10(3)(b) through (f);
- Prior to the tank system being placed in use, the Facility shall obtain and place within the Facility Operating Record in accordance with the requirements of 40 CFR 264.192(g) and ADEM Administrative Code Rule 335-14-5-.10(3)(g), an assessment of the tank system installation, prepared by an independent, qualified, registered Alabama Professional Engineer in accordance with ADEM Administrative Code Rule 335-14-8-.02(2)(d), which certifies that the tank system and ancillary equipment were properly designed, installed and tested;
 - Prior to placement of a waste into the tank system, the Facility shall verify the compatibility of the waste with the material of construction and/or internal coatings of the tank system components in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the Unit 1700 tank system any waste that may exhibit excessive corrosion or degradation to the material of construction of the tank system components;
 - Prior to placement of a waste into the tank system, the Facility shall verify the specific gravity of the waste in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application. The Facility shall prohibit the placement into the tank system of any

5

30

waste that has a specific gravity that exceeds the design maximum value specified within the tank system design assessment;

- Prior to placement of a waste into the tank system, the Facility shall verify in accordance with the procedures and requirements of the Waste Analysis Plan provided in Section C of the RCRA Part B Permit Application that the treatment of the waste will not cause temperatures within the tank system to exceed the design maximum value specified within the tank system design assessment;
- The Facility shall perform a daily inspection of the visible aboveground portions of the tank exterior to detect excessive corrosion or deterioration;
- The Facility shall perform a daily inspection of the visible aboveground portions of the tank secondary containment system to detect leakable cracks or gaps, or excessive deterioration of the concrete base and/or chemical-resistant concrete coatings;
- The Facility shall perform an annual inspection of the tank shells, as described in Subsection F-2-6 of Section F-2 of the RCRA Part B Permit Application, to ensure that minimum code thicknesses are maintained, and that adequate corrosion allowance is available for continued service;
 - The Facility shall perform an annual inspection of the tank structural supports and anchorages to ensure that their integrity is maintained;
- The Facility shall perform a periodic inspection of the tank venting devices to ensure that they are in good working order to maintain the tanks within the design limits for pressure as specified within the tank system design assessment;
 - The Facility shall perform a periodic inspection of the tank level sensing, overfill control devices and associated interlocks to ensure that they are in good working order with the appropriate settings to prevent overfilling of the tanks. The frequencies and procedures for inspection of all tank level sensing and overfill control devices shall be as recommended by the manufacturer;
 - The Facility shall perform a periodic inspection of any other operational controls for the tank system to ensure that they are in good working order with the appropriate settings to maintain the tanks within their design limits as specified within the tank system design assessment. The frequencies and procedures for inspection of other tank system operational controls shall be as recommended by the manufacturer; and
 - The Facility shall perform periodic inspections of the integrity of any tank system grounding and lightning protection systems.

5

10

15

20

25

30

Based on the information provided within the tank system design assessment and supporting documentation, the designs of Tanks T-A and T-1701 through T-1704 within Tank Management Units 1700A, B, & C meet the current RCRA requirements relative to the design of new hazardous waste tank systems. The design assessment addresses only the applicable requirements of 40 CFR 264.192 and 40 CFR 264.193, and ADEM Administrative Code Rules 335-14-5-.10(3) and (4), and does not consider compliance with other codes or regulations, including, but not limited to, the requirements of the Occupational Safety and Health Act

10 (OSHA).

5

With regards to the assessment and certification of the design of hazardous waste tank systems in accordance with the applicable requirements of 40 CFR 264.192(a) and (g), and ADEM Administrative Code Rules 335-14-5-.10(3)(a) and (g), I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

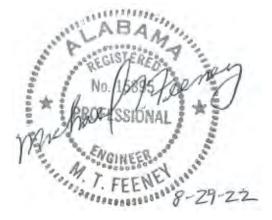
Mark C. Christian, P.E Alabama P.E. No.: 20751 Principal ETI Corporation 6799 Great Oaks Road, Suite 100 Memphis, Tennessee 38138-2500

30

35

This certification was originally submitted in 1996. As part of the 2002 Part B Application Renewal, revisions were made to the text in this attachment. These revisions consisted primarily of renaming the section for the Waste Analysis Plan to Section C to maintain consistency with the other Sections contained within this Part B Permit Application. As part of the 2009 Part B Application Renewal, additional revisions were made to the text in this attachment. These revisions consisted primarily of renaming Unit 1700 to more specific Units 1700A, B, & C. No revisions were made to this attachment during this Part B Permit Application renewal process (Revision 5.0).

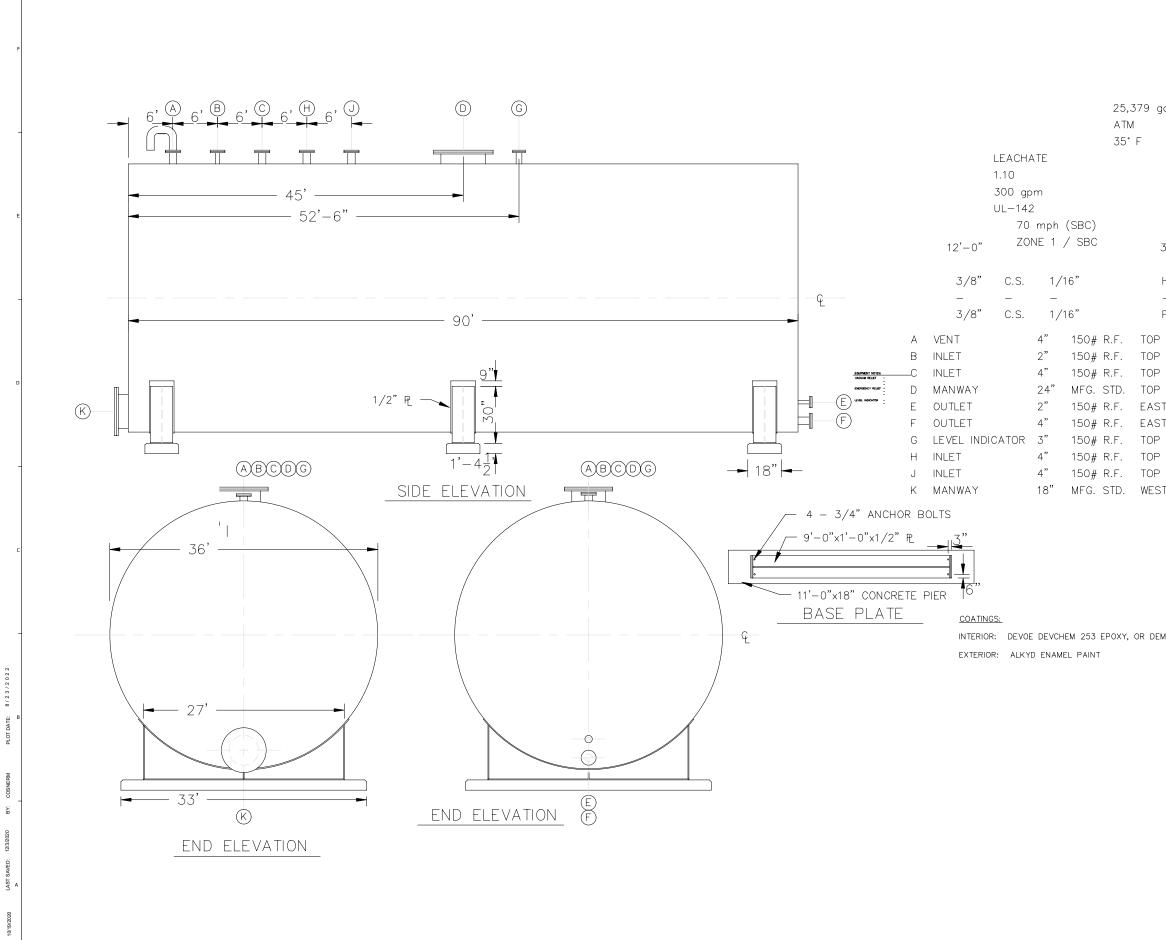
With regards to the revisions noted above, I certify under penalty of law that these modifications were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.


10

5

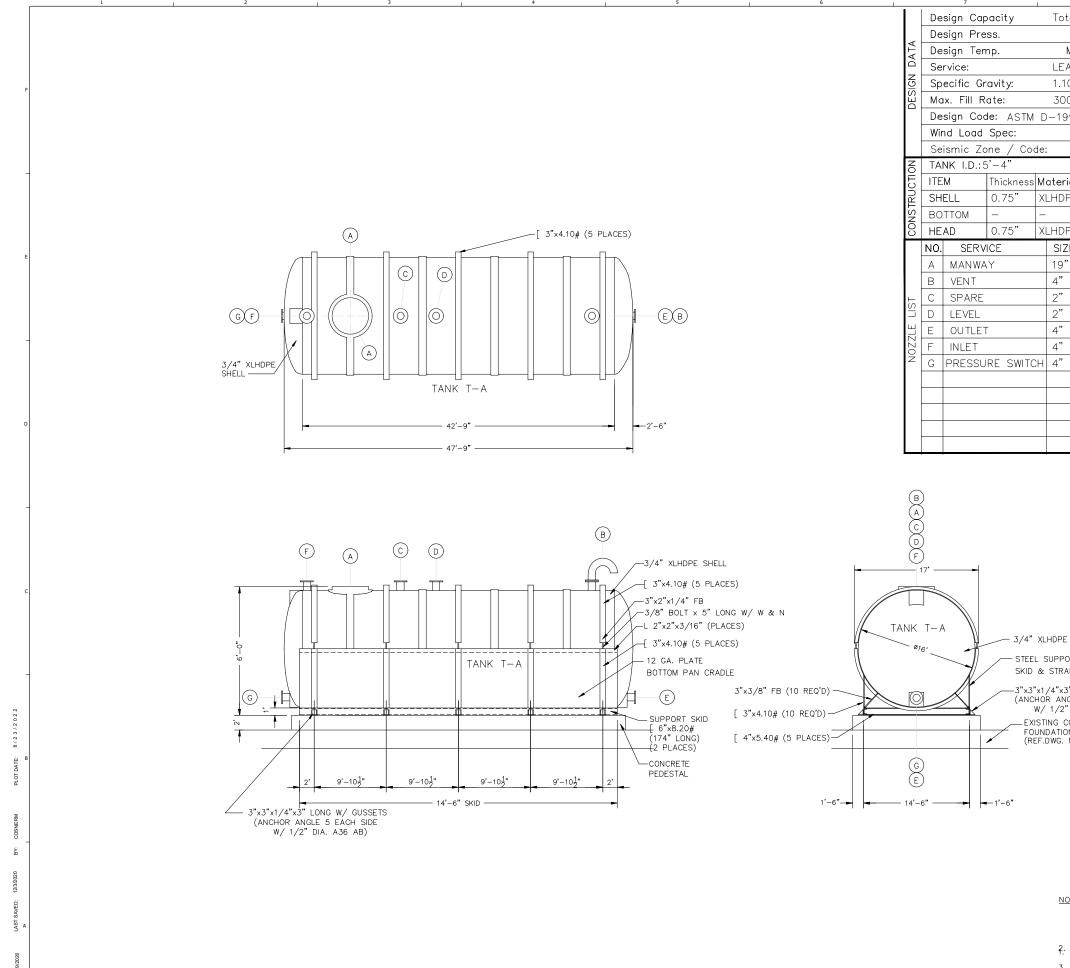
Michael T. Feeney, P.E. Alabama P.E. No.: 15895 Jacobs Engineering Group Inc. Ten 10th Street NW

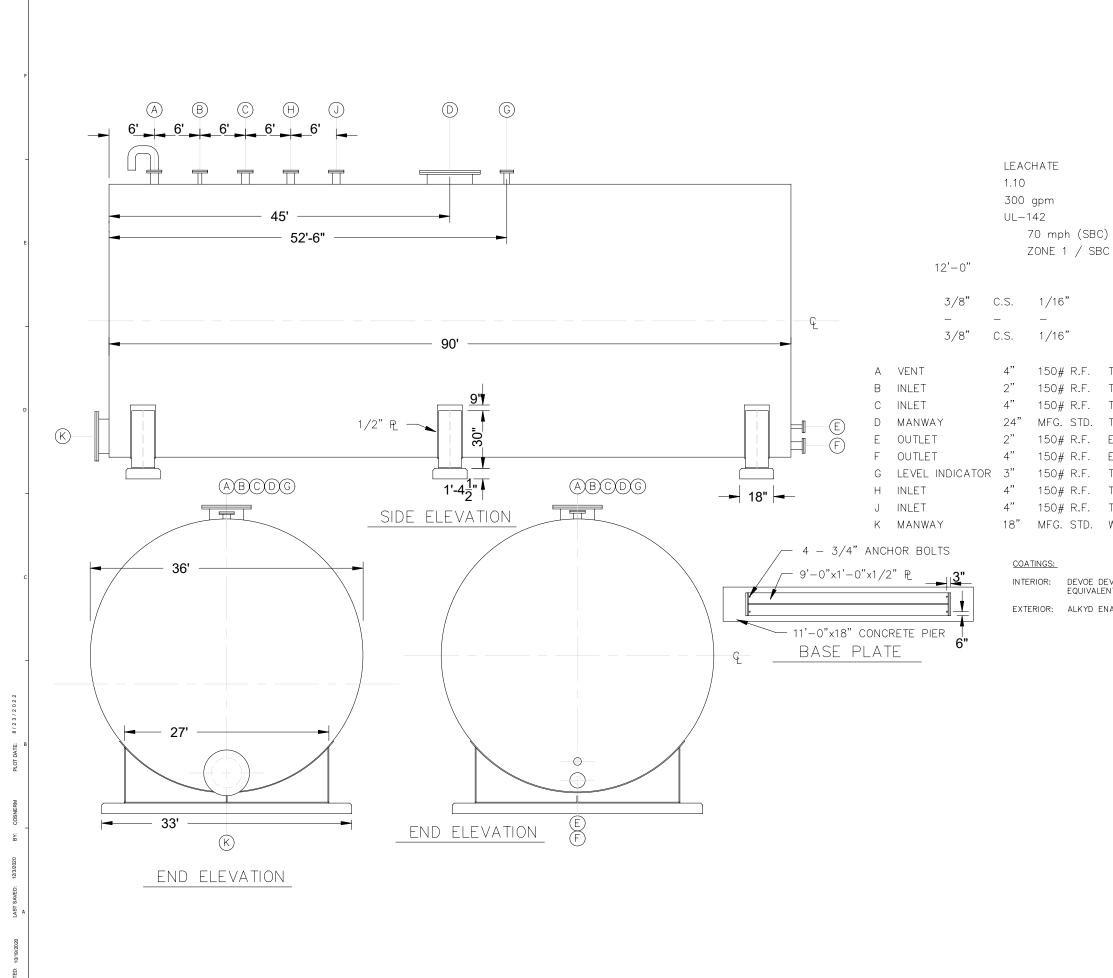
15 Atlanta, Georgia 30309


20

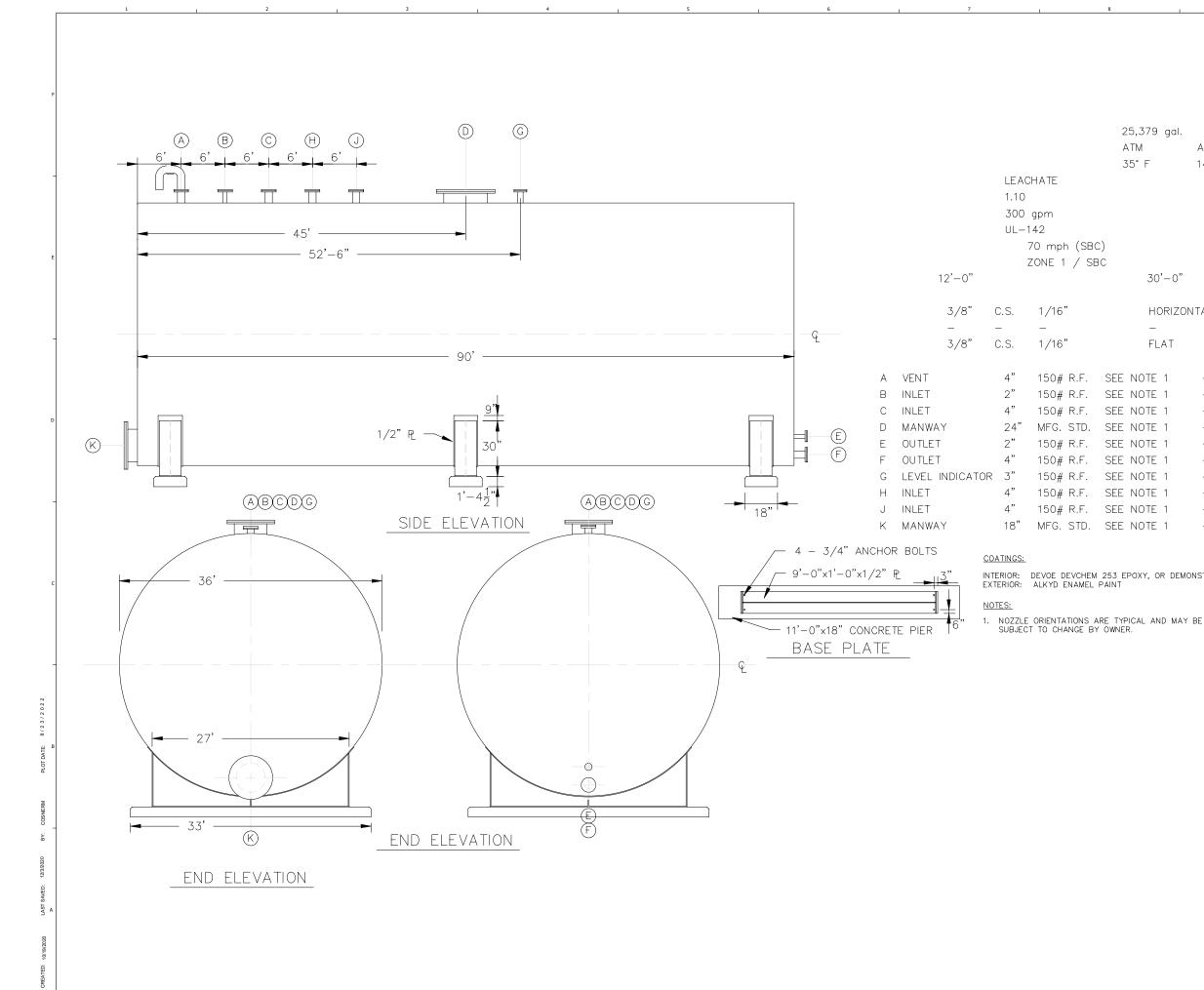
[End of Attachment D-2-4-7 Text]

EXHIBIT A


TANK DATA SHEETS


25,379 gal. АТМ АТМ 35°F 140°F 6" 300 gpm ΝA 70 mph (SBC) ZONE 1 / SBC 30'-0" HORIZONTAL – _ _ FLAT 4" 150# R.F. TOP 2" 150# R.F. TOP 4" 150# R.F. TOP 24" MFG. STD. TOP CENTER -2" 150# R.F. EAST SIDE H16" -4" 150# R.F. EAST SIDE H6" -4" 150# R.F. TOP 4" 150# R.F. TOP 18" MFG. STD. WEST SIDE H11" -

INTERIOR: DEVOE DEVCHEM 253 EPOXY, OR DEMONSTRATED EQUIVALENT.


	Jacobs	10 Tenth Street Sula 1400 Alanta, GA 30308/404.978.7600
		NOT RELEASED FOR CONSTRUCTION
RCRA PART B PERMIT APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	SIMTER COUNT, AL
THIS DRAWN WITH THE AR SPECIFICATION PROJECT NO DATE: AUG DISC. LEAD	WHEN PLOTED FULS WHEN PLOTED FULS WHEN PLOTED FULS WHEN PLOARE OR COVERNIN SA AND OTHER CONTRAC OC D327702 UST 2022 CDESIGNER: (HECKER:
CUET	RAK	

Mir			1	g	$\neg \frown$			
Mir			500 gal. IMOSPHERIC		$-\parallel$	I	S S	8
	in./Max.:	$-\parallel$		g	aet 1 14.978.760			
	n./Max.:		F /	120° F	$-\parallel$	1	Jacobs	10 Tenth Street Sulte 14.00 Attanta, GA 30309[14.04.978.7600
1.10	HATE COL		ace (inch):	6"	$-\parallel$	I	ă	10 Tamta, GA
300	apm	F	ל'	\$P				
-1998		Joint Effi	idrawal Rate	e: 300 gp NA	<u> </u>			
	- <u> </u> ANSI 58.1,			IN/A	$-\parallel$			
		SBC)			$-\parallel$			ő z
			H: 15'-11"		-			NOT RELEASED FOR CONSTRUCTION
terial			Туре	Height	$-\parallel$			STRU
HDPE	0.125"		HORIZONT		$-\parallel$			OT RI CONS
	-		-	-				ž
HDPE	0.125"		DISHED	10"				
SIZE	RATING	ORIEN	TATION	REMARKS				
19"	MANUF.	TOP		COMBINATIC			ENT	
4"	FLANGED	TOP					GEM	
2"	FLANGED	TOP		W/BLIND FL	<u>_G</u>		ANNA	
2" 4"	FLANGED	TOP			_			
4"	FLANGED				_		MA	
4"	FLANGED				_			
4"	FLANGED	END			$-\parallel$			
					$-\parallel$:	Z	.≻	
					$-\parallel$	KCKA PARI B PERMII APPLICATION	CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY	
					$-\parallel$, EC	MENT IT FA	
					- 5	APP	IAGEI	(' AL
					- }	TMX	E MAN	SUMTER COUNTY, AL
						¥	Ē	
IPPORT								
DPE SH JPPORT STRAPS 4"x3" L ANGLE	; ong w/ gu	SSETS)E						
IPPORT STRAPS 4"x3" L ANGLE I /2" D	_ _ong w/ gu E 5 Each sil Ia. A36 AB)	SSETS JE						
IPPORT STRAPS 4"x3" L ANGLE I / 2" D G CON ATION	_ONG W/ GU E 5 EACH SII IA. A36 AB) CRETE	DE						CRIPTION
IPPORT STRAPS 4"x3" L ANGLE I / 2" D G CON ATION	_ _ong w/ gu E 5 Each sil Ia. A36 AB)	DE						ION DESCRIPTION
IPPORT STRAPS 4"x3" L ANGLE I / 2" D G CON ATION	_ONG W/ GU E 5 EACH SII IA. A36 AB) CRETE	DE					TT DE BARRAN A	REVISION DESCRIPTION
IPPORT STRAPS 4"x3" L ANGLE I / 2" D G CON ATION	_ONG W/ GU E 5 EACH SII IA. A36 AB) CRETE	DE					uri as outratemente.	REVISION DESCRIPTION
IPPORT STRAPS 4"x3" L ANGLE I / 2" D G CON ATION	_ONG W/ GU E 5 EACH SII IA. A36 AB) CRETE	DE					Dirot outring and the second of the	REVISION DESCRIPTION
IPPORT STRAPS 4"x3" L ANGLE I / 2" D G CON ATION	_ONG W/ GU E 5 EACH SII IA. A36 AB) CRETE	DE					(5) DOC AMPT DESAMINAL	
IPPORT STRAPS 4"x3" L ANGLE I / 2" D G CON ATION	_ONG W/ GU E 5 EACH SII IA. A36 AB) CRETE	DE						DATE
IPPORT STRAPS 4"x3" L ANGLE I / 2" D G CON ATION	_ONG W/ GU E 5 EACH SII IA. A36 AB) CRETE	DE					IS LOTTED FULL SC	NE INCH
IPPORT STRAPS 4"x3" L ANGLE I / 2" D G CON ATION	_ONG W/ GU E 5 EACH SII IA. A36 AB) CRETE	DE			TH WIT SPECI	IS DRAWING MUST H THE APPLICABLE FICATIONS AND OT	LOTTED FULL SCO BE USED IN CON OR GOVERNING HER CONTRACT	
JPPORT GTRAPS 4"x3" L ANGLE ANGL G CON ATION WG. No	- ONG W/ GU 5 EACH SII IA. A36 AB) ICRETE . 1700-040-	DE			TH WIT SPECI PRO DAT	IS DRAWING MUST H THE APPLICABLE FICATIONS AND OT JECT NO: D327 E: AUGUST 202	IS I	
IPPORT TRAPS 4"x3" L ANGLE G CON ATION WG. NO	- ONG W/ GU 5 5 EACH SII IA. A36 AB) CRETE . 1700-040-	-001)	NPSULATED BOL	T HEADS IN	TH WIT SPECI PRO DAT DISC MTF	IS DRAWING MUST H THE APPLICABLE FICATIONS AND OT JECT NO: D327 E: AUGUST 202 C. LEAD: DESIG RAK	I IS LOTTED FULL SO DR GOVERNING HER CONTRACT 79702 22 GNER: CH	
IPPORT STRAPS ANGLE //2" D G CON ATION WG. No MG. No MG. No E B	_ONG W/ GU 5 5 EACH SII [A. A36 AB) CRETE . 1700-040- . 1700-040-	-001) TO BE ENC/	APSULATED BOL 316 SS BOLTS,		TH WIT SPECI PRO DAT DISC MTF	IS DRAWING MUST H THE APPLICABLE FICATIONS AND OT JECT NO: D327 E: AUGUST 202 C. LEAD: DESIG	I IS LOTTED FULL SO DR GOVERNING HER CONTRACT 79702 22 GNER: CH	
PPPORT GTRAPS 4"x3" L ANCLE (2" D G CON ATION WG. No MG. No MG. No B G G	S S S S S S S S S S S S S S	-001) TO BE ENC/ FILLED PP, 3	316 SS BOLTS,		TH WITT SPECI PRO DAT DISC MTF	IS DRAWING MUST H THE APPLICABLE FICATIONS AND OT JECT NO: D327 E: AUGUST 202 C. LEAD: DESIG E: AUGUST 202 C. LEAD: DESIG RAK ET TITLE	IS CONTRACT 15 COTTED FULLS IS CONTRACT 19702 12 CONER: CONTRACT 12 CONER: CONTRACT 12 CONTRACT	
IPPORT STRAPS 4"x3" L ANGLE 2" D G C C C C C C C C C C C C C	S: S: LONG W/ GU E 5 EACH SII IA. A36 AB) CRETE . 1700-040- 1700-040- 040-	TO BE ENC, FILLED PP, S 25 PSI RA ME MATCHED STED AND C	316 SS BOLTS,	WITH VITON A.S.A. DRILLING. AND SHALL POXY COATING	TH WITT SPECI PRO DAT DISC MTF	IS DRAWING MUST H THE APPLICABLE FICATIONS AND OT JECT NO: D327 E: AUGUST 202 C. LEAD: DESIG RAK	IS CONTRACT 15 COTTED FULLS IS CONTRACT 19702 12 CONER: CONTRACT 12 CONER: CONTRACT 12 CONTRACT	

Jacobs 25,379 gal. АТМ АТМ NOT RELEASED FOR CONSTRUCTION 35°F 140°F 6" 300 gpm NA 30'-0" HORIZONTAL -_ _ FLAT _ 150# R.F. TOP RCRA PART B PERMIT APPLICATION CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY 150# R.F. TOP 150# R.F. TOP MFG. STD. TOP CENTER 150# R.F. EAST SIDE H16" -150# R.F. EAST SIDE H6" 150# R.F. TOP 150# R.F. TOP 150# R.F. TOP 18" MFG. STD. WEST SIDE H11" -INTERIOR: DEVOE DEVCHEM 253 EPOXY, OR DEMONSTRATED EQUIVALENT. EXTERIOR: ALKYD ENAMEL PAINT THIS LINE IS ONE IN LONG WHEN PLOTTED FULL SCALE THIS DRAWING MUST BE USED IN CONJUNCTI WITH THE APPLICABLE OR GOVERNING TECHNI SPECIFICATIONS AND OTHER CONTRACT DOCUM SPECIFICATIONS AND OTHER CONT PROJECT NO: D3279702 DATE: AUGUST 2022 DISC. LEAD: DESIGNER: MTF RAK SHEET TITLE CHECKER: SB T TANK DATA SHEET - T-1702 SHEET 1700-080-002

Jacobs 25,379 gal. ATM ATM NOT RELEASED FOR CONSTRUCTION 35°F 140°F 6" 300 gpm ΝA Ξ 30'-0" 3 HORIZONTAL -_ FLAT _ 150# R.F. SEE NOTE 1 _ RCRA PART B PERMIT APPLICATION CHEMICAL WASTE MANAGEMENT INC. EMELLE, ALABAMA TREATMENT FACILITY 150# R.F. SEE NOTE 1 _ SEE NOTE 1 _ _ 150# R.F. SEE NOTE 1 _ SEE NOTE 1 _ 150# R.F. SEE NOTE 1 _ 150# R.F. SEE NOTE 1 150# R.F. SEE NOTE 1 _ MFG. STD. SEE NOTE 1 INTERIOR: DEVOE DEVCHEM 253 EPOXY, OR DEMONSTRATED EQUIVALENT. EXTERIOR: ALKYD ENAMEL PAINT THIS LINE IS ONE INCLOSE WHEN PLOTTED FULL SCALE LONG WHEP R-OTTEP FULL SCALE THIS DAWING WHET BE USED BO COUNCITION WITH THE APPLICABLE OR GOVERNME TEONITAGE SPECIFICATIONS AND OTHING CONTRACT COULMENT PROJECT NO: D3227972 DATE: AUGUST 2022 DATE: AUGUST 2022 DISC. LEAD: DESIGNEE: CHECKER: MTF RAK SBT SHEET TITLE TANK DATA SHEET - T-1703 THRU T-1710 SHEET 1700-080-003

EXHIBIT B

TANK DESIGN CALCULATIONS

	CHEMICAL WASTE MANAGEMENT CO.								
	EMELLE, ALABAMA FACILITY								
	CALCULATION COVER SHEET								
UNIT:			1700						
TANK NC		T-1701 TO T-1710 (10TANKS)							
DECRIPT	ION:	<u>2'\$</u>	<u>x 30'</u>	Laig		3 SADDLES			
				ESSEL CA	LCULATIC	DNS			
PREPARE	ED BY:	_ <u> </u>	ANZ		DATE:	9/30/94			
	· _ · ·								
REV. NO.	DATE	BY	СНК	APPVD.	PAGES	REMARKS			
						-			
аттаснм	ATTACHMENTS: PRIOR CALCULATIONS HAVE BEEN INCLUDED TO SUPPLEMENT THE DATA USED IN THE CALCULATIONS.								
						UTRILL LAND UTRILL LAND OCT 3 1994			

.

. . .

Г

UNIT 1700

DESIGN CALCULATIONS

DESIGN DATA SHEET T-1701,T-1702, T-1703, T-1704 Page 1 of 3 T-1705, T-1706, T-1707, T-1708, T-1709, T-1710

Service: Leachate Storage

12 ft Diameter by 30 ft Horizontal Tank on Three Supports

Chemical Waste Management, Emelle, AL

Job No. 44228.00

Design Code UL-142 Service Status Existing/Proposed Diameter/Length 12' - 0" Shell/Heigth 30' - 0"
Bottom/Width
BottomLegs/Wheels3 SaddlesOperating Capacity.25,379 GalMaterial of ConstructionCarbon SteelCorrosion Allownce.1/16 inchJoint Efficiency0.70Design Spec. Grav.1.10Design PressureAtmosphericDesign Temperature.150 deg F. Max to 0 deg F. MIn.Roof Live Load psf.NAWind LoadSBC, 70 mph
Seismic Zone Zone I Agitator No
Location

C. ROSSER BOVAY				
ROSSER JUSTICE SYSTEMS	PROJ. NO.		SHEET OF	
ROSSER LOWE	DESIGNED	1 - 1	CHECKED 4 11	129 1 A
HT ROSSER				

THESE TANKS ARE 12.0" DIAMETER, 30-0" LONG
AND MARRICATED OF CARDON STREEL
TANK VOLUME = AREA: LENGTH
=
$$TF R^2 \circ H = TF \cdot G' \cdot 30 = 3372.9473$$

= $25300GAL$
REFERENCE TO TABLEGG-1
FOR 1101 TO 35000 GAL
MAX DIAMETER = 144" (12-0')
MIN META THERE = 0.240"
THICKNIZSS = 0.240 + $HG'' = 0.3025"$
USE 3/8" FLATE FOR TANK
MAX WEIGHT = VOLUME DENSITY
= $339271 \cdot G2.4 \cdot H = 232.888 \pm$
TANEWFIGHT = AREA · WTAREA
= $(TDH \cdot 2TF RZ) IS3 + SA00LES$
= $IS.3TF(12 \times 30 + 2 \cdot 12 \cdot 12) + 3000 (EST)$
= $31,1471 + 3000 = 34141 PDUADS$
TOTAL WEIGHT = $2G4, 0.35 FROLOS$
= $8,000^{6}/FT$
WIT DIST(ASSUME) END SADDLES 96,300
ROSSER BOVAY
ROSSER BOVAY
ROSSER BOVAY
ROSSER IOWAY
ROSSER IOWE
WIT (200 T-1701 METATE OF

9 128194 CHECKED

1 1

Exhibit B Page 3 of 10

ІНТ

LOWE

ROSSER

DESIGNED

4

£

D

Y

T-1701 = T-1710
ASSUMEMAX MUMEUR =
$$WL_{B}^{2} = \frac{3800 \cdot 125^{2}}{9}$$

 $= (71, 8751 \pm$
 $= T7.72^{2}\%$
 $= 5089 \text{ IN}^{3}$
 $T2855 = \frac{M}{Z} = \frac{(71.875)}{5089} \cdot 12$
 $= 405751$
STERESS WITH TANK SUPPORTED
AR CRAFER
 $M = WL^{2} = 8600 \cdot 15^{2} \cdot 12 = 990,000 \cdot 12$
 $5 = TV^{2}t = TT \frac{5}{16}(72 \cdot \frac{51}{16}) = 50673 \text{ IN}^{3}$
 $S = \frac{990,000 \cdot 12}{50673} = 2.344 \text{ psi}$
SHEAR STERES AT A SADDLE SUPPORTING
ONE HALF OF THE TANK WEIGHT
 $V = 15 \cdot 8800 = 132,000 \pm$

$$5'_{z} = (k'_{z}Q/rt) \begin{bmatrix} \frac{1}{L+H} \end{bmatrix}$$

$$k'_{z} = \frac{1}{171} \text{ when } \phi = \chi = 120^{\circ}$$

$$5'_{z} = \frac{1}{171} \frac{32}{200}/\frac{71.83}{3125} \begin{bmatrix} \frac{30-2\cdot2.5}{30} \end{bmatrix}$$

$$A = \frac{1}{4} \begin{bmatrix} \frac{1}{171} \end{bmatrix}$$

$$= 6886 \begin{bmatrix} \frac{25}{30} \end{bmatrix} = 5738 \text{ psi}$$

STRESS ARE ACCREDITA DLE FOR TO PLATE

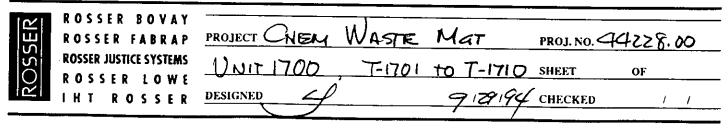


Exhibit B Page 4 of 10

<u>P1</u>

LEACHATE TANK TA UNIT 1700 0.0. = 5-8 = 5.67 CWM - EMELLE, AL LENGTH, C = 14.5 +1.5 = 17 REF. DUG 1700-000-001 /11-4-93 1700-020-002 /11-4-93 1700-020-001 EMPTY TANK = 700 ~ 800 CONTENT = 2500 GAL. DESIGN OF FOUNDATION 5.6.=1.1 $W_{t} = 2500 \text{ GDL} \frac{177}{x} \text{ (62.4 x/.1)}$ A) EMPTY TANK +WIND LOAD API 650 SECT. 3.11 Wt= 22941 165 = 23000 $q = \left(\frac{100}{100}\right)^2 \times 160 = 160$ PSF VW=10×567×17 = 1543 165 $M_{\omega} = 1543 \times \frac{5.67}{2} = 4375$ FT-165 RESISTING mom, MR = 700x 4.83 = 1692 Fr-165 & m= 4375-1692= 2683 FT-165 No. 18084 PROFESSIONAL $F_{15, =} 2$ ANC. BOLTS FORCE = $\frac{2 \times 2683}{483} = 111.0$ 5 ANC. BOLTS EA. SIDE = $\frac{111}{c}$ = 222.2 lbs L3x3x4x0-3" W/ GUSSETS OK USE 5 \$ A36 ANC. BOLTS (5 THREADED À 36 ROD W/ DOUBLE WASHER & DOUBLE NUTS.

Exhibit B Page 5 of 10

P.Z

DESIGN FOR GEISMIC LONDS (API 650) $M = ZI(C, W, X_s + C, W, H_r + C, W, X_1 + C_2 W, X_2)$ SEISMIC ZONE 1 - I=1.0 + Z=0.1875 W= 800 = 0.8 K Xs= 5.83 = 2.915' WT= 23000 165 Assume EQUIN. ROUND TANK WITH HE= 15.83 TT = 5.16 VOL = 2500 GAL X FT3 = 334.7 FT3 EQUIN. BASE = 334.2/5.110 = 64.77 FT AREA EQUIV. DIAMETER = $\sqrt{\frac{64.77 \times 4}{77}} = 9.1$ $D_{H} = 9.1$ = 1.76 FIG E-3 FIG. E-Z Wild = 0.68 X1/4 = 0.38 $W_{z/kJ_{T}} = 0.40$ Xz/4 = 0.6 0.68 = W. 23000 W,= 15,64 K $0.40 = \frac{1}{72}$ $W_{r} = 9.2 K$

Exhibit B Page 6 of 10

$$\frac{V_{1}}{S_{1/6}} = 0.4 \qquad X_{z} = 3.1 \qquad P3$$

$$\frac{V_{1}}{S_{1/6}} = 0.38 \qquad X_{1} = 1.9.0 \qquad P3$$

$$C_{1} = 0.24 \qquad C_{z} = \frac{0.305}{7^{2}} \qquad T \leq 4.5 \qquad C_{z} = \frac{(.355}{7^{2}} \qquad T > 4.5 \qquad C_{z} = \frac{(.355}{7^{2}} \qquad T > 4.5 \qquad C_{z} = \frac{(.355}{7^{2}} \qquad T > 4.5 \qquad C_{z} = \frac{0.30}{7^{2}} \qquad (z = 1.5) < 4.5 \qquad (z = 0.30 \times 1.5) = 0.25 $

Exhibit B Page 7 of 10

-

. •

P.4CHECK SHELL Rt ATMOSPHERIC PRESSURE 5.67 NO INTERNAL PRESSURE H= 5.67 R_B 5.G.= 1.1 BUT USE 1.3 FOR DESIGN g = 8 h = 1.3 × 62.4 × 5.67 = 460 165 F = 460 x 5.67 = 1304.10 lbs RT = 13041 = 434.7 165/FT x1FT= 434.7 165 RB= = (1304.1) = 869.4 165 FT XIFT = 869.4 lbs $\int C.A.$ SHELL THICK NESS = 34" USE 34-4 = 5 = 0.625" ALLOWABLE TENSILE STRESS = 2600 x0.5= 1300 WORKING Hoop STRESS = 869.4 165 = 115.9 PSI ((1300 0.625 X12 <u>ok</u> CHECK LONGITUDINAL STRESSES. Assume UNIF, PRESS OF 460 PSF- @ ENDS TO BOODS IMPLICITY ABAM $\lambda = \frac{17^2 D}{2} = \frac{7}{2} \frac{+5.67}{-2} = 25.23$ PROFESSIONAL F = 25.23+ 460 = 11.61 K

Exhibit B Page 8 of 10

P.5 RESISTING FORCE = 0.625 × CIEC. = (0.625) 17 x 5.67) x12" x 1300 = 173.6 5 $F.S. = \frac{173.6}{11.00} = 14.95$ CHECK FOR FLEXTURAL STRESSES SUPPORTS @ 14.5 = 4.83 0/2. W=0.8+23=23.8 K TOTAL + 14.5 = 1.64 KAT OM = 0.1071 x 1.64 x 4.83 = 4.1 1K REF. AZSC MAX +M = 0.0772 x1.64 x4.83 = 2.96 K $f_{b} = \frac{M}{5}$ $d_{c} = 5.67x/t = 68''$ $d_{r} = 68 - (0.75xt) = 66.54$ $S = 0.098175 \left(\frac{d_{a} - d_{r}}{d}\right) = 0$ $f_{6}^{'} = \frac{296 \times 12}{26839.4} \times 1000 = 1.32 \text{ PSI } 750 \text{ SMALL}$ $TENSION \notin Compression \\ OK (TOO SMALL) \qquad PSI \\ OK (TOO SMALL) \qquad$

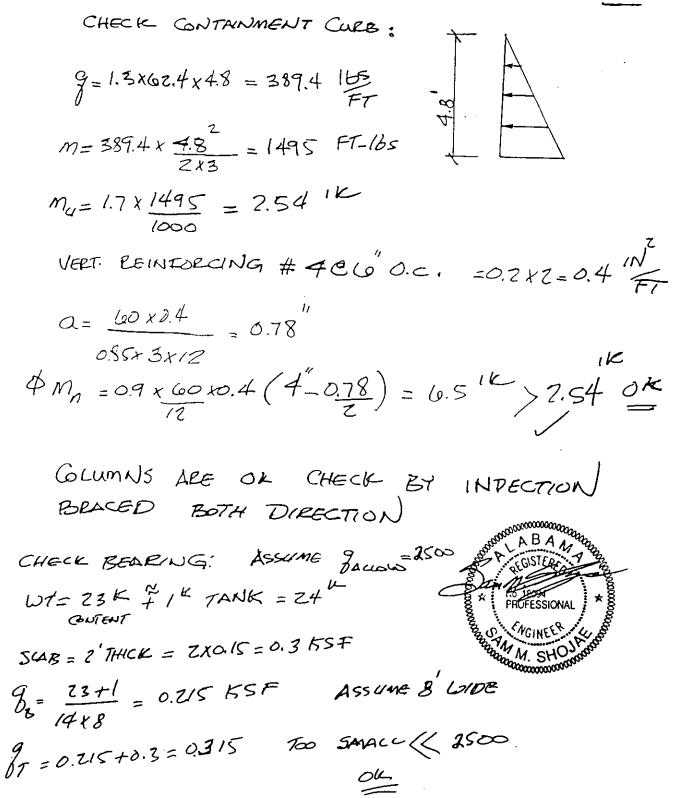
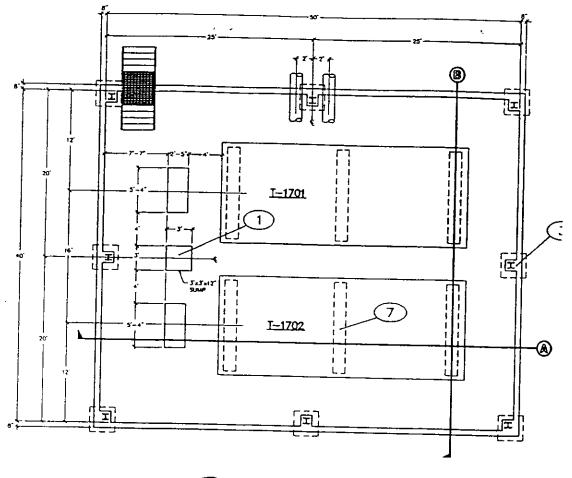


Exhibit B Page 10 of 10

EXHIBIT C


TANK FOUNDATION DESIGN CALCULATIONS

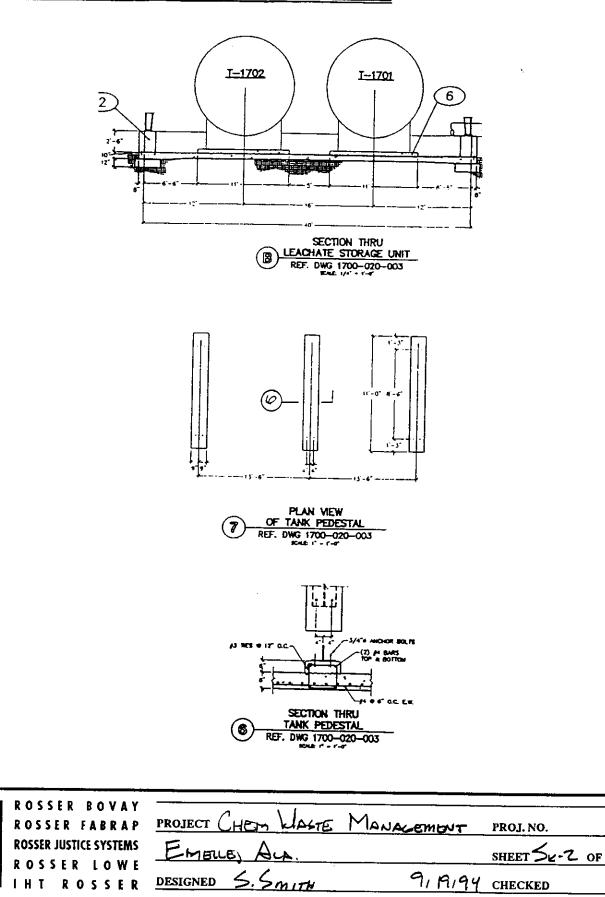
		CHEM	ICAL V	VASTE	MANAG	EMENT CO.			
	EMELLE, ALABAMA FACILITY								
			CAL	CULATION	COVER S	HEET			
UNIT:		170	0						
TANK NO	D.:	T-170	<u>01 тн</u>	20 T-1	710				
DECRIPT	FION:	LEAC	HALE	TANK	6				
		, ,				TIONS			
PREPARED BY:		- 5.5	MITH	<u> </u>	DATE:	9-19-94			
REV. NO.	DATE	BY	СНК	APPVD.	PAGES	REMARKS			
			. <u></u>						
ATTACHN		PRIOR CA SUPPLEM	LCULATION	ONS HAVE DATA USE		CLUDED TO CALCULATIONS.			
						SCOTTIA SMITH BL 60612 OF 918TE 018TE 10-3-94			

Exhibit C Page 1 of 30

.

FOUNDATIONS FOR TANKS T- 1701 TO T-1710

PLAN


fc-3,000ps; fy=60,000ps;

	ROCCER ROVAY					
JER	ROSSER FABRAP	PROJECT CHEM UDSTE EMETLE, DLA DESIGNED S. SMITH	MANAGEMENT	PROJ. NO.		
- 50	ROSSER JUSTICE SYSTEMS	EMERLE, ALA		SHEET SK-1 OF		
Ř	INT ROSSER	DESIGNED 5. Smith	9119194	CHECKED	1	1

Exhibit C Page 2 of 30

17

FOUNDATIONS FOR TANKS T-1701 TO T-1710

1 1

Exhibit C Page 3 of 30

ഗ

.

4

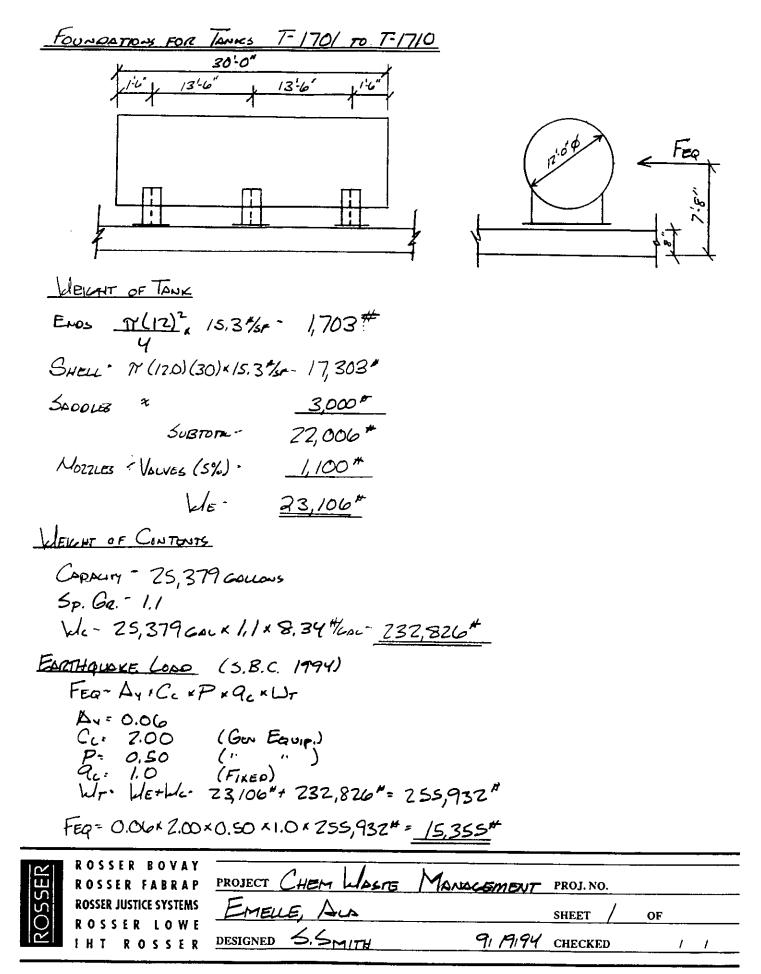


Exhibit C Page 4 of 30

FOUNDATIONS FOR TANKS T-1701 TO T-1710
SADOLE REACTIONS
Course Sooole = DL = 13.5/30 × 23,106 + > 10,397 +
LL· 13.5/30× 232,826# = 104,771#
END SADOLES = DL $^{8.25/30} \times 23,106^{#} = 6,354^{#}$ LL $^{8.25/30} \times 232,826^{#} = 64,027^{#}$
STADD TTL INPUT (LODDING)
DEAD LODO
ELEMENT LOD " 10,397"/ YEL "2,599"/161" 162" (5) (4) (23) (32)
Joint LOND = 6,354#/3,000,5 - 2,118# JB 12,22,32, 19,29,39
<u>LIVE LOOD</u> ELEMENT LOOD = 104,771 */4EL = 26,192,*/16 + 1,637 (5) (4) (3) (3) JOINT LOOD · 64,027*/3 JOINTS · 21, 342* Jr. 12,22, 32, 19, 29,39
EARTHQUAKE LOOD
$Feq = 15,355^{n}$ $S = \frac{15(110)^2}{6} = 30.25FT^2$ $M = 15,355^{n} \times 7.66^{-1} = 117,619^{+1}$
$R = \frac{M}{5} = \frac{117,619}{30.25(3)} = 1,296$
ELEMENT LOOD 1,2964/16F12·81,004 1 32 81.00+1 3
Joint Loop 1,296# 1 Jr32, 39
1,296* 1 Jr 12,19

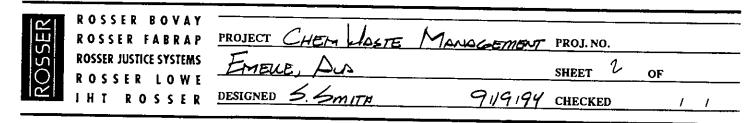


Exhibit C Page 5 of 30

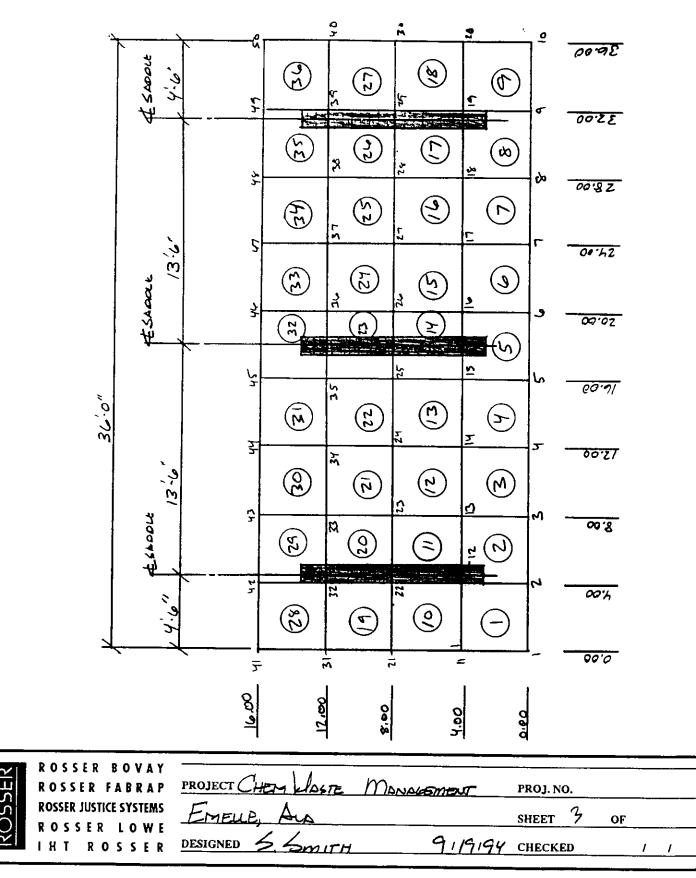


Exhibit C Page 6 of 30

FOUNDATIONS FOR TANKS T-1701 TO T-1710 CHECK SOIL BENING MAXIMUM JOINT DISPLACEMENT OCCURS C JT 6 5.B. = 0.1877 × 0.073 × 12: × 144 "/rr 1.97 KSF = 4,000 psf :.0K MAKIMUM MOMENT & ELEMENT 5 LOD COSE 5 Mu: 4.74 K-F Try #4 e 6" 4 As: 0.40 m2 a: Asfy . 0.40(60) . 0.78. d: 8". 3". 0.5/2. 4.75" \$Mn = 0.9(0.40)(60)(4.75'- 0.78) - 94,17K-1N- 7.85K-F \$Mn= 7,85K-F = Mw: 4.74K-F ! BENDING OK USE #426"4. E.V. DESIGN ANCHOR BOURS Max SHORE- 15,355# / GEFF BOURS - 2,555# Try 3/4 \$ A.307 Arcune Bours Nava = 4.4 × = Vour · 2,56 ... OK

USE	¥4'Ø	(A·307)	Aiz

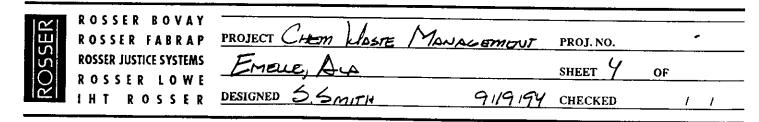


Exhibit C Page 7 of 30

************************************* × STAAD-III × REVISION 15.0 (VERSION 15 LEVEL 0) × * PROPRIETARY PROGRAM OF ÷ * RESEARCH ENGINEERS, INC. * × DATE= SEP 20, 1994 TIME= 10:26: 7 * × * × 1. STAAD SPACE "CHEM WASTE MANAGEMENT" 2. * 4. * CHEM WASTE MANAGEMENT 5. * EMELLE, ALABAMA 6. * 7. * TANK NO. T-1701 TO T-1710 8. * 9. * FILE NAME " 10. * 11. * DESIGNED BY SCOTT SMITH 12. * 14. UNIT KIPS FEET 15. * 16. *

 17. JOINT COORDINATES

 18. 1
 0
 0

 19. 10
 36.0
 0

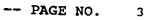
 20. 11
 0
 4.0

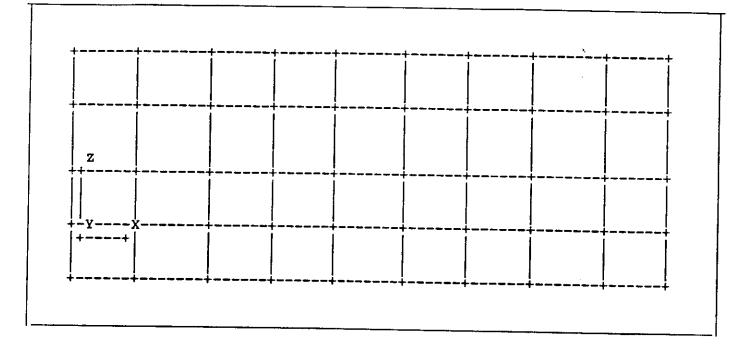
 0 0 ; 2 4.00 0 0 9 32.00 0.0 0.0 0 0 4.0 36.0 0 4.0 ; 12 4.00 0 4.0 19 32.00 0.0 4.0 21. 20 0 0 8.00 22. 21 ; 22 4.00 0 8.00 29 32.00

 23. 30
 36.0
 0
 8.00

 24. 31
 0
 0
 12.00

 25. 40
 36.0
 0
 12.00


 0.0 8.0 0 12.00 ; 32 4.00 0 12.00 39 32.00 0.0 12.00 26. 41 0 0 16.00 ; 42 4.00 0 16.00 49 32.00 0.0 16.00 27. 50 36.0 0 16.00 28. * 31. * MAT FOUNDATION ELEMENTS 32. * 34. ELEMENT INCIDENCES 35.1 11 12 2 1 то 9 36. 10 21 22 12 11 то 18 37. 19 32 22 31 21 то 27 38. 28 41 42 32 31 TO 36 39. * 41. UNITS KIP INCHES 42. * 43. * 44. * MAT FOUNDATION ELEMENTS 45. * 46. ELEMENT PROPERTIES 47.1 TO 36 TH 8


"CHEM WASTE MANAGEMENT" -- PAGE NO. 2 ÷. **49. SUPPORTS** 50. * MODULUS OF SUBGRADE REACTION, K = 0.073 K/IN^3 X 144 IN^2/FT^2 51. * 52. * = 10.52 K/FT²/IN 53. * SPRING CONSTANT

 54. * JOINTS 1, 10, 41 50
 = 1/4(4X4)(K) = 42.080 K/IN

 55. * JOINTS 11 20 21 30 31 40 41 50 = 1/2(4X4)(K) = 84.160 K/IN

 56. * JOINTS 12 13 14 15 16 17 18 19 = (4X4)(K) = 168.320 K/IN 57. * JOINTS 22 23 24 25 26 27 28 29 = (4X4)(K) = 168.320 K/IN 58. * JOINTS 32 33 34 35 36 37 38 39 = (4X4)(K) = 168.320 K/IN 59. * JOINTS 42 43 44 45 46 47 48 49 = (4X4)(K) = 168.320 K/IN 60. * 61. * 62. 1 10 41 50 FIXED BUT MX MY MZ KFY 42.080 63. 11 20 21 30 31 40 41 50 FIXED BUT MX MY MZ KFY 84.160 64. 12 TO 19 22 TO 29 32 TO 39 42 TO 49 FIXED BUT MX MY MZ KFY 168.32 67. * 68. UNITS KIP FEET 69. * 70. * CONCRETE STRENGTH = 3000 PSI CONCRETE UNIT WT. = 150 PCF 71. * 72. * E(CONC.) = 57000(SQ. RT. OF CONC. STRENGTH)73. * 74. CONSTANTS 75. E 449571 ALL 76. POIS 0.2 ALL 77. DEN 0.15 ALL 79. PLOT PLAN XZ 0.

"CHEM WASTE MANAGEMENT" -- PAGE NO. - 4 81. * 82. LOADING 1 DEAD LOAD 83. * 84. SELFWEIGHT 85. * 86. ELEMENT LOAD 87. 5 14 23 32 PR -0.162 88. * 89. JOINT LOADS 90. 12 22 32 FY -2.118 91. 19 29 39 FY -2.118 93. LOADING 2 LIVE LOAD 94. * 95. ELEMENT LOAD 96. 5 14 23 32 PR -1.637 97. * 98. JOINT LOADS 99. 12 22 32 FY -21.342 .00. 19 29 39 FY -21.342 100. 19 29 39 102. LOADING 3 EARTHQUAKE LOAD 103. * 104. ELEMENT LOAD 105.5 PR 0.081 106. 32 PR -0.081 107. * 108. JOINT LOADS 109. 12 19 110. 32 39 FY 1.296 FY 1.296 115. LOAD COMBIMATION 5 116. 1 1.4 2 1.7 118. LOAD COMBINATION 6 119. 1 1.05 2 1.275 3 1.275 121. PERFORM ANALYSIS PRINT ALL

PROBLEM STATISTICS

NUMBER OF JOINTS/MEMBER+ELEMENTS/SUPPORTS = 50/ 36/ 44 ORIGINAL/FINAL BAND-WIDTH = 11/ 10 TOTAL PRIMARY LOAD CASES = 3, TOTAL DEGREES OF FREEDOM = 300 SIZE OF STIFFNESS MATRIX = 19800 DOUBLE PREC. WORDS TOTAL REQUIRED DISK SPACE = 12.54 MEGA-BYTES "CHEM WASTE MANAGEMENT" *

۰.

LOADING 1 DEAD LOAD

SELFWEIGHT Y -1.000

ACTUAL WEIGHT OF THE STRUCTURE = 57.600 KIP

ELEMENT LOAD (UNITS ARE KIP FEET)

	-	-	,			
ELEMI	ENT J	PRESSURE				
14		0.162000				
JOINT I	OAD - UNII	KIP FEET				
JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM-Z
12 22	0.00	-2.12 -2.12	0.00 0.00 0.00	0.00	0.00	0.00
32	0.00	-2.12	0.00	0.00	0.00	0.00
19	0.00	-2.12 -2.12 -2.12	0.00	0.00	0.00	0.00
29	0.00	-2.12	0.00	0.00	0.00	0.00
39	0.00	-2.12	0.00	0.00	0.00	0.00
SUM	MATION FOR MATION FOR	LOAD (KIP CE-X = CE-Y = CE-Z =	FEET) SUM 0.00 -80.68 0.00	MARY (LOAD	ING 1)	
SUMM. MX=	ATION OF M	OMENTS AROU 5.41 MY=	ND THE ORIG			
121-	04	J.41 MI-	0.	00 MZ=	-1452.1	7
LOADING	2 LIV	E LOAD				
ELEMENT	LOAD (UNI	TS ARE KIP	FEET)			
ELEME	NT PI	RESSURE				

5	-1.637000
14	-1.637000
23	-1.637000
32	-1.637000

-- PAGE NO. 6

_

JOINT	LOAD - UNII	KIP FEET	1			
JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	Mom-z
12	0.00	-21.34	0.00	0 00		
22	0.00	-21.34	0.00	0.00	0.00	0.00
32	0.00	-21.34		0.00	0.00	0.00
19	0.00	-21.34	0.00	0.00	0.00	0.00
29	0.00	-21.34	0.00 0.00	0.00	0.00	0.00
39	0.00	-21.34	0.00	0.00 0.00	0.00 0.00	0.00
SUI	AL APPLIED MMATION FOR MMATION FOR MMATION FOR	CE-X = CE-Y =	FEET) SUM 0.00 -232.82 0.00			
SUM MX=	MATION OF M 186	OMENTS ARO 2.56 MY=	UND THE ORIG 0.	IN- 00 MZ=	-4190.7	76
	5 3 EAR	THQUAKE LO.	AD			
ELEMENT	LOAD (UNI	TS ARE KIP	FEET)			
ELEMI	ENT P	RESSURE				
5 32		.081000 .081000				
JOINT I	OAD - UNIT	KIP FEET				
JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM-Z
12	0.00	1.30	0.00	0.00	0.00	0 00
19	0.00	1.30	0.00	0.00	0.00	0.00
32	0.00	1.30	0.00	0.00	0.00	0.00
39	0.00	1.30	0.00	0.00	0.00	0.00
SUM	L APPLIED I MATION FORC MATION FORC MATION FORC	2E-X = 2E-Y =	5 1 2	IARY (LOADI		
SUMM MX=		MENTS AROU 5.92 MY=	ND THE ORIGI 0.0	N- 00 MZ=	93.3	1
	CCTNC DIDIT					
TT PROCE	SSING ELEME	NT STIFFNE	55 MATRIX.		10:26:14	
TT PROCE	SSING GLOBA	L STIFFNES	S MATRIX.		10:26:16	

++ ++	PROCESSING	GLOBAL STII TRIANGULAR	FFNESS FACTO	MATRIX. RIZATION	10:26:16 10:26:20

"CHEM WASTE MANAGEMENT" 4 ***WARNING - IMPROPER LOAD WILL CAUSE INSTABILITY AT JOINT 50 DIRECTION = MY PROBABLE CAUSE MODELING PROBLEM 0.587E-06 ++ CALCULATING JOINT DISPLACEMENTS. 10:26:28 ++ CALCULATING ELEMENT FORCES. 10:26:32 ***TOTAL REACTION (KIP FEET) SUMMARY LOADING 1 SUM-X= 0.00 SUM-Y= 81.75 SUM-Z= 0.00 SUMMATION OF MOMENTS AROUND ORIGIN-MX= -662.56 MY= 0.00 MZ= 1471.46 LOADING 2 0.00 SUM-Y= 234.72 SUM-Z= SUM-X= 0.00 SUMMATION OF MOMENTS AROUND ORIGIN-MX= -1893.00 MY= 0.00 MZ= 4225.00 LOADING 3 SUM-X= 0.00 SUM-Y= -5.31 SUM-Z= 0.00 SUMMATION OF MOMENTS AROUND ORIGIN-MX= 28.00 MY= 0.00 MZ= -95.65 LOAD COMBINATION NO. 4 4 LOADING-1. 2. 3. FACTOR - 1.00 1.00 1.00 LOAD COMBINATION NO. 5 5 LOADING-1. 2. FACTOR - 1.40 1.70 LOAD COMBINATION NO. 6 6 LOADING-1. 2. з. FACTOR - 1.05 1.27 1.27 ************ END OF DATA FROM INTERNAL STORAGE ************* 122. LOAD LIST 1 2 3 4 123. PRINT JOINT DISPLACEMENTS

			INCH KADIAN	(5) SIR	SCTURE TYPE	= SPACE	
JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
1	1	0.00000	-0.02082	0.00000	-0.00012	0.00000	-0.00022
	2	0.00000	-0.03592	0.00000	0.00032	0.00000	-0.00053
	3	0.00000	0.00231	0.00000	0.00000	0.00000	0.00003
	4	0.00000	-0.05442	0.00000	0.00020	0.00000	-0.00072
2	1	0.00000	-0.03216	0.00000	-0.00030	0.00000	-0.00014
	1 2 3	0.00000	-0.05715	0.00000	0.00000	0.00000	-0.00021
		0.00000	0.00360	0.00000	0.00002	0.00000	0.00001
	4	0.00000	-0.08571	0.00000	-0.00028	0.00000	-0.00034
3	1 2 3	0.00000	-0.03788	0.00000	-0.00040	0.00000	-0.00007
	2	0.00000	-0.06720	0.00000	-0.00038	0.00000	~0.00011
	3	0.00000	0.00401	0.00000	0.00004	0.00000	0.00000
	4	0.00000	-0.10107	0.00000	-0.00075	0.00000	-0.00018
4	1 2 3	0.00000	-0.04262	0.00000	-0.00048	0.00000	-0.00010
	2	0.00000	-0.09416	0.00000	-0.00087	0.00000	-0.00086
		0.00000	0.00478	0.00000	0.00006	0.00000	0.00003
	4	0.00000	-0.13200	0.00000	-0.00129	0.00000	-0.00094
5	1	0.00000	-0.04839	0.00000	-0.00058	0.00000	-0.00007
	2	0.00000	-0.14597	0.00000	-0.00176	0.00000	-0.00063
	3	0.00000	0.00669	0.00000	0.00011	0.00000	0.00002
	4	0.00000	-0.18767	0.00000	-0.00223	0.00000	-0.00067
6	1 2	0.00000	-0.04839	0.00000	-0.00058	0.00000	0.00007
	2	0.00000	-0.14597	0.00000	-0.00176	0.00000	0.00063
	3	0.00000	0.00669	0.00000	0.00011	0.00000	-0.00002
_	4	0.00000	-0.18767	0.00000	-0.00223	0.00000	0.00067
7	1	0.00000	-0.04262	0.00000	-0.00048	0.00000	0.00010
	2	0.00000	-0.09416	0.00000	-0.00087	0.00000	0.00086
	3	0.00000	0.00478	0.00000	0.00006	0.00000	-0.00003
•	4	0.00000	-0.13200	0.00000	-0.00129	0.00000	0.00094
8	1	0.00000	-0.03788	0.00000	-0.00040	0.00000	0.00007
	2 3	0.00000	-0.06720	0.00000	-0.00038	0.00000	0.00011
	5	0.00000	0.00401	0.00000	0.00004	0.00000	0.0000
9	4	0.00000	-0.10107	0.00000	-0.00075	0.00000	0.00018
9	1	0.00000	-0.03216	0.00000	-0.00030	0.00000	0.00014
	2	0.00000	-0.05715	0.00000	0.00000	0.00000	0.00021
	3	0.00000	0.00360	0.00000	0.00002	0.00000	-0.00001
10	4	0.00000	-0.08571	0.00000	-0.00028	0.00000	0.00034
10	1	0.00000	-0.02082	0.00000	-0.00012	0.00000	0.00022
	2	0.00000	-0.03592	0.00000	0.00032	0.00000	0.00053
	3	0.00000	0.00231	0.00000	0.00000	0.00000	-0.00003
	4	0.00000	-0.05442	0.00000	0.00020	0.00000	0.00072
11	1 2	0.00000	-0.01527	0.00000	-0.00012	0.00000	-0.00016
	2	0.00000	-0.04363	0.00000	0.00016	0.00000	-0.00057
	3	0.00000	0.00183	0.00000	0.00001	0.00000	0.00003
12	4	0.00000	-0.05707	0.00000	0.00006	0.00000	-0.00070
12	1 2	0.00000	-0.02049	0.00000	-0.00018	0.00000	-0.00006
	2	0.00000	-0.06146	0.00000	0.00002	0.00000	0.00002
	3 4	0.00000	0.00291	0.00000	0.00002	0.00000	0.00000
	4	0.00000	-0.07904	0.00000	-0.00013	0.00000	-0.00004

JOINT DISPLACEMENT (INCH RADIANS) STRUCTURE TYPE = SPACE

Exhibit C Page 15 of 30

9

JOIN	T DISP	LACEMENT (INCH RADIAN	IS) STR	UCTURE TYPE	= SPACE	
JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
13	1	0.00000	-0.02094	0.00000	0 00007		
	ź	0.00000	-0.04710	0.00000	-0.00027	0.00000	0.00000
	3	0.00000	0.00210	0.00000	-0.00031	0.00000	0.00022
	4	0.00000	-0.06593	0.00000	0.00003	0.00000	-0.00001
14	i	0.00000	-0.02214	0.00000	-0.00054	0.00000	0.00021
	2	0.00000	-0.05276	0.00000	-0.00033	0.00000	-0.00006
	2 3	0.00000	0.00190	0.00000	-0.00073 0.00005	0.00000	~0.00050
	4	0.00000	-0.07300	0.00000	-0.00101	0.00000	0.00001
15	1	0.00000	-0.02495	0.00000	-0.00036	0.00000	-0.00055
	1 2	0.00000	-0.07973	0.00000	-0.00095	0.00000 0.00000	-0.00004
	3	0.00000	0.00235	0.00000	0.00007	0.00000	-0.00044
	4	0.00000	-0.10233	0.00000	-0.00124	0.00000	0.00001
16	1	0.00000	-0.02495	0.00000	-0.00036	0.00000	-0.00048
	1 2	0.00000	-0.07973	0.00000	-0.00095	0.00000	0.00004
	3	0.00000	0.00235	0.00000	0.00007	0.00000	0.00044
	4	0.00000	-0.10233	0.00000	-0.00124	0.00000	-0.00001 0.00048
17	1 2	0.00000	-0.02214	0.00000	-0.00033	0.00000	0.00048
	2	0.00000	-0.05276	0.00000	-0.00073	0.00000	0.00050
	3	0.00000	0.00190	0.00000	0.00005	0.00000	-0.00001
	4	0.00000	-0.07300	0.00000	-0.00101	0.00000	0.00055
18	1 2	0.00000	-0.02094	0.00000	-0.00027	0.00000	0.00000
	2	0.00000	-0.04710	0.00000	-0.00031	0.00000	-0.00022
	3	0.00000	0.00210	0.00000	0.00003	0.00000	0.00001
	4	0.00000	-0.06593	0.00000	-0.00054	0.00000	-0.00021
19	1 2	0.00000	-0.02049	0.00000	-0.00018	0.00000	0.00006
	2	0.00000	-0.06146	0.00000	0.00002	0.00000	-0.00002
	3	0.00000	0.00291	0.00000	0.00002	0.00000	0.00000
	4	0.00000	-0.07904	0.00000	-0.00013	0.00000	0.00004
20	1	0.00000	-0.01527	0.00000	-0.00012	0.00000	0.00016
	2	0.00000	-0.04363	0.00000	0.00016	0.00000	0.00057
	3	0.00000	0.00183	0.00000	0.00001	0.00000	-0.00003
~ 1	4	0.00000	-0.05707	0.00000	0.00006	0.00000	0.00070
21	1	0.00000	-0.01269	0.00000	~0.00003	0.00000	-0.00007
	2	0.00000	-0.04715	0.00000	-0.00005	0.00000	-0.00051
	3	0.00000	0.00165	0.00000	0.00000	0.00000	0.00002
	4	0.00000	-0.05819	0.00000	-0.00008	0.00000	-0.00056
22	1	0.00000	-0.01493	0.00000	-0.00007	0.00000	0.00001
	2	0.00000	-0.05916	0.00000	-0.00011	0.00000	0.00020
	3	0.00000	0.00183	0.00000	0.00001	0.0000	-0.00001
22	4	0.00000	-0.07226	0.00000	-0.00017	0.00000	0.00020
23	1	0.00000	~0.01307	0.00000	-0.00009	0.00000	0.00005
	2	0.00000	-0.03632	0.00000	-0.00017	0.00000	0.00053
	3	0.00000	0.00113	0.00000	0.00001	0.00000	-0.00003
24	4	0.00000	-0.04826	0.00000	-0.00025	0.00000	0.00056
24	1 2	0.00000	-0.01251	0.00000	-0.00010	0.00000	-0.00002
	2	0.00000 0.00000	-0.03153	0.00000	-0.00024	0.00000	-0.00028
	4	0.00000	0.00020	0.00000	0.00002	0.00000	-0.00001
	4	0.0000	-0.04384	0.00000	-0.00032	0.0000	-0.00031

JOINT DISPLACEMENT (INCH PADIANS)

JOIN 	T DISP	LACEMENT (INCH RADIAN	IS) STR	UCTURE TYPE	= SPACE	
JOINT	LOAD	X-TRANS	Y-TRANS	Z-TRANS	X-ROTAN	Y-ROTAN	Z-ROTAN
25	1	0.00000	-0.01444	0.00000	-0.00011	0.00000	-0.00003
	2	0.00000	-0.05214	0.00000	-0.00031	0.00000	-0.00035
	3	0.00000	-0.00010	0.00000	0.00004	0.00000	0.00000
	4	0.00000	-0.06668	0.00000	-0.00038	0.00000	-0.00039
26	1	0.00000	-0.01444	0.00000	-0.00011	0.00000	0.00003
	2	0.00000	-0.05214	0.00000	-0.00031	0.00000	0.00035
	3	0.00000	-0.00010	0.00000	0.00004	0.00000	0.00000
	4	0.00000	-0.06668	0.00000	-0.00038	0.00000	0.00039
27	1	0.00000	-0.01251	0.00000	-0.00010	0.00000	0.00002
	2	0.00000	-0.03153	0.00000	-0.00024	0.00000	0.00028
	3	0.00000	0.00020	0.00000	0.00002	0.00000	0.00001
	4	0.00000	-0.04384	0.00000	-0.00032	0.00000	0.00031
28	1 2	0.00000	-0.01307	0.00000	-0.00009	0.00000	-0.00005
	2	0.00000	-0.03632	0.00000	-0.00017	0.00000	-0.00053
	3	0.00000	0.00113	0.00000	0.00001	0.00000	0.00003
•	4	0.00000	-0.04826	0.00000	-0.00025	0.00000	-0.00056
29	1 2	0.00000	-0.01493	0.00000	-0.00007	0.00000	-0.00001
	2	0.00000	-0.05916	0.00000	-0.00011	0.00000	-0.00020
	3	0.00000	0.00183	0.00000	0.00001	0.00000	0.00001
2.0	4	0.00000	-0.07226	0.00000	-0.00017	0.00000	-0.00020
30	1	0.00000	-0.01269	0.00000	-0.00003	0.00000	0.00007
	2	0.00000	-0.04715	0.00000	-0.00005	0.00000	0.00051
	3	0.00000	0.00165	0.00000	0.00000	0.00000	-0.00002
~ 1	4	0.00000	-0.05819	0.00000	-0.00008	0.00000	0.00056
31	1	0.00000	-0.01089	0.00000	-0.00008	0.00000	-0.00003
	2	0.00000	-0.03660	0.00000	-0.00050	0.00000	-0.00033
	3	0.00000	0.00139	0.00000	0.00001	0.00000	0.00001
22	4	0.00000	-0.04610	0.00000	-0.00057	0.00000	-0.00034
32	1	0.00000	-0.01185	0.00000	-0.00008	0.00000	0.00001
	2 3	0.00000	-0.04629	0.00000	-0.00047	0.00000	0.00018
	4	0.00000	0.00201	0.00000	0.00001	0.00000	-0.00001
33	1	0.00000	-0.05613	0.00000	-0.00055	0.00000	0.00018
	2	0.00000	-0.00973	0.00000	-0.00007	0.00000	0.00004
	3	0.00000	-0.02494	0.00000	-0.00035	0.00000	0.00039
	4	0.00000 0.00000	0.00072	0.00000	0.00001	0.00000	-0.00003
34	1	0.00000	-0.03396	0.00000	-0.00041	0.00000	0.00040
24	2	0.00000	-0.00928	0.00000	-0.00005	0.00000	-0.00003
	3	0.00000	-0.02202	0.00000	-0.00019	0.00000	-0.00029
	4	0.00000	-0.00045	0.00000	0.00001	0.00000	-0.00002
35		0.00000	-0.03176 -0.01111	0.00000	-0.00023	0.00000	-0.00033
	1 2 3	0.00000	-0.04165	0.00000	-0.00005	0.00000	-0.00003
	2	0.00000		0.00000	-0.00020	0.00000	-0.00033
	4	0.00000	-0.00127 -0.05402	0.00000	0.00001	0.00000	-0.00001
36		0.00000	-0.01111	0.00000	-0.00023	0.00000	-0.00037
	1 2	0.00000	-0.04165	0.00000	-0.00005	0.00000	0.00003
	3	0.00000	-0.00127	0.00000 0.00000	-0.00020	0.00000	0.00033
	4	0.00000	-0.05402	0.00000	0.00001	0.00000	0.00001
	-			v. 00000	-0.00023	0.00000	0.00037

and a second second second second second second second

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROTAN . 00003 . 00029 . 00002 . 00033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00003
2 0.00000 =0.04628 0.00000 0.00000 =0.	00040
	00001
3 0.00000 0.00201 0.00000 0.00000 0.00000 40.	00018
	00001
40 1 0.00000 -0.01089 0.00000 -0.00008 0.00000 0.	00018
	00003
3 0 00000 0 00120 0 00000 0.00000 0.	00033
4 0 00000 -0 04610 0 00000 0 00001 0.00000 -0.	00001
41 1 0.00000 -0.00637 0.00000 -0.00012 0.00000 0.	00034
2 0.00000 -0.01130 0.00000 0.00012 0.00000 -0.	00002
3 0.00000 0.00077 0.00000 0.00074 0.00000 -0.	00016
4 0.00000 -0.01690 0.00000 0.00002 0.00000 0.	00001
42 1 0 00000 -0 00630 0 00000 0.00003 0.00000 -0.	00017
	00001
3 0 00000 0 00000 0 00000 0 00000 0.	00009
4 0 00000 -0 01007 0 00000 0.00000 -0.	00001
43 1 0.00000 =0.00576 0.00000 0.00000 0.	00010
2 0.00000 -0.00561 0.00000 0.000000 0.	00003
3 0 00000 0 00033 0 00000 0 00002 0.00000 0.	00024
4 0.00000 -0.01103 0.00000 0.00001 0.00000 -0.	00003
44 1 0.00000 -0.00597 0.00000 0.00000 0.	00024
	00003
3 0.00000 -0.00066 0.00000 0.00000 -0.	00037
4 0.00000 -0.01526 0.00000 0.00000 -0.	00002
45 1 0.0000 -0.0000 0.00000 0.00000 -0.	00043
2 0.00000 -0.03251 0.00000 0.00000 -0.	00003
3 0.00000 -0.00184 0.00000 0.00012 0.00000 -0.	00036
4 0 00000 -0 04262 0 00000 0 00001 0.00000 -0.	00001
	00040
	00003
3 0.00000 -0.00184 0.00000 0.00012 0.00000 0.0	00036
4 0 00000 -0 04262 0 00000 0.00000 0.00000 0.0	00001
47 1 0.00000 0.00507 0.00000 0.00000 0.00000 0.0	00040
2 0.00000 -0.00964 0.00000 0.00000 0.00000 0.0	00003
3 0.00000 -0.00066 0.00000 0.00000 0.00000 0.0	00037
4 0.00000 -0.01526 0.00000 0.00000 0.00000 0.0	00002
48 1 0.0000 -0.00576 0.00000 0.00000 0.0	00043
	00003
3 0 00000 0 00032 0 00000 -0.0	00024
4 0 00000 -0 01103 0 00000 0.00001 0.00000 0.0	00003
4 0.00000 -0.01103 0.00000 -0.00060 0.00000 -0.0	

J011	T DISP	LACEMENT (I	NCH RADIAN	is) stru	CTURE TYPE	= SPACE	
JOINT	LOAD	X-TRANS	Y-TRANS	z-trans	X-ROTAN	Y-ROTAN	Z-ROTAN
49 50	1 2 3 4 1 2 3 4	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	-0.00639 -0.01140 0.00082 -0.01697 -0.00637 -0.01130 0.00077 -0.01690	$\begin{array}{c} 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\end{array}$	-0.00012 -0.00074 0.00003 -0.00083 -0.00012 -0.00074 0.00002 -0.00083	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	$\begin{array}{c} -0.00001 \\ -0.00009 \\ 0.00001 \\ -0.00010 \\ 0.00002 \\ 0.00016 \\ -0.00001 \\ 0.00017 \end{array}$

124. LOAD LIST 5 6 125. PRINT ELEMENT FORCES "CHEM WASTE MANAGEMENT"

ELEMENT FORCES	FORCE, L	ENGTH UNITS	= KIP FEET		
FORCE OR STRESS =	FORCE/W	IDTH/THICK,	MOMENT = FORC	E-LENGTH/WIDT	H
ELEMENT LOAD	QX	QY FX	MX Fy	MY FXY	MXY
15	-2.08	0.89	-2.63	-0.59	0.95
TOP : SMAX= BOTT: SMAX=	-2.90	SMIN= -4 SMIN=	0.55 TMAX= 2.90 TMAX=	-0.59 0.00 18.83 ANGLI 18.83 ANGLI -0.40 0.00 13.55 ANGLI 13.55 ANGLI	S= -21.6 S= -21.6
TOP : SMAX=	-1.48	0.62 0.00 SMTN= -2	-1.87 0.00 28 91 TWAY-	-0.40 0.00	0.68
BOTT: SMAX=	28.91	SMIN=	1.80 TMAX=	13.55 ANGLI 13.55 ANGLI	= -21.5 = -21.5
2 5	2.01	0.11 0.00	-0.86 0.00	0.57 0.00	1.53
BOTT: SMAX= 6	20.82 24.70 1.42	SMIN = -2 $SMIN = -2$ 0.07	4.70 TMAX= 20.82 TMAX= -0.59	0.57 0.00 22.76 ANGLE 22.76 ANGLE 0.43 0.00 16.46 ANGLE 16.46 ANGLE	= -32.5 = -32.5
TOP : SMAX=	15.35	0.00 SMIN= -1	0.00 7.57 TMAX=	0.00 16.46 ANGLE	-32.7
BOTT: SMAX=	17.57	SMIN= -1	.5.35 TMAX=	16.46 ANGLE	= -32.7
TOP : SMAX=	67.85	0.00 SMIN= 1	4.04 0.00 1.90 TMAX=	1.87 0.00 27.97 ANGLE	1.77
BOTT: SMAX= 6	-11.90 -0.47	SMIN= -6 -1.71	7.85 TMAX= 2.93	27.97 ANGLE 1.36	= 29.2 = 29.2 1.27
3 5 TOP : SMAX= BOTT : SMAX= 6 TOP : SMAX= BOTT : SMAX=	49.12 -8.77	SMIN= SMIN= -4	0.00 8.77 TMAX= 9.12 TMAX=	0.00 20.17 ANGLE 20.17 ANGLE	= 29.1 = 29.1
4 5	-4.05	-2.38	-0.19	2.93	1.78
TOP : SMAX= BOTT: SMAX=	50.48 13.51	SMIN= -1 SMIN= -5	0.00 3.51 TMAX= 0.48 TMAX=	0.00 32.00 ANGLE	= -24.4
6	-2.93	-1.72 0.00	-0.15 0.00	2.11 0.00	= -24.4 1.27
TOP : SMAX= BOTT: SMAX= 6 TOP : SMAX= BOTT: SMAX=	36.16 9.73	SMIN= - SMIN= -3	9.73 TMAX= 6.16 TMAX=	22.95 ANGLE 22.95 ANGLE	= -24.1 = -24.1
5 5	0.00	-2.50 0.00	-4.74 0.00	3.73 0.00	0.00
TOP : SMAX= BOTT: SMAX= 6	50.38 64.05 0.00	SMIN= -5	4.05 TMAX= 0.38 TMAX=	57.21 ANGLE 57.21 ANGLE	= 0.0
TOP : SMAX=	36.26	-1.78 0.00 SMIN= -40	-3.47 0.00 5.87 TMAX=	2.69 0.00 41.56 ANGLE	0.00
BOTT: SMAX= 6 5	46.87	SMIN= -3	5.26 TMAX=	41.56 ANGLE	
6 5 TOP : SMAX=	4.05 50.48	-2.38 0.00 SMIN= -1:	-0.19 0.00 3.51 TMAX=	2.93	-1.78
BOTT: SMAX=	13.51		$1.48 \mathbf{TMAX} =$	32.00 ANGLE: 32.00 ANGLE:	

ELEMENT FORCES FORCE, LENGTH UNITS= KIP FEET

FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH

ELEMENT LOAD	QX	QY	MX	MY	MYV
		FX	FY		FIA I
6	2.93	-1.72	-0.15	2.11 0.00 22.95 Angle= 22.95 Angle=	-1.27
		0.00	0.00	0.00	2127
TOP : SMAX=	36.16	SMIN=	-9.73 TMAX=	22.95 ANGLE=	= 24.1
BUII: SMAX=	9.73	SMIN= -3	6.16 TMAX=	22.95 ANGLE=	= 24.1
7 5	0 65	2 25		1.87 0.00 27.97 ANGLE= 27.97 ANGLE= 1.36 0.00 20.17 ANGLE= 20.17 ANGLE=	
	0.05	-2.35	4.04	1.87	-1.77
TOP : SMAX=	67 85	SMTN- 1		0.00	
BOTT: SMAX=	-11.90		1.90 TMAX=	27.97 ANGLE=	= -29.2
6	0.47	-1.71	2 02	2/.9/ ANGLE=	= -29.2
-		0.00	2,93	1.30	-1.27
TOP : SMAX=	49.12	SMIN=	8.77 TMAX=	20 17 NICIE-	
BOTT: SMAX=	-8.77	SMIN= -4	9.12 TMAX=	20.17 ANGLE=	= -29.1
		• •		20.17 ANGLE=	-29.1
8 5	-2.01	0.11	-0.86	0.57 0.00 22.76 ANGLE= 22.76 ANGLE= 0.43 0.00 16.46 ANGLE= 16.46 ANGLE=	-1 52
		0.00	0.00	0.00	-1.02
TOP : SMAX=	20.82	SMIN= -2	4.70 TMAX=	22.76 ANGLE=	: 325
BOTT: SMAX=	24.70	SMIN= -2	0.82 TMAX=	22.76 ANGLE=	32.5
6	-1.42	0.07	-0.59	0.43	-1.11
		0.00	0.00	0.00	
TOP : SMAX=	15.35	SMIN= -1	7.57 TMAX=	16.46 ANGLE=	32.7
BOTT: SMAX=	17.57	SMIN= -1	5.35 TMAX=	16.46 ANGLE=	32.7
9 E	2 00	0 00		-0.59 0.00 18.83 ANGLE= 18.83 ANGLE= -0.40 0.00	
5 5	2.08	0.89	-2.63	~0.59	-0.95
TOP · SMAX=	-2 90	CMTN-	0.00	0.00	
BOTT: SMAX=	40 55	SMIN= -4	0.55 TMAX =	18.83 ANGLE=	21.6
6	1.48	0 62	2.90 T <u>MAX</u> ≕	18.83 ANGLE=	21.6
-	1.10	0.00	~1.8/	-0.40	-0.68
TOP : SMAX=	-1.80	SMTN= -2	8 G1 111/3 V-		
BOTT: SMAX=	28.91	SMIN=	1.80 TMAX=	0.00 13.55 ANGLE= 13.55 ANGLE=	21.5
			1.00 IMAA-	13.55 ANGLE=	21.5
10 5	-2.55	0.81	-3.66	-1 10	0.64
		0.00	0.00	-1.18 0.00 18.81 ANGLE= 18.81 ANGLE=	0.64
TOP : SMAX=	-13.84	SMIN= -5	1.46 TMAX=	18 81 ANCIE-	-12 C
BOTT: SMAX=	51.46	SMIN= 1	3.84 TMAX=	18 81 ANCIE	-13.0
6	-1.86	0.66	-2.65	-0.91	-13.0
		0.00	0.00	0.00	0.40
TOP : SMAX=	-10.76	SMIN= -3	7.35 TMAX=	13.30 ANGLE=	13 g
BOTT: SMAX=	37.35	SMIN= 10	0.76 TMAX=	18.81 ANGLE= -0.91 0.00 13.30 ANGLE= 13.30 ANGLE=	-13.8
11 5	5.51	0.81	-1.39	0.28	1.05
TOP : SMAX=	10 60	0.00	0.00	0.00	
TOP : SMAX= BOTT: SMAX=	10.69	SMIN = -2	5.69 TMAX=	18.19 ANGLE=	
6	25.69 4.02	SMIN = -10	0.69 TMAX=	18.19 ANGLE=	-25.7
0	4.02	0.67	-0.99	0.16	0.76
TOP : SMAX=	7.27	0.00 SMIN= -18	0.00	0.00	
BOTT: SMAX=	18.54		3.54 TMAX=	12.90 ANGLE=	
Dimin-	10+34		7.27 TMAX=	12.90 ANGLE=	-26.4

ELEMENT FORCES FORCE, LENGTH UNITS= KIP FEET FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH ELEMENT LOAD QX QY MX MY MXY FX FY FXY 12 5 1.26 0.81 4.50 3.17 1.13 0.00 0.00 0.00 TOP : SMAX= 69.52 SMIN= 34.04 TMAX= 17.74 ANGLE= 29.7 BOTT: SMAX= -34.04 SMIN= -69.52 TMAX= 17.74 ANGLE= 29.7 6 0.92 3.29 0.56 2.27 0.80 0.00 0.00 0.00 TOP : SMAX= 50.39 24.68 SMIN= TMAX= 12.86 ANGLE= 28.6 BOTT: SMAX= -24.68 SMIN= ~50.39 TMAX= 12.86 ANGLE= 28.6 13 5 -2.50 1.17 0.79 3.76 0.66 0.00 0.00 0.00 SMIN= 8.78 TMAX= SMIN= -52.59 TMAX= TOP : SMAX= 52.59 21.91 ANGLE= -12.0 BOTT: SMAX= -8.78 21.91 ANGLE= -12.06 -1.860.86 0.55 2.69 0.45 0.00 0.00 0.00 TOP : SMAX= 37.55 SMIN= 6.16 TMAX= 15.69 ANGLE= -11.4 BOTT: SMAX= -6.16 SMIN= -37.55 TMAX= 15.69 ANGLE= -11.4 14 5 0.00 1.18 -3.403.32 0.00 0.00 0.00 0.00 TOP : SMAX= SMIN= -45.96 TMAX= 44.87 45.41 ANGLE= 0.0 BOTT: SMAX= SMIN= -44.87 TMAX= 45.96 45.41 ANGLE= 0.0 6 0.00 0.91 -2.56 2.37 0.00 0.00 0.00 0.00 TOP : SMAX= 31.97 SMIN= -34.50 TMAX= 33.23 ANGLE= 0.0 BOTT: SMAX= 34.50 SMIN= -31.97 TMAX= 33.23 ANGLE= 0.0 15 5 2.50 1.17 0.79 3.76 -0.66 0.00 0.00 0.00 TOP : SMAX= 52.59 SMIN= 8.78 TMAX= 21.91 ANGLE= 12.0 BOTT: SMAX= -8.78 SMIN= -52.59 TMAX= 21.91 ANGLE= 12.0 6 1.86 0.86 0.55 2.69 -0.450.00 0.00 0.00 TOP : SMAX= 37.55 SMIN= 6.16 TMAX= 15.69 ANGLE= 11.4 BOTT: SMAX= -6.16SMIN= -37.55 TMAX= 15.69 ANGLE= 11.4 16 5 -1.26 0.82 4.50 3.17 -1.130.00 0.00 0.00 TOP : SMAX= 69.52 SMIN= 34.04 TMAX= 17.74 ANGLE= -29.7 BOTT: SMAX= -34.04 SMIN= -69.52 17.74 ANGLE= -29.7 TMAX= 6 -0.92 3.29 0.56 2.27 -0.80 0.00 0.00 0.00 TOP : SMAX= 50.39 SMIN= 24.68 TMAX= 12.86 ANGLE= -28.6 BOTT: SMAX= SMIN= -24.68 ~50.39 TMAX= 12.86 ANGLE= -28.6 17 5 -5.51 0.81 -1.39 0.28 -1.050.00 0.00 0.00 TOP : SMAX= 10.69 -25.69 SMIN= TMAX= ANGLE= 25.7 18.19 BOTT: SMAX= 25.69 SMIN= -10.69 TMAX=

18.19

ANGLE=

25.7

ELEMENT FO	ORCES	FORCE, L	ENGTH UNI	TS= KIP	P FEET			
FORCE OR S	STRESS =	FORCE/W	IDTH/THIC	K, MOME	NT = FORC	CE-LENGTH	/WIDTH	
ÈLEMENT LA			FX		MX FY	FXY		
	6	-4.02	0.67	i	-0.99	0.16		-0.76
TOP : BOTT:	SMAX= SMAX=	7.27 18.54	SMIN= SMIN=	-18.54 -7.27	-0.99 0.00 TMAX= TMAX=	12.90 12.90	ANGLE= ANGLE=	26.4 26.4
18	5	2.55	0.81		-3.66 0.00 TMAX= TMAX= -2.65 0.00 TMAX= TMAX=	-1.18		-0.64
TOP : BOTT:	SMAX= SMAX=	-13.84 51.46	SMIN= SMIN=	-51.46 13.84	TMAX= TMAX=	18.81 18.81	ANGLE=	13.6
TOD •	6 CMAX-	1.86	0.66 0.00		-2.65 0.00	-0.91 0.00		-0.46
BOTT:	SMAX= SMAX=	37.35	SMIN= SMIN=	-37.35 10.76	TMAX= TMAX=	13.30 13.30	ANGLE= ANGLE=	13.8 13.8
19	5	-3.03	0.62 0.00	-	-3.66	-2.75		0.26
TOP : BOTT:	SMAX= SMAX=	-36.24 50.32	SMIN= SMIN=	-50.32 36.24	-3.66 0.00 TMAX= TMAX= -2.65 0.00 TMAX= TMAX=	7.04 7.04	ANGLE= ANGLE≔	-14.9 -14.9
TOP :	SMAX=	-2.21	0.36 0.00 SMIN-	-26 55	-2.65	-2.04		0.19
BOTT:	SMAX=	36.55	SMIN=	26.81	TMAX= TMAX=	4.87 4.87	ANGLE= ANGLE=	-15.7 - 15. 7
20 TOP: BOTT: TOP: BOTT:	5	4.85	0.44	-	-1.74 0.00	-1.60 0.00		-0.22
BOTT:	SMAX= SMAX= 6	-19.46 25.71	SMIN= SMIN=	-25.71 19.46	TMAX= TMAX=	3.12 3.12	ANGLE= ANGLE≖	35.9 35.9
TOP :	SMAX=	-14.16	0.23 0.00 SMIN=	~18.70	-1.24 0.00 TMAX=	-1.20 0.00	ANCI D-	-0.17
BOTT:	SMAX=	18.70	SMIN=	14.16	TMAX=	2.27	ANGLE=	41.5
21 TOP: BOTT:	5 GMAY-	0.58	1.23 0.00		3.90 0.00	0.62 0.00		-0.25
BOTT:	SMAX= 6	-8.15 0.43	SMIN= SMIN=	8.15 -52.98	TMAX= TMAX= 2.89	22.41 22.41	ANGLE= ANGLE=	-4.4
TOP :	SMAX=	39.19	0.00 SMIN=	5.51	0.00 TMAX=	0.00		-0.21
BOTT:	SMAX=		SMIN⊨	-39.19	TMAX=		ANGLE=	
22 ! TOP :		-3.06 9.63	1.04 0.00 SMIN=		0.45	0.68	_	0.10
BOTT:	SMAX=	-5.56 -2.31	SMIN= 0.76	-9.63	TMAX= TMAX= 0.28	2.03	ANGLE= ANGLE=	-19.9
TOP :	SMAX=	6.08	0.00 SMIN=	3.64	0.00 TMAX=	0.44 0.00 1.22	ANGLE=	0.05
BOTT:	SMAX=	-3.64	SMIN=		TMAX=	1.22	ANGLE=	-15.1

FORCE OF	STRESS	= FORCE/W	IDTH/THIC	K, MOME	NT = FOR	CE-LENGTH	WIDTH	
LEMENT		QX	QY		MX			MXY
23	5	0.00	1 00					
		0.00 0.64 46.79 0.00 -0.68 35.92	0.00	i I	-3.47 0.00	0.05	I	0.0
TOP	: SMAX=	0.64	SMIN=	-46.79	TMAX=	23.71	ANGLE=	. 0.1
BOLL	: SMAX=	46.79	SMIN=	-0.64	TMAX=	23.71	ANGLE=	0.0
	6	0.00	0.78		-2.66	-0.05		0.00
ΨOD	• CWXV-		0.00		0.00	0.00		
LOP BOUND	: SMAX=	-0.68	SMIN=	-35.92	TMAX =	17.62	ANGLE=	0.0
1011	. SMAX=	35.92	SMIN=	0.68	TMAX=	17.62	ANGLE=	0.0
24	5	3.06 9.63 -5.56 2.31 6.08 -3.64	1.04	•.	0 45	0.00		
			0.00		0.45	0.68		-0.10
TOP	: SMAX=	9.63	SMIN=	5 56	1111 N V	0.00	Warn	
BOTT	: SMAX=	-5.56	SMIN=	-9.63	TMAX-	2.03	ANGLE=	19.9
	6	2.31	0.76	2.05	0.20	2.03	ANGLE=	19.9
			0.00		0.20	0.44		-0.0
TOP	SMAX=	6.08	SMIN=	3.64	TMAX=	1 22	NUCT D-	
BOTT	: SMAX=	-3.64	SMIN=	-6.08	TMAX=	1.22	ANGLE=	15.
	_						Angin-	13.
25	5	-0.58	1.23		3.90	0.62		0.25
mon			0.00		0.00	0.00		
TOP	SMAX=	52.98	SMIN=	8.15	TMAX=	22.41	ANGLE=	4.4
DOLL	SMAX=	-8.15	SMIN=	-52.98	TMAX =	22.41	ANGLE=	4.4
	0	-0.43	0.88		2.89	0.43		0.21
TOD .	CWX V-	20.10	0.00		0.00	0.00		
BOTT	SMAX=	39.19	SMIN=	5.51	TMAX=	16.84	ANGLE=	4.8
DOIL	SMAX=	-0.58 52.98 -8.15 -0.43 39.19 -5.51	SMIN=	-39.19	TMAX=	16.84	ANGLE=	4.8
26	5	-4.85	0.44	_	1 74	1 60		
			0.00	_	0.00	-1.60		0.22
TOP :	SMAX=	-19.46	SMIN=	-25 71		2.00	1.1	
BOTT:	SMAX=	25.71	SMTN=	19 46	TTMA V	3.12	ANGLE=	-35.9
	6	-3.55	0.23	10.40	124	J.12	ANGLE=	-35.9
			0.00		0.00	-1.20		0.17
TOP :	SMAX=	-14.16	SMIN=	-18.70	THAY	2.00	Wath	
BOTT:	SMAX=	18.70	SMIN=	14.16	TMAX-	2.27	ANGLE=	-41.5
		-4.85 -19.46 25.71 -3.55 -14.16 18.70		11110		2.21	ANGLE=	-41.5
27	5	3.03	0.62	_	3.66	-2.75		-0.26
			0.00		0.00	0.00		-0.20
TOP :			SMIN=	-50.32	TMAX=		ANGLE=	14 0
BOTT:		50.32	SMIN≠	36.24	TMAX=		ANGLE=	
	6	2.21	0.36		2.65	-2.04		-0.19
			0.00		0.00	0.00		0.19
TOP :			SMIN=	-36.55	TMAX=		ANGLE=	15 7
BOTT:	SMAX=	36.55	SMIN=	26.81	TMAX=		ANGLE=	15.7
20	F	1 50						/
28	5	-1.52	-1.44		2.30	-1.81		0.08
			0.00		0.00	0.00		
TOD -	CM3 V	04						
TOP : BOTT:	SMAX=	-24.28 31.20	SMTN=	-31 20		3.46	ANGLE= ANGLE=	-8.6

AN AN AN AN

ELEMENT FORCES FORCE, LENGTH UNITS= KIP FEET

FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	element lo	AD	QX	QY FX		MY Fxy	MXY
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	-1.07	-1.02		-1.27	0.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TOP :	SMAX=	-17.09	SMIN=	-22.20 TMAX=	2.56 ANGLE=	-8.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BOTT:	SMAX=	22.20	SMIN ≍	17.09 TMAX=	2.56 ANGLE=	-8.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29	5	2.09	-1.70	-1.22	-1.40	-0.61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TOP :	SMAX=	-9.42	SMIN=	-25.97 mm/av-	0.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BOTT:	SMAX=	25.97	SMIN=	9.42 TMAX=	0.27 ANGLE=	-40.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	1.50	-1.21	-0.83	~0.98	-0 44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.00	0.00	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TOP :	SMAX=	-6.22	SMIN=	-18.32 TMAX=	6.05 ANGLE=	~40.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8011:	SMAX=	18.32	SMIN=	6.22 TMAX=	6.05 ANGLE=	-40.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.00	0.00	0.00	0.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TOP :	SMAX=	44.68	SMIN=	-5.73 TMAX=	25.20 ANGLE=	-8.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BOTT:	SMAX=	5.73	SMIN=	-44.68 TMAX=	25.20 ANGLE=	-8.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	D	0.02	0.54	2.41	-0.26	-0.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TOP :	SMAX=	77 74	0.00 - WTM2		0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BOTT:	SMAX=	4.32	SMIN=	-33 34 TMAX=	18.83 ANGLE=	-8.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 5	5	-2.56	-0.22	0.01	-0.35	-0.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TOD •	CWAY-	2 5 2	0.00	0.00	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BOTT	SMAX=	3.59	SMIN=	-8.20 TMAX=	5.89 ANGLE=	-32.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	5	-1.97	-0 10	-3.59 TMAX=	5.89 ANGLE=	-32.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	1.37	0.00	-0.04	-0.29	~0.32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TOP :	SMAX=	2.39	SMIN=	-6.86 TMAX=	4 63 ANCIE-	-24 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BOTT:	SMAX=	6.86	SMIN=	-2.39 TMAX=	4.63 ANGLE=	-34.2
10PSMAX-4.68SMIN-48.06TMAX21.69ANGLE0.0BOTT:SMAX48.06SMIN4.68TMAX21.69ANGLE0.060.00-0.68-2.76-0.280.00TOP:SMAX-3.83SMIN-37.26TMAX16.71ANGLE0.0BOTT:SMAX37.26SMIN3.83TMAX16.71ANGLE0.03352.56-0.220.01-0.350.40O.000.000.000.000.000.000.00TOP:SMAX3.59SMIN-8.20TMAX5.89ANGLE32.9BOTT:SMAX8.20SMIN-3.59TMAX5.89ANGLE32.961.97-0.19-0.04-0.290.320.000.00TOP:SMAX2.39SMIN-6.86TMAX4.63ANGLE34.2	22 5	-	0.00		_		3412
10PSMAX-4.68SMIN-48.06TMAX21.69ANGLE0.0BOTT:SMAX48.06SMIN4.68TMAX21.69ANGLE0.060.00-0.68-2.76-0.280.00TOP:SMAX-3.83SMIN-37.26TMAX16.71ANGLE0.0BOTT:SMAX37.26SMIN3.83TMAX16.71ANGLE0.03352.56-0.220.01-0.350.40O.000.000.000.000.000.000.00TOP:SMAX3.59SMIN-8.20TMAX5.89ANGLE32.9BOTT:SMAX8.20SMIN-3.59TMAX5.89ANGLE32.961.97-0.19-0.04-0.290.320.000.00TOP:SMAX2.39SMIN-6.86TMAX4.63ANGLE34.2	32 3)	0.00	-0.88	-3.56		0.00
IOT : MAX^{-} -3.63 $SMIN^{-}$ -37.26 $TMAX^{-}$ 16.71 $ANGLE =$ 0.0 BOTT: $SMAX =$ 37.26 $SMIN =$ 3.83 $TMAX =$ 16.71 $ANGLE =$ 0.0 335 2.56 -0.22 0.01 -0.35 0.40 TOP: $SMAX =$ 3.59 $SMIN =$ -8.20 $TMAX =$ 5.89 $ANGLE =$ 32.9 BOTT: $SMAX =$ 8.20 $SMIN =$ -3.59 $TMAX =$ 5.89 $ANGLE =$ 32.9 6 1.97 -0.19 -0.04 -0.29 0.32 0.00 0.00 0.00 0.00 0.00 TOP: $SMAX =$ 2.39 $SMIN =$ -6.86 $TMAX =$ 4.63 $ANGLE =$ 34.2	TOP .	SMA Y=	-1 60	U.UU CMTN-	0.00	0.00	
IOT : MAX^{-} -3.63 $SMIN^{-}$ -37.26 $TMAX^{-}$ 16.71 $ANGLE =$ 0.0 BOTT: $SMAX =$ 37.26 $SMIN =$ 3.83 $TMAX =$ 16.71 $ANGLE =$ 0.0 335 2.56 -0.22 0.01 -0.35 0.40 TOP: $SMAX =$ 3.59 $SMIN =$ -8.20 $TMAX =$ 5.89 $ANGLE =$ 32.9 BOTT: $SMAX =$ 8.20 $SMIN =$ -3.59 $TMAX =$ 5.89 $ANGLE =$ 32.9 6 1.97 -0.19 -0.04 -0.29 0.32 0.00 0.00 0.00 0.00 0.00 TOP: $SMAX =$ 2.39 $SMIN =$ -6.86 $TMAX =$ 4.63 $ANGLE =$ 34.2	BOTT:	SMAX=	48.06	SMIN-	-48.06 TMAX=	21.69 ANGLE=	0.0
IOT : MAX^{-} -3.63 $SMIN^{-}$ -37.26 $TMAX^{-}$ 16.71 $ANGLE =$ 0.0 BOTT: $SMAX =$ 37.26 $SMIN =$ 3.83 $TMAX =$ 16.71 $ANGLE =$ 0.0 335 2.56 -0.22 0.01 -0.35 0.40 TOP: $SMAX =$ 3.59 $SMIN =$ -8.20 $TMAX =$ 5.89 $ANGLE =$ 32.9 BOTT: $SMAX =$ 8.20 $SMIN =$ -3.59 $TMAX =$ 5.89 $ANGLE =$ 32.9 6 1.97 -0.19 -0.04 -0.29 0.32 0.00 0.00 0.00 0.00 0.00 TOP: $SMAX =$ 2.39 $SMIN =$ -6.86 $TMAX =$ 4.63 $ANGLE =$ 34.2	6	5	0.00	-0.68	-2 76	21.69 ANGLE=	0.0
IOT : MAX^{-} -3.63 $SMIN^{-}$ -37.26 $TMAX^{-}$ 16.71 $ANGLE =$ 0.0 BOTT: $SMAX =$ 37.26 $SMIN =$ 3.83 $TMAX =$ 16.71 $ANGLE =$ 0.0 335 2.56 -0.22 0.01 -0.35 0.40 TOP: $SMAX =$ 3.59 $SMIN =$ -8.20 $TMAX =$ 5.89 $ANGLE =$ 32.9 BOTT: $SMAX =$ 8.20 $SMIN =$ -3.59 $TMAX =$ 5.89 $ANGLE =$ 32.9 6 1.97 -0.19 -0.04 -0.29 0.32 0.00 0.00 0.00 0.00 0.00 TOP: $SMAX =$ 2.39 $SMIN =$ -6.86 $TMAX =$ 4.63 $ANGLE =$ 34.2				0.00	0.00	-0.28	0.00
335 2.56 -0.22 0.01 -0.35 0.40 335 2.56 -0.22 0.01 -0.35 0.40 TOP:SMAX= 3.59 SMIN= -8.20 TMAX= 5.89 ANGLE= 32.9 BOTT:SMAX= 8.20 SMIN= -3.59 TMAX= 5.89 ANGLE= 32.9 6 1.97 -0.19 -0.04 -0.29 0.32 TOP:SMAX= 2.39 SMIN= -6.86 TMAX= 4.63 ANGLE= 34.2							
33 5 2.56 -0.22 0.01 -0.35 0.40 TOP: SMAX= 3.59 SMIN= -8.20 TMAX= 5.89 ANGLE= 32.9 BOTT: SMAX= 8.20 SMIN= -3.59 TMAX= 5.89 ANGLE= 32.9 6 1.97 -0.19 -0.04 -0.29 0.32 TOP: SMAX= 2.39 SMIN= -6.86 TMAX= 4.63 ANGLE= 34.2	BOTT:	SMAX=	37.26	SMIN=	3.83 TMAX=	16.71 ANGLE=	0.0
TOP :SMAX= 3.59 SMIN= -8.20 TMAX= 5.89 ANGLE= 32.9 BOTT:SMAX= 8.20 SMIN= -3.59 TMAX= 5.89 ANGLE= 32.9 6 1.97 -0.19 -0.04 -0.29 0.32 TOP :SMAX= 2.39 SMIN= -6.86 TMAX= 4.63 ANGLE= 34.2							
TOP: SMAX= 3.59 SMIN= -8.20 TMAX= 5.89 ANGLE= 32.9 BOTT: SMAX= 8.20 SMIN= -3.59 TMAX= 5.89 ANGLE= 32.9 6 1.97 -0.19 -0.04 -0.29 0.32 0.00 0.00 0.00 0.00 0.00 TOP: SMAX= 2.39 SMIN= -6.86 TMAX= 4.63 ANGLE= 34.2			2.50				0.40
BOTT:SMAX= 8.20 SMIN= -3.59 TMAX= 5.89 ANGLE= 32.9 6 1.97 -0.19 -0.04 -0.29 0.32 0.00 0.00 0.00 0.00 0.00 TOP:SMAX= 2.39 SMIN= -6.86 TMAX= 4.63 BOTT:SMAX= 6.96 SMIN= -6.86 TMAX=	TOP :	SMAX=	3.59				22.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BOTT:	SMAX=	8.20				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6			-0.19			
TOP: $SMAX = 2.39$ SMIN = -6.86 TMAX = 4.63 ANGLE = 34.2 BOTT: $SMAX = 6.86$ SMIN = -6.86 TMAX = 4.63 ANGLE = 34.2	000	<i></i>	• • • •				J.J2
DOIL. SMAX. 0.80 SMIN= -2.39 TMAX= 4.63 ANGLE= 34.2					-6.86 TMAX=	4.63 ANGLE=	
	DOII;	SPIRA=	0.80	SMIN=	-2.39 TMAX=	4.63 ANGLE=	34.2

"CHEM WASTE MANAGEMENT" *

ELEMENT FORCES FORCE, LENGTH UNITS = KIP FEET

FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH

ELEMENT I	DAD	QX	QY FX	MX Fy	MY FXY	MXY
BOTT:	5 SMAX= SMAX= 6 SMAX=	5.73 -0.02	SMIN= 0.54 0.00	0.00 -5.73 TMA -44.68 TMA 2.41	0.00 0.00 X= 25.20 ANGLE X= 25.20 ANGLE -0.26 0.00	2= 8.6 0.41
BOTT:		4.32	SMIN=	-4.32 TMAX -33.34 TMAX	K= 18.83 ANGLE K= 18.83 ANGLE	
35 TOP : BOTT:		-2.09 -9.42 25.97			8.27 ANGLE	
	6	-1.50	-1.21	-0.83	-0.98	= 40.8 0.44
TOP : BOTT:	SMAX= SMAX=	-6.22 18.32		-18.32 TMAX 6.22 TMAX	= 6.05 ANGLE	
36	5	1.52	-1.44 0.00	-2.30 0.00	0.00	-0.08
TOP : BOTT:	SMAX= 6	31.20 1.07	SMIN= -1.02 0.00	-1.64	= 3.46 ANGLE -1.27	= 8.6 = 8.6 -0.06
TOP : BOTT:	SMAX= SMAX=	-17.09 22.20	SMIN= SMIN=		= 2.56 ANGLE	
*******	******	***END OF	ELEMENT	FORCES*****	****	

126. UNIT KIP INCHES 127. START CONCRETE DESIGN 1 128. CODE ACI 129. FC 3 130. TRACK 2.0 131. DESIGN ELEMENTS 1 TO 36

,

ELEMENT DESIGN SUMMARY

ELEMENT	LONG. REINF	MOM-X /LOAD	TRANS. REINF	MOM-Y /LOAD
	(SQ.IN/FT)	(K-FT/FT)	(SQ.IN/FT)	(K-FT/FT)
1 TOP :	0.173	0.00 /***	0.173	0.00 /***
BOTT:	0.173	-2.63 / 5	0.173	-0.59 / 5
2 TOP :	0.173	0.00 /***	0.173	0.57 / 5
BOTT:	0.173	-0.86 / 5	0.173	0.00 / 5
3 TOP :	0.173	4.04 / 5	0.173	1.87 / 5
BOTT:	0.173	0.00 / 5	0.173	0.00 / 5
4 TOP :	0.173	0.00 / 5	0.173	2.93 / 5
BOTT:	0.173	-0.19 / 5	0.173	0.00 / 5
5 TOP :	0.173	0.00 / 5	0.173	3.73 / 5
BOTT:	0.173	-4.74 / 5	0.173	0.00 / 5
6 TOP :	0.173	0.00 / 5	0.173	2.93 / 5
BOTT:	0.173	-0.19 / 5	0.173	0.00 / 5
7 TOP :	0.173	4.04 / 5	0.173	1.87 / 5
BOTT:	0.173	0.00 / 5	0.173	0.00 / 5
8 TOP :	0.173	0.00 / 5	0.173	0.57 / 5
BOTT:	0.173	-0.86 / 5	0.173	0.00 / 5
9 TOP :	0.173	0.00 / 5	0.173	0.00 / 5
BOTT:	0.173	-2.63 / 5	0.173	-0.59 / 5
10 TOP :	0.173	0.00 / 5	0.173	0.00 / 5
BOTT:	0.173	-3.66 / 5	0.173	-1.18 / 5
11 TOP :	0.173	0.00 / 5	0.173	0.28 / 5
BOTT:	0.173	-1.39 / 5	0.173	0.00 / 5
12 TOP :	0.173	4.50 / 5	0.173	3.17 / 5
BOTT:	0.173	0.00 / 5	0.173	0.00 / 5
13 TOP :	0.173	0.79 / 5	0.173	3.76 / 5
BOTT:	0.173	0.00 / 5	0.173	0.00 / 5
14 TOP :	0.173	0.00 / 5	0.173	3.32 / 5
BOTT:	0.173	-3.40 / 5	0.173	0.00 / 5
15 TOP :	0.173	0.79 / 5	0.173	3.76 / 5
BOTT:	0.173	0.00 / 5	0.173	0.00 / 5
16 TOP :	0.173	4.50 / 5	0.173	3.17 / 5
BOTT:	0.173	0.00 / 5	0.173	0.00 / 5
17 TOP :	0.173	0.00 / 5	0.173	0.28 / 5
BOTT:	0.173	-1.39 / 5	0.173	0.00 / 5

"CH *	IEM WASTE	MANAGEMENT"				PAGE NO. 21
	BOTT:	0.173 0.173	0.00 / -3.66 /		0.173 0.173	0.00 / 5 -1.18 / 5
19	TOP : BOTT:	0.173 0.173	0.00 / -3.66 /		0.173 0.173	0.00 / 5
20	TOP : BOTT:	0.173 0.173	0.00 / -1.74 /		0.173 0.173	0.00 / 5 -1.60 / 5
21	TOP : BOTT:	0.173 0.173	3.90 / 0.00 /		0.173 0.173	0.62 / 5 0.00 / 5
22	TOP : BOTT:	0.173 0.173	0.45 / 0.00 /		0.173 0.173	0.68 / 5 0.00 / 5
23	TOP : BOTT:	0.173 0.173	0.00 / -3.47 /		0.173 0.173	0.05 / 5 -0.05 / 6
24	TOP : BOTT:	0.173 0.173	0.45 / 0.00 /		0.173 0.173	0.68 / 5 0.00 / 6
25	TOP : BOTT:	0.173 0.173	3.90 / 0.00 /		0.173 0.173	0.62 / 5 0.00 / 6
26	TOP : BOTT:	0.173 0.173	0.00 / -1.74 /	5 5	0.173 0.173	0.00 / 5 -1.60 / 5
27	TOP : BOTT:	0.173 0.173	0.00 / -3.66 /		0.173 0.173	0.00 / 5 -2.75 / 5
28	TOP : BOTT:	0.173 0.173	0.00 / -2.30 /	5 5	0.173 0.173	0.00 / 5 -1.81 / 5
29	TOP : BOTT:	0.173 0.173	0.00 / -1.22 /		0.173 0.173	0.00 / 5 -1.40 / 5
30	TOP : BOTT:	0.173 0.173	3.23 / 0.00 /	5 5	0.173 0.173	0.00 / 5 -0.34 / 5
	TOP : BOTT:	0.173 0.173	0.01 / -0.04 /	5 6	0.173 0.173	0.00 / 5 -0.35 / 5
32	TOP : BOTT:	0.173 0.173	0.00 / -3.56 /	5 5	0.173 0.173	0.00 / 5 -0.35 / 5
	TOP : BOTT:	0.173 0.173	0.01 / -0.04 /	5 6	0.173 0.173	0.00 / 5 -0.35 / 5
	TOP : BOTT:	0.173 0.173	3.23 / 0.00 /	5 6	0.173 0.173	0.00 / 5 -0.34 / 5
	TOP : BOTT:	0.173 0.173	0.00 / -1.22 /	5 5	0.173 0.173	0.00 / 5 -1.40 / 5
	TOP : BOTT:	0.173 0.173	0.00 / -2.30 /	5 5	0.173 0.173	0.00 / 5 -1.81 / 5

"CHEM WASTE MANAGEMENT" *

۰.

132. END CONCRETE DESIGN 133. * 134. FINISH

***** DATE= SEP 20,1994 TIME= 10:26:40 ******

.	***************************************	******
×	FOR QUESTIONS ON STAAD-III/ISDS, CONTACT:	
t	PESEADCH ENCINEEDC THE IN ISS, CONTACT:	×
	RESEARCH ENGINEERS, INC AT (714) 974-2500	*
	TELEX: 4994385 FAX: (714) 974-4771	

PLEASE NOTE:

Foundation calculations for Tank T-A in Unit 1700 are integrated with the tank design calculations for Tank T-A which are found in Exhibit B of this Attachment.

EXHIBIT D

CALCULATIONS OF TANK VENTING REQUIREMENTS

EXHIBIT D TANK VENTING CALCULATIONS (PER API 2000) CHEMICAL WASTE MANAGEMENT, INC., EMELLE, ALABAMA FACILITY

		Length/	Depth/	Tank		Tank	Tank	Tank	Tank		With-		IN-E	REATHING	6			OUT-	BREATHIN	IG		EME	RGENC	Y
	Width/	Shell	Cone	Wetted	Tank	Rated	Relief	Rated	Relief	Fill	drawal	Normal	Thermal	Total Vent	Min.	Min.	Normal	Thermal	Total Vent	Min.	Min.	Vent	Min.	Min.
	Diameter	Height	Height	Surf. Area	Capacity	Press.	Press.	Vac.	Vac.	Rate	Rate	Venting	Venting	Capacity	Area	Size	Venting	Venting	Capacity	Area	Size	Capacity	Area	Size
Tank Nos.	(ft)	(ft)	(ft)	(sf)	(gal)	(in WG)	(in WG) ¹	(in WG)	(in WG) ¹	(gpm)	(gpm)	(cfh) ²	(cfh) ³	(cfh)	(sq in) ⁸	(in)	(cfh) ⁴	(cfh)⁵	(cfh)	(sq in) ⁸	(in)	(cfh) ⁶	(sq in) ⁷	(in)
LEACHATE TA	NK STORA	AGE UNIT	S 1700																					
T-A						6.00	3.00	3.00	1.50	300	300	2,400		2,400	4.64	3.00	2,571		2,571	3.51	3.00	NA	NA	NA
T-1701 thru T-1704						6.00	3.00	3.00	1.50	300	300	2,400		2,400	4.64	3.00	2,571		2,571	3.51	3.00	NA	NA	NA

NOTES:

1. Pressure and vacuum relief is assumed to be set to relieve at 50% of the design rated pressure or vacuum, unless noted. Emergency relief is assumed to be set at 75% of design pressure.

2. Normal in-breathing at 5.6 scfh per 42 gal barrel per hour of withdrawal, as specified in API 2000, 4th Edition.

3. Thermal in-breathing at 1 scfh per 42 gal barrel of tank volume, up to 20,000 barrel (840,000 gal) volume, as in API 2000.

4. Normal out-breathing at 12 scfh per 42 gal barrel per hour of fill for volatile liquids (flash point <100 deg F), as in API 2000. For non-volatile liquids 6 scfh per 42 gal barrel may be used.

5. Thermal out-breathing at 1 scfh per 42 gal barrel of tank volume for volatile liquids, up to 20,000 barrel volume, as in API 2000. For non-volatile liquids 0.6 scfh per 42 gal barrel may be used.

6. From API 2000 Appendix B on Emergency Venting, for four ranges of tank surface area, heat absorption, Q, is calculated. Vent capacity in SCFH is then calculated from the heat absorption according to the equation:

SCFH = 70.5 * Q / [L * sqrt(M)] assuming a conservative "L * sqrt(M)" value of 1,337, that of hexane.

- 7. Formula for emergency vent area adapted from Protectoseal Technical Manual, on flow capacity of tank emergency venting devices for nozzles 8 in. and larger: CFH = 1,667 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank emergency relief setting and atmospheric conditions.
- 8. Formula for vent area for smaller nozzles such as normal breather vents, adapted from Crane Flow of Fluids, Eq. 2-24, very similar to, but more conservative, than Protectoseal equation: CFH = 845 * Cf * A * sqrt(Pt - Pa) using Cf (flow coefficient) of 0.5 and where "Pt - Pa" is differential pressure between tank relief setting and atmospheric conditions. The factor 845 was derived using unit conversion factors, a vapor density of 0.1875 lb/cf, and a conservative Y of 0.80 from charts on Crane p. A-21.

EXHIBIT E

TANK MATERIAL OF CONSTRUCTION COMPATIBILITY INFORMATION

Compatibility Information

Unit 1700: T-1701 to T-1710

Epoxy coating

Or Equivalent

المراجعين بالمتحاج والمراج

.

ì

£.

Devchem[®] 253

Chemical Resistant Lining

Catalog Number 253-K-XXXX

FEATURES

- Exceptional resistance to a wide range of chemicals and solvents
- Provides exceptional resistance over a wide range of temperatures and pressures
- Realistic application properties and cure schedules
- Does not require baking to cure
- High volume solids; two coat system

RECOMMENDED USES

- Cargo tanks in chemical tankers and barges
- Industrial storage and process chemical tanks and pipelines
- High pressure crude oil pipe and separation tanks
- Protective coating for highly corrosive environments

See the Devoe Coatings Tank Lining Chemical Resistance Table for specific resistance properties.

SPECIFICATION DATA

Coating Type	Advanced technology epoxy	VOC	1.67 Lbs/Gal
Colors	Catalog Number	EPA 24	(200 Grams per liter)
Tank White	253-K-3530 _	Temp. Resistance	300°F (149°C) dry
Tank Pale Blue	253-K-4132		· · ·
Tank Pastel Red	253-K-7130	Volume Solids ASTM D2697 (7 day	72% y)
Packaging	5 Gallon	Theoretical Spreading	n Date
	Two-component kits	Theoretical Spreading	1155 Sq. Ft/Gal at 1 mil
Component Ratio	4 to 1 by volume		28.4 Sq. m/l at 25 microns
Gloss	Semigloss	Recommended Film	Thickness
Flash Point	100°F (38°C) Setaflash	Two Coat System	btain 5.0—6.0 mils dry
Thinner	Devoe T-10 Thinner	(173-208µ wet to obt	•
Pot Life	4 hours at 77°F (25°C)	Three Coat System 5.5 mils wet to obtain	4 mils dry
Induction Time	15 minutes	(140µ wet to obtain 10	00μ dry)
		Total recommended of	•
Shelf Life	More than 2 years	10-12 mils (250 - 300	•
Density	11.6 Lbs./Gal (1.39 kg/l)	Maximum dry film ti	hickness is 20 mils (500 μ)
•		Application	Spray

Application Guide

Surface Preparation

All surfaces must be free of oil, grease, saits and moisture before abrasive blasting to near whit metal equivalent to Steel Structures Painting Council SP10 or Swedish Standard Sa 2½. The steel profile after blasting should be 1½ to 2½ mils (38 to 63μ) in depth and be of a jagged nature as opposed to a peen pattern. Surfaces must be free of grit dust. Dehumidification equipment should be employed to prevent rerusting. Before applying the first coat, be sure all surfaces are clean and dust free.

Mixing and Thinning

Devchem 253 Lining is a two component product supplied in 5 Gallon kits which contain the proper ratio of ingredients, the entire contents of each container must be mixed together. Stir the base portion first to obtain a smooth, homogeneous condition. After mixing the base portion, add the convertor slowly while continuing to mix at slow speeds. Be sure all convertor is added. After the convertor add is complete, continue to mix slowly until the combined components are thoroughly mixed. Thinning is not normally required or desired; however, at lower temperatures, small amounts (5% or less) of the solvent on the reverse page can be added depending on local VOC and air quality regulations. Any solvent addition should be made after the two components are thoroughly mixed. The pot life of the mixed material is 4 hours at 77°F (25°C); 2 hours at 90°F (32°C); and 1 hour at 100°F ((38°C). Higher temperatures will reduce working life of the coating; lower temperatures will increase it.

Application

Devchem 253 Lining should be applied only by air or airless spray. Brushing can be used for touch up or striping, do not use rollers. For air spray, use agitated spray pots, 1/2" 1D air hoses and 1/2" fluid hose. DeVilbiss MBC-510 gun with and E or D tip and needle and a 704 air cap, or equivalent. equipment is recommended. For airless spray application, use 100 PSI air pressure, 3/8" ID fluid hoses not exceeding 100 feet in length, a 30 to 1 or larger heavy duty Graco pump or equivalent, and 0.021" to 0.025" range tip sizes.

Ventilation —It is very important for the safety of the applicator and the proper performance of the Devchem 253 Coating that good ventilation be provided to all portions of the enclosed area. Recommended tank ventilation involves two important phases. Phase one is to pump fresh, dehumidified air into all areas of the tank, especially "dead air" areas. Phase two is to exhaust, via an explosion proof exhaust fan, the solvent vapors from the lowest portion of the tank. This practice of pumping fresh air into the tank and exhausting solvent vapors out of the lowest part of the tank should be provided throughout the application and curing processes. This practice is to insure that all solvents are removed from the coating. Tanks must be cured 7 days at 77°F (25°C) with ventilation before being put into service. At lower temperatures, longer cure times are required.

System —2 stripe coats on all sharp edges, cutouts and welds.

-2 coats of Devchem 253 Lining, 5-6 mils (125-150µ) per coat. Use contrasting colors for each coat and strip coat.

Note: The maximum dry film thickness of the Devchem 253 system is 20 mils (500μ) . Dry film thickness above 20 mils (500μ) could reduce the service life of the coating. See the Devce Coatings Tank Lining Chemical Resistance Table or your Devce Coatings Representative for additional Information.

Reconting Schedule:

	Surface Temperature *Fahrenheit	Recoat Time	
		Minimum	Maximum
If paint and surface temperatures exceed 90°F (37°C), reduce recoat time by one half. See Application Guide Supplement	4049	36 hours	7 days
	50—59	24 hours	6 days
	6069	16 hours	5 days
	70—79	10 hours	4 days
	80—89	7 hours	60 hours
	90—99	4 hours	24 hours
	100	3 hours	18 hours
	110-120	3 hours 👘	18 hours

Cure to put tank into service: 7 days with ventilation at 77°F (25°C) for maximum chemical resistance. If forced heat cure is desired, contact your Devoe Coatings Representative

Precautions

See the material safety data sheet and product label for complete safety and precaution requirements.

253/Nov, 1993

REGIONAL HEADQUARTERS

KENTUCKY P 0 Box 7600 Louisville 40257 0600 (502) 897-9861

TEXAS 515 North Sam Houston Parkway Suite 250 Houston 77060 (713) 999-4188 NEW JERSEY 800 Fernidale Pl Rahway 07065 (908) 388-5100

CALIFORNIA 2625 Durahart St Riverside 92507 (714) 686-6930 CANADA Devoe Coatings Canada Div. of Grow Group Canada, Ltd S5 MacDonald Ave Dartmouth. Nova Scotia Canada B3B 1T9 (902) 468-9888 THE NETHERLANDS Devoe Coatings B V Rotterdamseweg 144A 2628 AP DELFT-Holland (15) 569212 SINGAPORE Devoc Coatings Singapore 20 Penjuru Lane Singapore 2260 (65) 2641772

DISCLAIMER

This is not a specification and all information is given in good fath. Since conditions of use are beyond the manufacturer's control, information contained herein is without warranty, implied or otherwise, and final determination of the suitability of any information or material for the use contemplated, the manner of use and whether there is any infiningement of patents is the sole responsibility of the user. Manufacturer does not assume any kability in connection with the use of the product relative to coverage, performance or injury. For application in special conditions, consult the manufacturer for detailed recommendations.

CONSULT YOUR DEVOE CATALOG FOR COMPLETE LIST OF OFFICES

DEVOE COATINGS COMPANY

Division of GROW GROUP, INC.

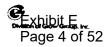
Exhibit E Page 3 of 52

Catha-Coat[®] 305 Coating Devchem[®] 253 Lining Devchem[®] 255 Lining Tank Lining Chemical Resistance Table

This table contains a listing of most of the solvents and chemicals which are transported in bulk quantities and a coatings resistance rating for Catha-Coat 305 Water Based Inorganic Zinc Coating, Devchem 253 Chemical Resistant Lining, and Devchem 255 FDA Epoxy Lining. The indicated resistance ratings are based on laboratory tests, actual field experience and other studies believed by Devoe Coatings to be reliable.

Since many of the commercial products contained in this cargo resistance table may vary in composition, and product specifications may change, Devoe Coatings cannot assume any responsibility for the condition of the coating and/or the products carried or stored in Devoe Coatings lined tanks. The listed resistance ratings are based solely on the effects of the cargoes on tank linings themselves. Neither the contamination of cargoes by tank linings nor the effects of contaminated cargoes on tank linings has been tested and is not implied by the listed resistance tables.

Devoe maintains an ongoing research and tank lining testing program. If there are chemicals or solvents, or special conditions not found in this table, please contact a Devoe Coatings Representative.


Devoe Coatings reserves the right to alter this resistance table without notice.

Tank Lining Systems

Dry Film Thickness ⁽¹⁾	Alternate Dry Film Thickness ⁽¹⁾
3-5 mils (75-125 microns)	
	-4-
5 mils (125 microns)	⁻ 4 mils (100 microns)
5 mils (125 microns)	4 mils (100 microns)
	4 mils (100 microns)
5 mils (125 microns)	
5 mils (125 microns)	
	3—5 mils (75—125 microns) 5 mils (125 microns) 5 mils (125 microns) 5 mils (125 microns)

Stripe coats in way of edges, cutouts, welds, pits, brackets and other difficult to paint areas are required.

- (1) Surface roughness or special resistance requirements may alter the film thickness specification or number of coats.
- (2) To insure a holiday-free lining and obtain extended service life, two coats of Catha-Coat 305 Coating at 3 mils (75 microns) per coat are recommended.

General Remarks

When using this cargo resistance table, the following points should be read very thoroughly and noted.

- A. All cargoes having low viscosities, like solvents which do not require heating to be loaded or unloaded, are tested at 120°F (49°C). High viscosity cargoes which are normally heated to facilitate loading are tested at 180°F (82°C). Cargoes carried or loaded in excess of these temperatures can be detrimental to the lining. Devoe Coatings should be consulted for specific recommendations where these temperatures are exceeded.
- B. All cargo resistance ratings, including ballast water, are based upon a normal shipping and storage period not to exceed sixty days. Ratings are not based upon prolonged periods of time nor repeated storage or shipping of the same product. Should the possibility of shipping and storage periods in excess of sixty days arise, a Devoe Coatings Technical Representative should be consulted.
- C. Tank cleaning may be accomplished by employing normal Butterworthing procedures, with solution temperatures up to but not exceeding 190°F (88°C). Special care must be exercised in choosing solvents or detergents used in tank cleaning so as not to cause damage to the lining. If the coating is soft, forced ventilation for at least 24 hours after discharge, or longer if the coating system has not yet fully recovered, is mandatory to allow the coating to recover prior to cleaning.

Alkaline and acidic cleaning compounds can damage Catha-Coat 305 Coating and should be avoided.

Cleaning chemicals which are normally used in the industry have all been tested and are approved for use. Special cleaning chemicals should be tested and approved prior to use.

D. Catha-Coat 305 Coating, as all inorganic zinc coatings, is sensitive to, and may be damaged by, strong acids or alkalies. The pH of the cargo must fall within the 5.5 – 10.0 range.

When any zinc coating is used as a tank lining, the possibility exists for a cargo to pick up slight metallic zinc contamination. Sour crude oil cargoes are not recommended for Catha-Coat 305 Coating.

E. Due to the large number of possible combinations of cargo sequence, it is nearly impossible to predict overall resistance in practice. Most problems can be avoided by using common sense, employing measures such as forced ventilation and thorough cleaning of tanks between cargoes.

Non-aggressive cargoes of similar generic types should not usually cause problems. Such cargoes as fuels and oils are examples of these types.

Limited service category 1 (LS-1) water miscible cargoes should not be followed by water cleaning, ballast or aqueous cargoes until the tank has been completely ventilated and freed of all traces of the LS-1 cargo. All traces of water must also be removed from a tank before LS-1 water miscible cargoes or chlorinated solvents or ester solvents (LS-4) are loaded. The improper sequence of cargoes or improper tank cleaning and preparation can have adverse effects on tank linings.

F. In the majority of cargoes, cargo contamination from the coating is highly unlikely, and is limited to initial cargoes after coating application. Avoid loading high purity chemicals before the coating is properly cured as per manufactuer's recommendation.

Cargo contamination is also possible from improper cleaning of tanks after carriage. To prevent contamination of subsequent cargoes and the chance of by-product forming chemical reaction, tanks must be properly cleaned between cargoes.

ſ

ŧ.

(

- G. This Cargo Resistance Table is not based on the use of shop primers under the tank coatings listed. Devoe Coatings requires that all tank coatings be applied directly to blasted steel.
- H. A Devoe Coatings Representative should be consulted for the cargo resistance rating of chemicals not included in this list.
- I. Certain cargoes, such as carbon containing cargoes or impure or crude cargoes, may discolor the lining and may be very difficult to clean. There may be delays until the inspector is satisfied that the discoloration cannot be removed.
- J. The normal requirement is to cure a tank lining for 7 days after application. Most coating systems do not completely cure or crosslink in 7 days, especially if the temperatures during this period are below normal.

The chemicals on the attached list were all tested after a 7 day cure at 77°F (25°C). The tank linings will, however, become more resistant with time, or if a hot, weak solvent cargo, such as mineral oils or heavy fuel oils, is carried. Very strong solvent cargoes (LS-1) should not be loaded as the first cargo after lining a tank.

K. Although Devoe Coatings Company believes the recommendations given in this Cargo Resistance Table to be reliable, due to the wide variation in product composition and specification, good engineering practice may indicate field testing the coating prior to large scale application.

Key to Resistance Table

S	Suitable
LS	Limitations on service (see Limited Service Notes)
LS (X 30)	Recommended for maximum of 30 days continuous immersion
LS (X 60)	Recommended for maximum of 60 days continuous immersion
U	Unsuitable
X	Not tested at this time Contact your Devoe Coatings Representative for the latest test information.

Limited Service Notes

LS-1 These products will cause some softening of the Devoe Coatings system, leading to reduced mechanical resistance. LS-1 products, and especially methanol, ethylene dichloride, acetone, vinyl acetate monomer, and cyclohexanone, should not be loaded in newly lined tanks before the coating system is fully cured.

Full cure will be obtained after a service period of one month with Suitable (S notation) cargoes. Full cure can also be achieved by carrying hot cargoes such as lubricating oil, mineral oil, vegetable oils, animal oils or molasses for a period of at least four days at 50°C or 3 days at 60°C. LS-1 cargoes, LS(X30) cargoes that are limited to 30 day carriage, or LS(X60) cargoes that are limited to 60 day carriage can not be carried until tanks have been fully cured.

After carriage of LS-1, LS(X30), and LS(X60) cargoes, the next immediate cargo must be a Suitable (S) cargo—without a LS, LS(X30), or LS(X60) notation—and be loaded after the tanks have been forced-air ventilated for at least 24 hours, or longer if the coating system has not yet fully recovered. Under no circumstances must water or ballast be introduced into the tanks before ventilating.

Water containing cargoes like caustic soda or potash should not be loaded immediately after LS-1, LS(X30), or LS(X60) cargoes.

LS-2 Crude Oil

Catha-Coat 305 Coating can safely carry sweet crude oil. Sour crudes, however, are acidic and will attack zinc, and are not recommended. Crude oils with a hydrogen sulfide content in excess of 300 ppm or a neutralization number greater than 0.4 are considered unsatisfactory.

LS-3 Fats, Oils, Greases

Animal and vegetable fats and oils contain variable amounts of free fatty acids. The free fatty acid (f.f.a.) content limitation is 2.5% or less; the acid number limitation is 5.0 or less.

Free radical acids can form with age or under warm storage conditions, and therefore, we also recommend measuring the pH before loading into a Catha-Coat 305 lined tank. A ph of 5.5 to 10.0 is suitable.

Products like lard and tallow have to be carried at elevated temperatures. The formation of free organic acids occurs rapidly, especially around heating coils. Rancid products are very high in f.f.a.

LS-4 Hydrolyzable Cargoes

Certain classes of chemicals will hydrolyze in the presence of water to form aggressive acidic by-products. Cargoes such as esters (acetates) and halogenated compounds (chlorinated or brominated solvents) must be kept stabilized and kept moisture-free. The water content must be limited to 100 ppm. The temperature of the cargo should not exceed 100°F (38°C).

LS-5 Molasses

Crude molasses may be quite acidic. Molasses can be carried in a Catha-Coat 305 Coating lined tank if the pH is between 5.5 and 10.0. After discharging, the residual molasses has to be completely washed and rinsed. An alkaline buffer compound can be added to the rinse to insure any acid residues are neutralized.

LS-6 Beverages and Potable Water

Although Devchem 253 Lining is unaffected by these liquids, no warranties can be made with regard to taste or odor.

LS-7 Phenol

Phenol (carbolic acid) and phenol compounds can form staining color bodies when exposed to oxygen, sunlight or trace alkalies. The lining may become discolored. A nitrogen gas blanket may prevent discoloration.

LS-8 Discoloration

Certain chemicals, crude cargoes and carbon containing products can stain the lining and may be very difficult, if not impossible, to clean. The effect of this discoloration on subsequent cargo cannot be generalized.

LS-9 Monomers and Other Non-Stable Chemicals

The linings are resistant and inert to these products. If the products are not properly stabilized, contain a foreign contaminant or if the heat limitations are exceeded, these products may polymerize or break down. Care should be taken to insure the stabilizing agents are compatible with the tank lining.

LS-10 pH

Cargoes for Catha-Coat Coating lined tanks must fall within a pH range of 5.5 to 10.0. Traces of zinc metal or zinc salts may contaminate the cargo.

LS-11 Crude Cargoes

Products like coal tar and xylenol can vary in composition from grade to grade and even batch to batch. Samples of the specific cargo should be tested or evaluated before loading.

LS-12 Similar Cargoes

These products are believed to be suitable for transport in the indicated lining since they are reportedly similar to cargoes successfully carried. No confirming tests have been conducted.

(

LS-13 Water Immersion

Catha-Coat 305 Coating withstands intermittent exposure to seawater, but continuous immersion over a long period will reduce the life of the coating.

LS-14 Cargoes Sequenced with Methanol

Methanol and the following cargoes—ethylene dichloride, vinyl acetate monomer, acetone or cyclohexanone—should not be sequenced more than once, without prior approval from the coating manufacturer. If in doubt about loading a cargo after methanol, please contact the Devoe Coatings Company Laboratory for advice.

LS-15 Organic Fatty Acids

Organic fatty acids will hydrolize in the presence of water to form aggressive acidic by-products. Cargoes such as tall oil fatty acid and palm oil fatty acid must be kept stabilized and moisture-free. The water content must be limited to 1% maximum with no traces of inorganic acids or mineral acids.

LS-16 Amines

Amines can be carried when free from moisture. If water is present, alkalinity may increase to a pH of more than 9.

To prevent contamination by water, both the cargo and the tank must be completely dry at the time of loading, and the amines must be transported under a dry nitrogen or carbon dioxide blanket

Devoe Coatings Company Tank Lining Chemical Resistance Table

Cargoes to be carried:	Catha-Coat 305 Coating	Devchern 253 Lining	Devchem 255 Lining
Acetaldehyde	U	U	U
Acetic acid 5%	U	U	Ū
Acetic anhydride	U	U	Ŭ
Acetone	S	LS-1, 14, (X30	
Acetone cyanohydrin	LS-12	x	x
Acetonitrile	LS-4	LS-1, 4, (X 60) U
Acetophenone (Phenyl methyl ketone)	S	LS-8, (X 60)	U
Acetylene, gas	S	S	S
Acetylene dichloride (Dichlorethylene)	LS-4	Х	U
Actinol	U	S	X
Acrolein	U	U	U
Acropol (Mixed linear alcohols)	S	S	х
Acrylic acid	U	LS-1, 4, (X30)	х
Acrylic monomers	LS-4, 9	U	U
Acrylonitrile	LS-9	U	U
Acrylonitrile-styrene copolymer dispersion in polyether po		LS-12	x
Adiponitrile	X	U	U
Aircraft gasoline	S	S	S
Airturbo fuel	S	S	S
Alcohol, linear primary C12-C15	S	S	х
Alcohol ethoxylate, linear primary	S	S	x
Alcohol ethoxylate, ammonium salt solution	S	S	х
Alcohol ethoxysulfate, sodium salt solution	S	S	- X
Alcoholic Beverages, N.O.S.	X	_S	U
Aldol	U	U	U
Alkalate	x	LS-12	x
Alkali soybean oil	LS-3	S	S
Alkane (Dodecyl benzene)	S	S	S
Alkyl benzene	S	S	S
Alkyl benzene sulfonic acid	U	LS-8	x
Alkyl phosphate	S	LS-11	x
Alkyl phthalate	Х	S	x
Alkylate bottom (Dodecyl benzene)	S	S	S
Alkylate detergent	S	S	x
Alkylate 22 (Dodecyl benzene)	S	S	S

April, 1993

Exhibit E Page 10 of 52

and a second
Cargoes to be carried:	tha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Alkylate 130 (Monsanto)	S	S	S
Aliyi alcohol	S	S	Ŭ
Allyl aldehyde	U	Ū	Ű
Allyi chloride (3-Chloroprene)	U	LS (X 60)	Ŭ
Almond oil, sweet	LS-3	S	s
Alpha olefins	S	S	S
Alpha olefin C-6/7	S	S	S
Alpha olefin C-7/8	S	S	s
Alpha olefin C-7/14	S	S	S
Alpha olefin C-10/15	S	S	s
Alpha olefin C-15/18	S	S	S
Alpha-hydroxytoluol (Benzyl alcohol)	S	S	x
Alpha-N-amylene (1-Pentene)	S	S	x
Alum solution 15%	U	S	x
Alumina slurry concentrate	U	S	x
Aluminum chloride 10%	U	LS-8	x
Aluminum chloride 30%	Ū	LS-8	x
Aluminum hydroxide dry	Ū	S	x
Aluminum nitrate 30%	Ū	S	x
Aluminum sulfate 10%	U	S	. X
Aluminum sulfate 30%	U	s	x
Aluminum sulfide 100%	Ū	Ŭ	Ŭ
Aminoethane (Ethylamine)	Ū	Ŭ	U
Aminoethanolamine	U	Ŭ	U
Aminoethoxy ethanol	U	Ŭ	U
Aminoethyl ethanolamine	U	U	U
Aminoethyl piperazine	x	- ×	x
Aminoform (HMTA)	Ū.	Û	Û
2-Amino-2-methyl-1-propanol (90% or less)	x	S	x
Ammonia, anhydrous	U	Ŭ	Û
Ammonia 26° Bé (< 25°C)	U	LS-1, (X30)	U
Ammonia 28% aqueous solution/ammonium hydroxide (< 25		LS-1, (X30)	U
Ammonia fertilizer solutions	U	S	x
Ammonia water 10% (not over°25C)	U	LS-1, (X30)	Û
Ammonium carbonate 50%	U	S	x
Ammonium chloride, quarternary	x	LS (X 30)	U
Ammonium hydrogen phosphate solution	x	L3 (A 30) X	
Ammonium hydroxide/ammonia 28%aqueous solution (<25°		^ LS-1 (X30)	X
Ammonium hydroxide (10% solution in water)	U U	LS (X60)	X X
Ammonium hydroxide (25% solution in water)	U	LS (X60)	x

Page 2 of 40

i i

April, 1993

í

-(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Ammonium nitrate 10% solution in water	U	S	x
Ammonium nitrate 30% solution in water	U	S	x
Ammonium nitrate 50% solution in water	U	S	х
Ammonium phosphate, urea solution	x	х	x
Ammonium phosphate solution	x	x	X
Ammonium sulfate 40% (no heat)	x	S	×
Ammonium thiocyanate (25% or less)/ammonium	х	х	x
thiosulfate solution (60% or less)			
Amyl acetate (iso, normal, secondary)	LS-4	LS-1,4	U
Amyl alcohol (iso, normal, secondary, tertiary)	S	S	×
Amyl aldehyde	U	U	U
Amyl carbinol (Hexanol)	S	S	X
Amylene (1-Pentene)	S	S	S
Amylene hydrate (Amyl alcohol)	S	S	×
Amyl hydride (Pentane)	S	S	S
Anchovy oil	LS-3	S	S
Anglanoil 99	LS-8	LS-8	x
Aniline	U	U	U
Animal oil	LS-3	S	S
Anivax SX 3158	S	S	Х
Ansulite FFF	x	S	×
Anthracene (C14) nonliquid	S	S	Х
Anthracene oil	х	S	S
Antifreeze (giycol based)	S	S	X
Apricot kernel oil	×	S	S
Arachis oil	LS-3	S	S
Arco carbon black oil (Carbon black/feed stock)	S	S	х
Aroma (Extender oils)	S	S	S
Aromatic 100	S	S	S
Aromatic concentrate (Carbon black/feed stock)	S	S	x
Aromatic hydrocarbons	S	S	S
Aromatic oils (Extender oils)	S	S	S
Aromatic petroleum solvents	S	S	S
Aromatic sulfonic acids	U	U	U
Asphalt	×	LS-8	×
Asphalt cut back (Mix-asphalt, Gasoline, Naphtha and solve	ents) S	S	S
Atrazine	U	S	х
Aviation alkylates (C8 paraffins and iso-parraffins, BP 95-12		S	S
Aviation gasoline	S	S	S
Aviation kerosene	S	S	S

April, 1993

Exhibit E Page 12 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Avocado Oil	x	c	
Axle oil (Lube oil)	ŝ	S S	S
Babassu oil	LS-3	S	S
Beechnut oil	LS-3	S	S
Benzaldehyde	U		S
	Ū	U	U
Benzene	S	S	•
Benzene, industrial nitration grade	S	S	S
Benzene trimethyl	S		S
Benzenesulfonyl chloride	x	S	S
Benzol	s	X	X
	3	S	S
Benzyl acetate	LS-4	1014	
Benzyl alcohol	S	LS-1,4	U
Benzyl chloride	x	S	Х
Beta-methacrylic acid	Ŭ	S	X
Black oil		U	U
	LS-2	S	S
Blandol (White mineral oil)	S	0	
Blown oils		S	S
Boric acid 10%	LS-3	S	S
Brake fluid (glycol base)	U	S	U
Brake fluid (glycol ether base)	S	S	S
	U	S	S
Brandy	V		
Brine	X	LS-6	Х
Bromine	U	S	S
Bunker C oil and solvent	U	U	U
Bunker oil	S	S	S
	S	S	S
Butadiene	c		
Butadiene, inhibited	S	S	Х
Butane	x	X	X
1,3-Butane diol (Butylene glycol)	S	S	S
Butanoic acid (Butyric acid)	S	S	Х
	U	Ū	U
Butanol (iso, normal, secondary, tertiary)	C	-	
Butene oligomer	S	S	х
Butenoic acid (Crotonic acid)	×	S	x
2-Butoxy ethanol (Butyl cellosolve)	U	U	U
Butyl acetate (iso, normal, secondary)	S	S	X
	LS-4	LS-1,4	U٠
Butyl acrylate (inhibited)	10.4		
Butyl alcohol (iso, normal, secondary, tertiary)	LS-4	LS-4	х
Butyl amines	S	S	x
Butyl benzyl phthalate (BBP)	U	U	U
n-Butyl butyrate	S	S	X
	S	S	×

Page 4 of 40

April, 1993

(

f

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Butyl carbinol (N-Amyl alcohol)	S	S	x
Butyl carbitol (Diethylene glycol monobutyl ether)	S	S	x
Butyl carbitol acetate	LS-4	LS-1,4	U
(Diethylene glycol monobutyl ether acetate)		,.	Ŭ
Butyl cellosolve (Ethylene glycol monobutyl ether)	S	S	x
Butyl cellosolve acetate	LS-4	LS-1,4	U
(Ethylene glycol monobutyl ether acetate)			
Butyl chloride	x	LS-4	Х
Butyl/decyl/cetyl eicosyl methacrylate mixture	LS-4,9	x	х
Butyl decyl phthalate	S	S	x
Butyl dioxitol	S	S	х
Butylene, alpha, 2	S	S	S
Butylene glycol	S	S	х
Butylene, poly	S	S	S
n-Butyl ether	S	x	Х
Butyl formate	x	x	×
Butyl glycidyl ether (BGE)	S	x	X
Butyl glycol acetate	LS-4	LS-1, 4	U
Butyl glycol ether	S	S	х
Butyl heptyl ketone	S	S	U
Butyl lactate (no heat)	۰U	LS-8	×
Butyi methacrylate monomer	LS-4,9	LS-1,4,9	U
Butyl oxitol (Ethylene glycol monobutyl ether)	S	S	х
Butylphenol (ortho, tertiary)	S	S	X
Butyl phthalate	S	S	X
n-Butylraldehyde	U	×	x
Butyl stearate	X	S	x
Butyric acid	U	U	U
Butyrolactone	_ U	X	x
gamma-Butyrolactone	U	X	×
Butyrone (Heptanone)	S	S	U
Cajaputene (Dipentene)	S	S	S
Calcium alkyl salicylate	S	S	x
Calcium bromide 48%	S	S	x
Calcium bromide 53%	x	S	X
Calcium carbonate solution (130°F maximum)	×	S	x
Calcium chloride (saturated)	U	S	x
Calcium hydroxide 10%	U	S	S
Calcium hydroxide 30%	U	S	S
Calcium hydroxide 50%	U	S	S

April, 1993

Exhibit E Page 14 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchern 253 Lining	Devchern 255 Lining
Calcium hypochlorite 15%	U	S	X
Calcium hypochlorite solution (over 15%)	U	x	x
Calcium naphthenate (in mineral oil)	х	S	ŝ
Camphor oil	x	S	S
Candelilla oil (Montan)	x	S	S
Candlenut oil	LS-3	S	S
Canola oil, refined	x	LS-6	S
Capoc oil	LS-3	S	S
Capric acid	U	S	U
Caproic acid	U	S	Ŭ
Caprolactone	x	U	U
Capryl alcohol	S	S	×
Caprylic acid (Oxylic acid)	U	S	Û
Carbitol acetate	LS-4	LS-1, 4	Ŭ
Carbitol solvent (Diethylene gylcol monoethyl ether)	S	S	x
Carbolic Acid (Phenol 100%)	LS-7	U	U
Carbolic oil (Middle oil)	S	S	S
Carbon black oil	LS-8	LS-8	L S -8
Carbon dioxide (gas) 100%	S	S	S
Carbon disulfide 10%	U	U	U
Carbon disulfide 100%	LS-4	U	U
Carbon tetrabromide	LS-4	S	x
Carbon tetrachloride	LS-4	S	×
Carbonic acid 10%	S	S	Ű
Carbowax 200	S	S	×
Carbowax 300 (Polyethylene glycol)	S	S	x
Carbowax 600	S	S	x
Cardura E	LS-4	S	×
Carnation oil (Petrolatum)	S	S	S
Carnation white mineral oil	S	S	S
Carnauba wax	×	S	S
Cashew nutshell oil	х	S	S
Castor oil	LS-3	S	S
Caustic potash	U	S	S
Caustic soda (NaOH) 10%	U	S	S
Caustic soda (NaOH) 20%	U	S	S
Caustic soda (NaOH) 50%	U	S	S
Caustic soda 50% spent (no heat)	U	S	x
Cellosolve (Ethylene glycol monoethyl ether)	S	S	x
Cellosolve acetate (Ethylene glycol monoethyl ether acetat	e) LS-4	LS-1,4	Û

Page 6 of 40

April, 1993

i

ĺ

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Cement	U	S	x
Certrex's mineral spirits	S	S	S
Cetyl alcohol (Primary hexadecyl alcohol)	S	S	x
Chinawood oil (Tung oil)	LS-3	S	S
Chlorinated diphenyl	LS-4	S	x
Chlorinated paraffins	LS-4	S	U
Chlorine, available in solution as NaClO (up to 200 ppm)	U	LS (X 30)	U
Chlorine, wet (saturated)	U	U	U
Chlorine dioxide	U	U	U
Chloroacetic acid	U	U	U
Chloracetyl chloride	U	U	U
Chlorobenzene	LS-4	LS-4	U
p-Chloro-m-cresol	S	U	U
2-Chloroethanol	LS-4	x	U
Chloroethene	LS-4	U	U
Chloroethylene	LS-4	U	U
Chloroform	LS-4	X	U
Chloropropionic acid	U	U	U
Chloropropylene oxide (Epichlorohydrin)	LS-4	U	U
Chlorosulfonic acid	U	U	U
Chlorothene (1,1,1-Trichlorethane)	LS-4	LS-1, 4	U
Chlorotoluene (all isomers)	LS-4	S	U
Choline chloride	U	S	U
Chromic acid 5%	U	LS-8	U
Chromic acid 10%	U	LS-8	U
Chromic acid 20%	U	U	U
Chromic acid 50%	U	U	U
Cinene (Dipentene)	S	S	S
Circo light oils	S	S	S
Circo light oil (extender oil)	S	S	S
Circo process oil (extender oil)	S	S	S
Circosol oil (extender oil)	S	S	S
Citric acid 5%	U	S	U
Citric acid 25%	U	S	U
Citroflex A-4	S	S	× .
Clorox	U	S	U
Coal tar benzene	S	S	S
Coal tar naphtha	S	S	S
Cocoa butter	X	S	S
Cocoa butter oil	LS-4	S	S

-

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining	
Cocoa nut oil, crude	LS-3	S	S	·
Cocoa oil	LS-3	S	s	
Coco fatty acid	U	LS-15	Ŭ	
Coco fatty alcohol	S	S	x	
Coco methyl ester	LS-3	S	x	
Coconut fatty acid, topped	U	LS-15	U	
Coconut fatty acid, whole distilled	U	LS-15	U	
Coconut oil, esterfied	U	S	S	
Cod liver oil	LS-3	S	S	
Cohune oil	x	S	S	
Colza oil	LS-3	S	S	
Copra oil (Coconut oil)	LS-3	S	S	
Coray 40 (lubricant)	S	S	S	
Core Lube 670 catalyst	х	Ŭ	x	
Core Lube 674 catalyst	x	Ŭ	Û	
Corn oil	LS-3	S	S	
Corn syrup	х	S	s	
Cotton seed fatty acid	х	LS-15	Ű	
Cottonseed oil (sulfuric acid free)	LS-3	S	S	
Cottonseed oil stearine	S	S	x	(
Coumarone naphtha solvent	S	S	S	
Creosote	LS-1,4	LS-1,4	U	
Creosote (coal tar)	S	U	Ŭ	
Cresol (ortho, meta, para)	LS-7	U	Ŭ	
Cresyl diphenyl phosphate (Santicizer 140)	S	S	x	
Cresylic acid 10%	U	U	U	
Cresylic acid 100%	Х	Ű	Ŭ	
Crotonaldehyde	U	Ū	Ŭ	 .
Croton oil	LS-3	S	S	
Crude condensate (naphtha, petroleum)	S	S	S	
Crude glycerine	U	s	S	
Crude hard fraction PKO (Palm kernel oil)	U	S	S	
Crude oil (high and low sulfur)	LS-2	S	x	
Cumene	S	S	x	
Cumene, pseudo	S	S	x	
Cumol	S	S	x	
Cyclo-Sol 53	S	S	x	
1,5,9-Cyclododecatriene	X	x	x	
Cycloheptane	S	S	S	ŧ
Cyclohexane	S	S	S	ı

Page 8 of 40

April, 1993

en -

Exhibit E Page 17 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Cyclohexanol	S	S	x
Cyclohexanone	S	LS-1, 14, (X3	
Cyclohexanone/cyclohexanol mixture	S	LS-1, 14, (X3	
Cyclohexene	S	S	s, s
Cyclohexyl acetate	LS-4	LS-1,4	U
Cyclohexylamine	U	U	U
Cyclopentane	S	S	S
Cyclopentene	S	S	S
Cycosol (Mineral spirits)	S	S	S
Cylinder bright stock oil	S	S	S
Cylinder steam refined stock oil	S	S	S
p-Cymene (Isopropyltoluene)	S	S	S
Dalapon (2,2-Dichloropropionic acid)	U	U	Ū
Dalatinol (Di-(2-ethylhexyl) phthalate)	S	S	x
Dasanit	S	S	x
Decahydronaphthalene	x	S	x
Decalin (Decahydronaphthalene)	S	S	x
Decane (Decyl hydride)	S	S	S
Decanoic acid (Capric acid)	U	LS-4, (X60)	Ŭ
Decanol	S	S	x
Decene	S	S	S
Decyl alcohol (all isomers)	S	S	x
Decyl acrylate	LS-4,9	LS-1,4	Ū
Decyl benzene	X	S	S
Decyl carbinol (1-Undecanol)	S	S	S
Decyl octyl alcohol	S	S	x
D-D-Soil fumigant (1,3-Dichloro propylene and Propylene dichloride)	U	U	- U
De-icing fluids (glycol based)	S	ŝ	х
De-Monomer (Shell)	S	x	X
Detergent alkylate (Dodecyl benzene)	S	S	S
Dextrose solution	х	S	S
Diacetone alcohol	S	S .	x
Dialkyl benzene	X	S	x
Dialkyl phthalate	S	S	x
Diallyl phthalate (DAP)	LS-4	s	x
Dibenzofuran (Diphenylene oxide)	S	U	x
1,2-Dibromo-3-dichloropropane	LS-4	X	x
Dibutylamine	U	U	Û
Dibutyl carbitol (Diethtylene glycol dibutyl ether)	S	S	x

April, 1993

~

Exhibit E Page 18 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Dibutyl Cellosolve (Ethylene glycol dibutyl ether)	S	LS-1	U
Dibutyl Maleate	LS-4	x	x
Dibutyl phthalate (DBP)	S	S	X
Dibutyl sebacate (DBS)	LS-4	S	x
Dicaprocate (Triethylene glycol)	S	S	x
Dichloroaniline	U	x	x
Dichlorobenzene (all isomers)	LS-4	U	U
Dichlorodifluoromethane	LS-4	х	х
Dichloroethane (Ethylene dichloride) (no heat)	LS-4	LS-1,4, 14	U
Dichloroethylene	LS-4	U	U
Dichloroethyl ether	LS-4	U	U
Dichlorohexane	LS-4	U	U
Dichloromethane (Methylene chloride)	LS-4	U	U
Dichlorophenol	LS-4	х	U
Dichloropropane	LS-4	U	U
Dichloropropene	LS-4	S	U
Dichloropentane	LS-4	S	U
Dichloropropionic acid	U	х	U
Dicyclohexylamine	U	U	U
Dicylopentadiene	S	S	S
Diese! fuel	S	S	S
Diesel oil	S ´	S	S
Diethanolamine (DEA)	U	S	х
Diethylamine (no heat)	U	U	U
Diethylaminoethanol (no heat)	x	LS-1, (X60)	U
2,6-Diethylaniline	x	x	x
Diethylbenzene	S	S	X
Diethyl carbonate	LS-4	S	Х
Diethylethanolamine (no heat)	Ū	LS-1, (X60)	U
Diethyl ether	S	U	U
Diethyl phthalate	S	S	x
Diethyl sulfate	X	X	x
Diethylene alcohol	S	S	х
Diethylene chloride	LS-4	U	U
Diethydichloroformal	x	x	U
Diethylene ether (Dioxane)	S	S	S
Diethylene glycol (Dihydroxydiethyl ether)	S	S	x
Diethylene glycol butyl ether acetate	LS-4	LS-1,4	U
Diethylene glycol dibutyl ether	S	S	X
Diethylene glycol diethyl ether	S	S	×

Page 10 of 40

April, 1993

i

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Diethylene glycol ethyl ether acetate	LS-4	LS-1,4	U
Diethylene glycol methyl ether	S	S	x
Diethylene glycol methyl ether acetate	LS-4	LS-1,4	U
Diethylene glycol monobutyl ether	S	S	x
Diethylene glycol phenol ether	S	x	x
Diethylene glycol phenyl ether	S	S	x
Diethylene glycol phthalate	Х	S	х
Diethylenetriamine	X	U	U
Di{2-ethylhexyl}adipate	Х	S	х
Di(2-ethylhexyl)phosphoric acid	U	U	U
Di(2-ethylhexyl)phthalate	S	S	x
Diglycidyl ether of bisphenol A	Х	S	x
Diglycidyl ether of bisphenol F	Х	S	х
Di-hard-tallow-methylamine	х	S	х
Di-n-hexyl adipate	LS-4	S	х
Diisobutylene	S	S	S
Diisobutyl ketone (DIBK)	S	S	U
Diisobutyl phthalate	S	S	х
Diisodecyl phthalate	S	S	х
Diisononył adipate	LS-4	S	х
Diisooctyl adipate	LS-4	S	x
Diisooctyl phthalate (DIOP)	S	S	x
Diisopropanolamine	X	X	x
Diisopropylamine	х	U	x
Diisopropylbenzene	S	S	x
Diisopropylether	S	x	x
Diisopropyl naphthalene	S	S	х
Dimethanolamine _	Х	U	U
Dimethyl adipate	Х	S	X
Dimethylamine (DMA)	U	U	U
Dimethylamine, 40% aqueous solution	U	U	U
Dimethylaminoethanol	U	U	U
Dimethylcarbinol (Isopropyl alcohol)	S	S	х
n,n-Dimethyl cyclohexyl amine	U	X	х
Dimethylethanolamine	U	U	٠u
Dimethyl formamide	LS-1, (X60)	U	U
Dimethylglutarate (no heat)	S	LS (X 60)	х
Dimethylketone (Acetone)	S	LS-1, 14, (X3	
Dimethyl naphthalene sulfonic acid sodium salt solution	LS-12	LS-12	х
Dimethyl phthalate	S	S	x

April, 1993

Page 11 of 40

and second as

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
2,2-Dimethyl-1,3-propanediol	x	x	x
Dimethyl sebacate	LS-4	S	x
Dimethyl succinate	LS-4	S	x
Dimethyl sulfoxide (DMSO)	S	x	x
Dimonene (Dipentene)	S	S	s
Dinitrotoluene (DNT)	LS-4	S	x
Dinonyl phthalate (DNP)	S	S	x
Dioctyl adipate	LS-4	S	X
Dioctyl phthalate (DOP)	S	S	X
Diol 80 (lube oil)	S	S	S
Dioxane	S	S	x
Dioxitol (Diethylene glycol monoethyl ether)	S	S	X
Dipentene	S	S	S
Diphenyl ether	S	LS-1	Ŭ
Diphenylmethane 4,4-diisocyanate (MDI)	S	S	x
Diphenylmethane isocyanate	х	U	U
Diphenyl oxide (Diphenyl ether)	S	LS-1	Ŭ
Diphenylene oxide	S	U	x
Diphenylol propane-epichlorohydrin resins	Х	S	S
Diphenyl oxide/diphenyl phenyl ether mixture	S	U	Ŭ
Di-n-propylamine	U	U	U
Dipropyl ketone (Heptanone)	S	S	U
Dipropylene glycol	S	S	х
Dipropylene glycol methyl ether	S	LS-1	U
Dipropylene glycol monomethyl ether	S	LS-1	U
Distearyl dimethyl ammonium chloride	x	S	x
Distilled water	S	S	S
Ditallow dimethyl ammonium chloride	Х	S	x
Ditridecyl phthalate (DTDP)	S	S	х
Diundecyl phthalate	S	S	x
Divinyl acetate	LS-4,9	U	U
Dobanes	S	S	S
Dobanols (fatty alcohols)	S	S	x
Dodecane	S	S	S
Dodecanoic acid (Lauric acid)	U	S	U
Dodecanoi (Lauryi alcohol)	s	S	x
Dodecene (Tetrapropylene)	S	S	X
Dodecyl alcohol	S	S	x
Dodecyl amine	U	х	x
Podecyl amine/tetradecyl amine mixture	x	x	x

Page 12 of 40

April, 1993

ſ

Ć

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Dodecylbenzene (Alkane)	S	S	S
Dodecyl methacrylate	LS-4,11	x	X
Dodecyl/pentadecyl methacrylate solution	LS-4,11	x	х
Dodecylphenol	LS-7	S	х
Dow Coming FX16	S	S	x
Dowanol DB (Diethylene glycol butyl ether)	S	S	x
Dowanol DE (Diethylene glyclol ethyl ether)	S	S	х
Dowanol DESG (Modified Dowanol DE)	S	S	х
Dowanol DM (Diethylene glycol methyl ether)	S	S	x
Dowanol EB (Ethylene glycol n-butyl ether)	S	S	×
Dowanol EE (Ethylene glycol ethyl ether)	S	S	x
Dowanol EM (Ethylene glycol methyl ether)	S	S	Х
Dowanol EP (Ethylene glycol phenyl ether)	S	S	x
Dowanol PM (Propylene glycol methyl ether)	S	S	x
Dowanol PMIX (PM+DPM+TPM)	S	S	x
Dowanol TPM (Tripropylene glycol methyl ether)	S	S	×
Dow 6X (Hexachlorodiphenyl oxide)	LS-4	S	x
Dow Epoxy Resin 331 (DGE)	x	S	x
Drilling brine	x	S	S
Drilling mud	x	S	S
Emulsified vegetable oils	LS-3	S	S
Engine oil	S	S	S
Epichlorohydrin	LS-4	U	U
Ervol (Petrolatum)	S	S	S
Ethanol (technical)	S	S	U
Ethanolamine (MEA)	U	U	U
Ether -	S	U	U
Ethidene (Norbonene)	S	S	x
Ethoxol (Ethylene glycol monoethyl ether)	<u> </u>	S	X
Ethoxyethanol (Cellosolve)	S	S	X
Ethoxyethyl acetate (Cellosolve acetate)	LS-4	LS-1,4	U
beta-Ethoxyethylmethacrylate monomer	LS-4	S	X
Ethoxylated fatty alcohols (Shell)	LS-3	S	X
Ethyl acetate (no heat)	LS-4	LS-1,4	U
Ethylacetic acid (Butyric acid)	U	U	U
Ethyl acetoacetate	LS-4	LS-1,4	U
Ethyl alcohol (denatured)	S	S	U
Ethylamine 70%	U	U	U
Ethyl amino toluol	х	U	U
Ethyl amyl ketone (EAK)	S	S	U

April, 1993 Exhibit E Page 22 of 52

.

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining	.
Ethylbenzene	S	S	S	
2-Ethylbutanol	S	S	x	
Ethyl-n-butylamine	U	x	x	
Ethyl butyrate	х	S	x	
Ethyl Cellosolve	S	S	X	
Ethyl chloride	LS-4	x	×	
Ethylcyclohexane	S	S .	S	
Ethyl cyclohexanone	S	U	U	
Ethyl cyclohexylamine	U	Х	X	
Ethylene (Ethene)	S	S	S	
Ethylene carbonate	×	x	×	
Ethylene chloride (Ethylene dichloride) (no heat)	LS-4	LS-1,4, 14	U	
Ethylene chlorohydrin	LS-4	U	Ŭ	
Ethylene cyanohydrin	x	x	x	
Ethylenediamine	U	U	x	
Ethylenediaminetetraacetic acid 10% (EDTA)	U	S	U	
Ethylenediaminetetraacetic acid, tetrasodium salt solution	n X	x	x	
Ethylene dibromide	LS-4	Ŭ	Ŭ	
Ethylene dichloride (no heat)	LS-4	LS-1,4, 14	Ŭ	,
Ethylene glycol (Ethylene alcohol)	S	S	×	(
Ethylene glycol (fiber grade)	S	S	x	
Ethylene glycol acetate	LS-4	LS-1,4	Ű	
Ethylene glycol butyl ether acetate	LS-4	LS-1,4	Ŭ	
Ethylene glycol diacetate (Glycol diacetate)	LS-4	LS-1,4	Ŭ	
Ethylene glycol dibutyl ether	S	LS-1	U	
Ethylene glycol isopropyl ether	S	LS-1	U	
Ethylene glycol methyl butyl ether	S	LS-1	Ŭ	
Ethylene glycol methyl ether	S	S	x	
Ethylene glycol monobutyl ether (2-Butoxyethanol)	S	S	x	
Ethylene glycol monobutyl ether acetate	LS-4	LS-1,4	Û	
Ethylene glycol monoethyl ether (2-Ethoxyethanol)	S	S	×	
Ethylene glycol monoethyl ether acetate	LS-4	 LS-1,4	Ű	
Ethylene givcol monomethyl ether (2-Methoxyethanol)	S	S	×	
Ethylene glycol monomethyl ether acetate	LS-4	LS-1,4	Û	
Ethylene glycol monophenyl ether	S	s	×	
Ethylene glycol phenyl ether	S	S	x	
Ethyleneimine	x	x	x	
Ethylene oxide (Epoxyethane)	Ű	U	Û	
Ethylene polyglycol	S	s	×	1
Ethyl ether	S	S	x	(

Page 14 of 40

April, 1993

Cargoes to be carried:	Catha-Coat 305 Coating	Devchern 253 Lining	Devchern 255 Lining
Ethyl-3-ethoxypropionate	S	S	x
Ethylhexanoic acid	U	х	x
Ethylhexanol	S	S	x
2-Ethylhexanol	S	S	х
Ethyl hexoic acid (2-Ethyl hexoic acid)	U	x	x
2-Ethylhexyl acetate	LS-4	LS-1,4	U
2-Ethylhexyl acrylate	X	X	x
2-Ethylhexyl alcohol	S	S	x
2-Ethylhexylamine	U	U	U
2-Ethylhexyl 2-mercapto acetate	×	x	x
Ethylidene chloride (1,1-Dichloroethane)	x	x	x
Ethyl lactate	LS-4	LS (X 30)	x
Ethyl methacrylate monomer	x	U	U
Ethyl ortho silicate	S	S	X
Ethyl PCT	x	x	x
Ethyl phthalate	S	S	x
o-Ethylphenol	x	U	U
Ethyl propionate	S	S	X
2-Ethyl-3-propylacrolein	x	Х	X
Ethyl silicate, condensed	S	S	X
Ethyltoluene	S	S	S
Extender/process oils	S	S	S
Fatty acids, refined (animal and vegetable derived)	LS-3	LS-15	U
Fatty alcohol, natural	LS-3	S	х
Fatty alcohols, synthetic	LS-3	S	×
Ferric chloride 20%	U	LS-8	x
Ferric sulfate (up to 20%)	U	S	х
Fertilizer solutions	U	S	x
Fire fighting foams: Aer-O-Lite 3 (Chubb National)	x	S	x
Aer-O-Lite 3 Cold Foam (Chubb National)	x	S	x
Aer-O-Water (Chubb National)	X	S	х
High Expansion (Chubb National)	x	S	х
Universal Gold (Chubb National)	x	S	х
Universal Plus (Chubb National)	x	S	x
Fish liver oil	x	S	S
Fish oil	LS-3	S	S
Fish oil solubles	L S -3	LS-15	х
Flexindra (process extender oil)	S	S	х
Flexol DIOP (Diisooctyl phthalate, 10-10 Diisodecyl phtha	late) S	S	x

.

• -

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Flexol DOP (Di-2-ethylhexyl phthalate)	S	S	x
Flexol EOP (Epoxidized soybean oil)	LS-3	S	x
Flexol NHDP (Normal, hexyl, n-octyl, n-decyl phthalate)	S	S	x
Flexon process oil	S	S	x
Fluorosilicic acid (Fluosilicic acid)	U	U	U
Foots soapstock oil (sulfuric acid free)	U	S	S
Formaldehyde 100% (HCHO)	U	U	U
Formaldehyde solution 37%	U	U	U
Formaldehyde solution 38% – 50% by weight	U	U	U
Formalin	U	U	U
Formamide	U	U	U
Formic acid 10%	U	U	U
Fuel, jet JP4, JP5	S	S	S
Fuel oil	S	S	S
Fuel oil #2	S	S	S
Fumaric adduct of rosin (water dispersion)	x	x	×
Furfural, corn, oat or rice extract (Ant oil)	LS-3,4	U	х
Furfuryl alcohol (Furyl carbinol) (no heat)	S	LS-1 (X30)	U
Fusel oil, acid free (Amyl alcohol)	S	S	x
Gas oil	S	S	S
Gasoline	S	Ś	S
Gasoline (with tetraethyl lead)	S	S	S
Gas plant naphtha (Petroleum naphtha)	S	S	S
Gentrex (Lube oil)	S	S	S
Getty antifreeze	S	S	×
Glacial acetic acid	U	U	U
Gluconic acid 50%	U	S	U
Glucose	S	S	_S
Glucose Syrup	X	S	S
Glutaraldehyde solution	×	x	x
Glycerin, crude (Glycerine)	U	S	x
Glycerin, synthetic	S	S	x
Glycerol	LS-3	S	x
Glyceryl triacetate (Triacetin)	LS-4	S	х
Glycine, sodium salt solution	x	x	x
Glycol (Dihydric alcohol)	S	S	x
Glycol alkyl ethers	S	S	x
Glycol diacetate	LS-4	LS-1,4	U
Glycol monoethers	S	S	x
ilyoxal solution (40% or less)	U	L S-1 2	x

Page 16 of 40

April, 1993

- 4

(

Exhibit E Page 25 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Grain oil (Fusel oil)	S	s	S
Grapeseed oil	LS-3	S	S
Grapestone oil	LS-3	S	S
Gravex (lube oil)	S	S	S
Grease, animal	x	S	S
Grease, yellow	U	S	S
Gulf (Lube oils)	S	S	S
Gulf Base Stock 900	S	S	х
Hard fraction oil	LS-3	S	x
Hazelnut oil	LS-3	S	S
Heart cut distillate (Exxon solvent blend)	S	s	S
Heavy aromatic naphtha	S	S	S
Heptadecane	S	S	S
Heptadecane 3-heptanol	S	S	X
Heptane (all isomers)	S	S	S
Heptanoic acid	U	LS (X 30)	U
1-Heptanol (Enanthic alcohol)	S	S	X
3-Heptanol	S	S	X
2-Heptanone (Methyl n-amyl ketone)	S	S	U
3-Heptanone (Ethyl butyl ketone)	S	S	U
1-Heptene (1-Heptylene)	S	S	S
Heptyl acetate	LS-4	LS-1,4	U
Heptyl alcohol (all isomers)	S	S	X
Hexachlorocyclopentadiene	Х	X	U
Hexachloropentadiene	S	S	U
Hexachlorodiphenyl oxide	S	x	U
Hexadecane (Cetane)	S	S -	S
1-Hexadecanol (Hexadecyl alcohol)	S	_ S	S
Hexadecanoic acid (Palmitic acid)	U	S	U
Hexadecenoic acid (Palmitoleic acid)	U	S	U
Hexahydroaniline (Cyclohexylamine)	U	U	U
Hexahydrobenzene (Cyclohexane)	S	S	S
Hexahydro cymol	S	S	X
Hexahydrophenol (Cyclohexanol)	S	S	X
Hexalin	S	S	X
Hexamethylene (Cyclohexane)	S	S	S
Hexamethylenediamine	U	U	U
Hexamethylenediamine solution	U	U	U
Hexamethylenediamine adipate (50% in water)	U	U	U
Hexamethylenimine	x	x	×

April, 1993

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Hexamethylenetetramine (HMTA)	U	U	U
Hexanaphthene (Cyclohexane)	S	S	S
Hexane (all isomers)	S	S	S
Hexane triol	S	S	x
Hexanol (all isomers)	S	S	x
Hexanoic acid (Caproic acid)	U	S	U
Hexene	S	S	S
Hexoic acid (Caproic acid)	U	S	U
Hexone (Methyl isobutyl ketone)	S	LS-1 (X60)	U
Hexyl acetate	LS-4	LS-1,4	U
Hexyl alcohol (iso, normal)	S	S	×
Hexylene glycol	S	S	х
Hexylic acid (Caproic acid)	U	S	U
Hydrazine 5%	LS (X 60)	S	x
Hydrazine 30%	LS (X 30)	x	x
Hydrocarbons, aliphatic	s	S	S
Hydrocarbons, alpha	S	S	S
Hydrocarbons, aromatic	S	S	S
Hydrochloric acid 5%	U	U	U
Hydrochloric acid 10%	U	U	U
Hydrochloric acid 20%	U	U	U
Hydrochloric acid 37%	U	U	U
Hydro crackate (gasoline)	S	S	S
Hydrofluoric acid 10%	U	U	U
Hydrogen chloride gas, dry	U	U	U
Hydrogen fluoride	U	U	U
Hydrogen sulfide, saturated	U -	S	х
Hydroxyethyl acrylate	- X	X	x
Hydroxylamine, solution	U	S	х
Hydroxymethyl benzene (Cresol)	S	U	U
2-Hydroxy-4-(methylthio)butanoic acid	x	x	U
Illipe butter (Mowrah butter)	X	S	S
Inedible tallow (01986)	U	S	X
Intermediate detergent (fatty alcohol)	LS-3	S	X
isoamyl acetate	LS-4	LS-1,4	U
Isoamyl alcohol	S	S	×
Isoamylene	S	S	S
Isobutyl acetate	LS-4	LS-1,4	U
Isobutyl acrylate	x	LS-4	x
sobutyl alcohol	S	S	×

n. .

Page 18 of 40

1

April, 1993

{

Exhibit E Page 27 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Isobutyl aldehyde	U	U	U
Isobutyl carbinol (Isoamyl alcohol)	S	S	х
Isobutyi formate	x	LS-12	х
Isobutyl isobutyrate	S	S	x
Isobutyric acid	U	U	U
Isodecane	S	s	S
Isodecanol	S	S	х
Isohexanol	S	S	x
Isononanoic acid	X	x	U
Isononyi alcohol	S	S	X
Isooctane	S	S	S
isooctyl alcohol (isooctanol)	S	S	x
lsopar E (Esso Iso paraffin)	S	S	S
lsopar G (Esso Iso paraffin)	S	S	S
Isopar H (Esso Iso paraffin)	S	S	S
lsopar K (Esso Iso paraffin)	S	S	S
lsopar L (Esso Iso paraffin)	S	S	S
Isopar M (Esso Iso paraffin)	S	S	S
Isopentane	S	S	S
Isophorone	S	U	U
Isophorone diamine	U	U	U
lsophorone diisocyanate	X	x	x
Isoprene	S	S	x
Isopropanolamine	υ	U	x
Isopropyl acetate	LS-4	LS-1,4	U
Isopropyl alcohol	S	S	x
Isopropylamine 50%	U	U	U
Isopropylamine 100% (no heat)	U	U	U
Isopropyl benzene (Cumene)	S	S _	×
isopropyl cyclohexane	S	S	S
Isopropyl ether	S	S	x
Isopropyl oxitol	S	S	, X
Japan wax	LS-3	S	S
Jeffersol (Ethylene glycol monomethyl ether)	S	S	x
Jet fuel, JP4, JP5, JP6	S	S	۰s
Jojoba oil	X	S	S
Kapoc oil	LS-3	S	S
Kasil (Potassium silicate)	U	S	x
Kaydol (mineral oil)	S	S	S
Kaydol (petrolatum)	S	S	S

April, 1993

~

Page 19 of 40

Exhibit E Page 28 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Kellin (Linseed oil)	LS-3	S	S
Kerex (Mineral spirits)	S	S	S
Kerosene	S	S	s
Ketohexamethylene (Cyclohexanone)	S	LS-1, 14 (X3	
Klearol (petrolatum)	S	s	S
KMC-113 Solvent (Diisopropyl naphthalene)	S	S	S
KMC Oil (Diisopropyl naphthalene)	S	S	S
Kodaflex (Hexanol isobutyrate)	S	S	x
Lactic Acid	U	LS-8	Ŭ
Laktane (normal paraffin solvent)	S	S	S
Lamp oil (Kerosene)	S	S	S
Lanolin	LS-3	S	Š
Lard	LS-3	S	s
Lard oil	LS-3	S	S
Larex	LS-3	S	x
Lasso herbicide (no heat)	х	S	x
Latex rubber, natural (Ammonia stabilized)	U	S	x
Lauric acid (fatty acid)	Ŭ	LS-15	Û
Lauric/myristic acid mixture	Ŭ	LS-15	Ŭ
Lauryl alcohol	LS-3	s	x
Law (Mineral spirits)	S	S	S
Lignosite (50% lignin liquor)	U	s	x
Ligroin	S	S	x
Lime slurry	x	s	x
Limonene (Dipentene)	S	s	S
Linear alcohols (Tergitols)	S	S	х
Linear paraffin (Tridecane)	S	S	S
Linevol	S	S	×
Linoleic acid (fatty acid)	Ŭ	LS-15	Û
Linolenic acid (fatty acid)	U	LS-15	Ŭ
Linseed oil	LS-3	s	S
Low aromatic white spirit (Mineral spirits)	S	S	S
Lube Oil	S	S	S
Lycopersicum esculentum oil (Tomato seed oil)	x	S	S
Lye, potassium 50% (KOH, Potassium hydroxide)	Û	S	5 S
Lye, sodium 50% (NaOH, Sodium hydroxide)	U	S	c
M-300 (lube additive)	S	S	S
M-400	S	S	S S
MDI (Diphenyl methane 4,4 diisocyanate)	x	S	x
Magnesium chloride 35%	Ŭ	S	x

Page 20 of 40

April, 1993

ł

ł

(

.

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Magnesium hydroxide	U	S	x
Magnesium sulfonate	х	S	x
Maize oil	LS-3	S	s
Maleic acid 10%	U	LS (X 30)	3 U
Maleic anhydride	x	S	x
Margaric acid (Heptadecanoic acid)	U	LS (X 30)	U
Meadow foam oil	x	S	x
Menhaden oil	LS-3	S	ŝ
Mercaptans	U	LS (X 30)	
Mercaptobenzothiazol sodium salt solution	x	X X	X X
Mesamoll (Phenol/cresol alkyl sulfonic esters)	S	×	x
Mesitylene	S	S	x
Mesityl oxide	Ŭ	s	x
Metam sodium solution	x	s	x
Meta-toluene diisocyanate (TDI)	LS-9	LS-9	×
Methacrylate monomer	U	U	x
Methacrylic acid	U	Ű	Û
Methacrylonitrile	LS-9	x	_
Methallyl alcohol	S	ŝ	X
Methanol (1% maximum water content)	S	LS-1, 14	X U
Methenamine (HMTA)	U	U	U
3-Methoxybutyl acetate	LS-4	LS-1,4	
2-Methoxyethanol (Methyl Cellosolve)	S	S	U
Methoxypropylene glycol	S	S	X
Methyl acetate	LS-4	LS-1,4	X U
Methyl acetoacetate	LS-4	LS-1,4	U
Beta-methyl acrolein (Crotonaldehyde)	U	U	U U
Methyl acrylate, inhibited	LS-4	LS-4	
Methyl acrylic acid	U	U	X U
Methyl alcohol (1% maximum water content)	S	LS-1, 14	U
Methylallyl alcohol	S	S	x
Methylallyl chloride	LS-4	S	x
Methylamine solutions	x	S	x
2-Methylamyl acetate	LS-4	LS-1,4	Û
2-Methylamyl alcohol	S	S	x
Methylamyl ketone	S	LS-1	U
Methylbenzene (Toluol)	S	S	S
Methyl bromide	X	×	X
2-Methyl butanol	S	S	x
Methyl butenol	S	S	x

April, 1993

-

Exhibit E Page 30 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Methyl tertiary-butyl ether (MTBE)	S	S	S
Methyl butyl ketone	S	LS-1	U
Methyl butynol	S	S	x
Methylbutyraldehyde	U	U	X
Methyl butyrate	S	S	x
Methyl carbitol (Diethylene glycol monomethyl ether)	S	S	x
Methyl cellosolve (Ethylene glycol monomethyl ether)	S	S	х
Methyl cellosolve Acetate	LS-4	LS-1,4	U
(Ethylene glycol monomethyl ether acetate)			
Methyl chloride	x	x	x
Methylchloroform (1,1,1-Trichlorethane)	LS-4	S	U
Methylcyclohexane	S	S	S
Methylcyclopentadiene	S	X	S
Methyldiethanolamine (MDEA)	U	U	х
Methyl dioxitol (Diethylene glycol monomethyl ether)	S	S	x
Methyl ester CE810 (Cocoa methyl ester)	LS- 3	S	x
Methylene chloride	LS-4	U	U
Methylene diisocyanate	x	х	х
Methylene dichloride	LS-4	U	U
?-Methyl-6-ethylaniline (Ethylamino toluol)	x	×	x
Methylethylcarbinol	S	S	×
Methyl ethyl ketone (MEK)	S	LS-1, (X 30)	U
2-Methyl-5-ethylpyridine	X	U	х
Methyl formate	U	U	х
Methyl glycol (Propylene glycol)	S	S	×
Methyl glycol acetate	LS-4	LS-1, 4	U
Methyl heptyl ketone	S	S	U
2-Methyl hexyl acrylate	S	S	Х
2-Methyl-2-hydroxy-3-butene	LS-12	LS-12	x
2-Methyl-2-hydroxy-3-butyne	LS-12	LS-12	x
Methyl isoamyl ketone (MIAK)	S	LS-1, (X 60)	U
Methylisobutyl carbinol	S	S	х
Methyl isobutyl ketone (MIBK)	S	LS-1, (X 60)	U
Methyl laurate	S	S	Х
Methyl methacrylate monomer	LS-4,9	x	×
Methyl naphthalene (alpha/beta)	S	S	x
Methyl naphthalene fractions	S	S	x
Methyl oxitol (Methyl Cellosolve)	S	S	х
Methyl oxitol acetate	S	LS-1,4	U
² -Methyl-1-pentene	S	S	S

Page 22 of 40

Exhibit E Page 31 of 52 April, 1993

ļ

(

Cargoes to be carried:Catha-Coat 305 CoatingDevchem 253 LiningDevchem 255 Lining4-Methyl-1-pentaneSSSMethyl phenol (Cresol)LS-7UX2-Methylpopionic acidUUUWethyl phyrolidineUUVPMethyl copy (glycolSSX2-Methylpopionic acidUUUMethyl copy (glycolSSX2-Methylpopionic acidUUUMethyl selvateXXXPMethyl-2-pyrrolidoneUUUMethyl selvateXXXMethyl selvateSSSMethyl selvateSSSMethyl selvateSSSMethyl selvateSSSMethyl selvateSSSMethyl selvateSSSMethyl selvateSSSMethyl selvateSSSMineral oil -white (perclatum)SSSMineral spirit #3SSSMineral spirit #4SSSMonoethylamineUUUMonoethylamineUUUMonoethylamineUUUMonoethylamineSSXMonoethylamineUUUMonoethylamineSSXMonoethylamineSSSXMonoe				
Methyl phenol (Cresol)LS-7UX2-Methylpropionic acidUUUNethyl propionic acidUUVn-Methyl phylolSSX2-MethylpyrolideUUUVmethyl phylolVUUVMethyl phylolXXXXMethyl salicylateXXXXMethyl salicylateXXXXMethyl salicylateSSSSMethyl salicylateSSSSMethyl salicylateSSSSMicral all - white (petrolatum)SSSSMineral spiritsSSSSMineral spiritsSSSSMineral spirit #10SSSSMineral spirit #10SSSSMonochurobenzeneLS-5SSSMonochurobenzeneUUUUMonochurylamineUUUUMonochurylamineUUUUMonochurylamineUUUUMonochurylamineUUUUMonochurylamineUUUUMonochurylamineUUUUMonochurylamineUUUUMonochurylamineUUUUMonochurylamineUU <t< th=""><th>Cargoes to be carried:</th><th></th><th></th><th></th></t<>	Cargoes to be carried:			
Methyl phenol (Creaci)LS-7UX2-Methylpropiolic acidUUUUPMethylpropiolic acidSSX2-Methylpropiolic acidUUVXPMethylpropiolic acidUUUVMethylpropiolic acidUUUVMethylpropiolic acidUUUVMethylpropiolic acidUUUVMethylpropiolic acidUUUVMethylpropiolic acidSXXXMethylpropiolic acidSSSSMethyl sulfoxide (DMSO)SSSSMidele all (Coal tar)SSSSMineral spiritSSSSMineral spiritSSSSMineral spiritSSSSMineral spiritSSSSMonochurylamineUUUUMonochurylamineUUUUMonochurylamineUUUUMonochurylamineUUUUMonochurylamineSSSXMonochurylamineUUUUMonochurylamineSSSXMonochurylamineUUUUMonochurylamineSSSXMonochurylen glycolSSSX <td< td=""><td>4-Methyl-1-pentene</td><td>S</td><td>S</td><td>S</td></td<>	4-Methyl-1-pentene	S	S	S
2-Methylpropionic acidUUUUMethylpropi (glycolSSSX2-MethylpropidineUUUXr-Methyl-2-pyrrolidoneUUUUMethylprolidoneUUUUMethylpropidineUUUUMethylpropidineSXXXMethylpropidineLS-9LS-9XXMethylpropidineSSSXMethylpropidineSSSXMethylpropidineSSSXMethylpropidineSSSXMethylpropidineSSSSMidel cill (Coal tar)SSSSMineral sel cill (lube cill)SSSSMineral spirit #3SSSSMineral spirit #10SSSSMonochlorobenzeneLS-4SUUMonochhylene glycolSSXMonochylene glycol etherSSXMonospropanolamineUUUUMonospropylene glycolSSXMonsanto Santicizer 140SSSMorsanto Santicizer 148SSSMorsanto Santicizer 148SSSMorsanto Santicizer 148SSSMorsanto Santicizer 148SSSMorsanto Santicizer 14	Methyl phenol (Cresol)	LS-7		
Methyl propyl glycolSSSX2-MethylpyridineUUUXP-Methyl-2-pyrrolidoneUUUUMethylsyrrolidoneUUUUMethylstyrene, alpha (inhibited)LS-9LS-9XMethyl sulfoxide (DMSO)SSXXMethyl sulfoxide (DMSO)SSSSMethyl terriary butyl ether (MTBE)SSSSMiddle oil (Coal tar)SSSSMineral spirit (JSSSSMineral spirit #3SSSSMineral spirit #4SSSSMineral spirit #10SSSSMonochlorobenzeneLS-4SSSMonochtylamineUUUUUMonochtylamineUUUUMonochtylamineSSSXMonochtylamineUUUUUMonochtylamineUUUUMonochtylamineUUUUUMonochtylamineSSSXMonochtylamineUUUUUMonochtylamineUUUUUMonochtylamineUUUUUMonochtylamineSSSXMonochtylamineUUUUU <td>2-Methylpropionic acid</td> <td>U</td> <td></td> <td></td>	2-Methylpropionic acid	U		
2-MethylpyridineUUVXn-Methyl-2-pyrrolidoneUUUUMethylspyrolidoneUUUUMethylspyrolidoneLS-9LS-9XMethylspiteXXXXMethylspiteSSXXMethylspiteSSSXMethylspiteSSSSMichel oil (Coal tar)SSSSMineral sel oil (lube oil)SSSSMineral spirit #3SSSSMineral spirit #4SSSSMineral spirit #10SSSSMonoburylamineUUUUUMonoburylamineUUUUMonoburylamineSSSXMonoburylene glycolSSSXMonoburylene glycolSSXXMonosthorbenzeneUUUUMonoburylene glycolSSXMonosthorbenzeneLS-4SXMonosthylene glycolSSXMonosthorbenzeneLS-4SXMonosthylene glycolSSXMonosthylene glycolSSXMonosthylene glycolSSXMonosthylene glycolSSXMonosthylene glycolSSXMonsanto	Methyl propyl glycol	S		
MethylpyrolidoneUUUUMethylpyrolidoneXXXMethylpyrolidoneLS-9LS-9XMethylpyrolidoxide (DMSO)SSXMethylpyrolidoxide (DMSO)SSSMethylpyrolidoxide (DMSO)SSSMethylpyrolidoxide (DMSO)SSSMethylpyrolidoxide (DMSO)SSSMineral all oil (Lobe oil)SSSMineral spirit #3SSSMineral spirit #4SSSMineral spirit #10SSSMonochlorobenzeneLS-4SUMonochlorobenzeneUUUMonochlylamineUUUMonochlylene glycolSSXMonochlylene glycol etherSSXMonospropanolamineUUUMonospropanolamineUUUMonospropanolamineSSXMorsanto Santicizer 140SSSMorsanto Santicizer 148SSSMorsanto Santic				
Methyl salicylateXXXXMethyl sylfoxide (DMSO)SSXXMethyl sulfoxide (DMSO)SSXXMethyl terriary butyl ether (MTBE)SSSSMicate all (Coal tar)SSSSMineral sel all (lube oil)SSSSMineral spirit #3SSSSMineral spirit #4SSSSMineral spirit #4SSSSMineral spirit #10SSSSMonobutylamineUUUUMonobutylamineUUUUMonoethylene glycolSSSXMonoethylene glycolSSSXMonoethylene glycolSSSXMonoathylene gl	n-Methyl-2-pyrrolidone	U	U	U
Methyl salicylateXXXXMethylstyrene, alpha (inhibited)LS-9LS-9XMethyl sulfoxide (DMSO)SXXMethyl tertiary butyl ether (MTBE)SSSMichel al (Cala tar)SSSMineral oll—white (petrolatum)SSSMineral selar oil (lube oil)SSSMineral spirit #3SSSMineral spirit #4SSSMineral spirit #10SSSMineral spirit #10SSSMonobutylamineUUUMonochlorobenzeneLS-4SUMonochlorobenzeneUUUUMonochhylene glycolSSSMonochhylene glycol etherSSSXMonosthylamineUUUUUMonochhylene glycol etherSSSXMonosthylene glycol etherSSSXMonosthylene glycolSSSXMonosthylene glycolSSSXMonosthoroberzeneLS-4SXXMonosthylene glycol etherSSSXMonosthylene glycolSSSXMonsanto Santicizer 148SSXXMorsanto Santicizer 148SSSXMorsanto Santicizer 148SSSX <t< td=""><td>Methylpyrrolidone</td><td>U</td><td>U</td><td>U</td></t<>	Methylpyrrolidone	U	U	U
Methylstyrene, alpha (inhibited)LS-9LS-9XMethyl sulfoxide (DMSO)SSXMethyl terriary butyl ether (MTBE)SSSMidde oil (Coal tar)SSSMineral oil	Methyl salicylate	x	х	x
Methyl sulfoxide (DMSO)SXXMethyl tertiary butyl ether (MTBE)SSSMiddle oil (Coal tar)SSSMineral sal oil (lube oil)SSSMineral spiritsSSSMineral spiritsSSSMineral spirit #3SSSMineral spirit #10SSSMoneshandsenLS-5SSMonochlorobenzeneLS-4SUMonochtylamineUUUMonochtylene glycolSSXMonosporopanolamineUUUUMonosporopanolamineUUUMonosporopanolamineUUUMonosthylene glycolSSXMonsanto Santicizer 148SSXMorsanto Santicizer 148SSSMorsanto Santici	Methylstyrene, alpha (inhibited)	LS-9	LS-9	
Middle oil (Coal tar)SSSXMineral oil – white (petrolatum)SSSMineral seal oil (lube oil)SSSMineral spiritsSSSMineral spirit #4SSSMineral spirit #10SSSMassesLS-5SSMonochlorobenzeneLS-4SUMonochlorobenzeneUUUMonochrylamineUUUMonochrylene gylcolSSSMonochrylene gylcolSSXMonochrylene gylcolSSXMonochrylene gylcolSSXMonothylene gylcolSSXMonsanto Santicizer 148 <td>Methyl sulfoxide (DMSO)</td> <td>S</td> <td></td> <td></td>	Methyl sulfoxide (DMSO)	S		
Middle oil (Coal tar)SSSXMineral oil – white (petrolatum)SSSMineral solit (lube oil)SSSMineral spiritsSSSMineral spirit #3SSSMineral spirit #4SSSMineral spirit #4SSSMineral spirit #10SSSMonobutylamineUUUMonobutylamineUUUMonobutylamineUUUMonobutylamineUUUMonobutylamineUUUMonobutylamineUUUMonobutylamineUUUMonobutylamineUUUMonobutylamineUUUMonobutylamineUUUMonothylene glycolSSXMonothylene glycol etherSSXMonosopropanolamineUUUMonosanto Resin Plasticizer HB40SSXMorsanto Santicizer 140SSSMorsanto Santicizer 148SSSMotor fuel antiknock compoundsXXXMotor oilsSSSMurumuru fatXSSSMurumuru fatXSSSMurumuru fatXSSXMurumuru fatUUSUMurumuru fat	Methyl tertiary butyl ether (MTBE)	S	S	S
Mineral oil – white (petrolatum)SSSSMineral spiritsSSSSMineral spiritsSSSSMineral spirit #3SSSSMineral spirit #4SSSSMineral spirit #10SSSSMolassesLS-5SSSMonobutylamineUUUUMonochlorobenzeneLS-4SUUMonochlylene gylcolSSSXMonoethylene gylcol etherSSSXMonoethylene glycol etherUUUUMonosenthylene glycolSSSXMonostopropanolamineUUUUMonostrobenzeneLS-4SXMonostroberzeneSSSXMonostroberzeneUUUUMonostroberzeneSSSXMonostroberzeneLS-4SXXMonostroberzeneSSSXMonostroberzeneSSSXMonsanto Santicizer 140SSSXMorsanto Santicizer 148SSSSMotor oilsSSSSSMTBESSSSSMurumuru fatXSSSXMyrceneSSSS <td>Middle oil (Coal tar)</td> <td>S</td> <td>S</td> <td></td>	Middle oil (Coal tar)	S	S	
Mineral seal oil (lube oil)SSSSMineral spiritsSSSSMineral spirit #13SSSSMineral spirit #10SSSSMolassesLS-5SSSMonobutylamineUUUUMonochlorobenzeneLS-4SUMonochlorobenzeneUUUUMonochlorobenzeneUUUUMonochlylamineUUUUMonochlylamine 70% in waterUUUUMonochlylene gylcolSSXMonothylene gylcolSSXXMonosthylene glycol etherSSXXMonosthylamineUUUUUMonosthylamineUUUUUMonosanto Santicizer HB40SSSXMorsanto Santicizer 148SSSXMorsanto Santicizer 148SSSSMotor fuel antiknock compoundsXXSSMTBESSSSSMurumuru fatXSSSXMurumuru fatXSSXMurumuru fatXSSXMurumuru fatUUSUWMurumuru fatUUSXMurumuru fatUU <t< td=""><td>Mineral oil-white (petrolatum)</td><td>S</td><td>S</td><td></td></t<>	Mineral oil-white (petrolatum)	S	S	
Mineral spiritsSSSSMineral spirit #3SSSSMineral spirit #4SSSSMineral spirit #10SSSSMolassesLS-5SSSMonobutylamineUUUUMonochlorobenzeneLS-4SUMonochlorobenzeneUUUUMonochlylamine 70% in waterUUUUMonoethylane gylcolSSXMonoethylane gylcolSSXMonoethylamine?UUUUMonoethylamine?UUUUMonoethylamine?UUUUMonoethylamine?UUUUMonoethylamineUUUUMonoethylamineUUUUMononitrobenzeneLS-4SXMonosanto Resin Plasticizer HB4OSSSMorsanto Santicizer 140SSSXMotor fuel antiknock compoundsXXXSMTBESSSSSMurumuru fat MyrceneSSSXMyristic acidUUSU	Mineral seal oil (lube oil)	S	S	
Mineral spirit #4SSSMineral spirit #10SSSMineral spirit #10SSSMolassesLS-5SSMonobutylamineUUUMonoethanolamineUUUMonoethylamine 70% in waterUUUMonoethylamine 70% in waterUUUMonoethylamine 70% in waterUUUMonoethylene glycolSSXMonoethylene glycol etherSSXMonomethylamineUUUMonomethylamineUUUMonomethylamineUUUMonosanto Resin Plasticizer HB40SSSMorsanto Santicizer 140SSSMotor fuel antiknock compoundsXXSMTBESSSSMurumuru fatXSSSMurumuru fatXSSSMyrceneSSSXMurumuru fatXSSSMyrceneSSSXMurumuru fatXSSXMurumuru fatXSSXMurumuru fatXSSXMurumuru fatXSSXMurumuru fatXSSXMurumuru fatSSSXMurumuru fatSSS<	Mineral spirits	S		
Mineral spirit #4SSSSMineral spirit #10SSSSMolassesLS-5SSSMonobutylamineUUUUMonochlorobenzeneLS-4SUMonoethanolamineUUUUMonoethylamine 70% in waterUUUUMonoethylene gylcolSSXMonoethylene gylcol etherSSXMonoethylamineUUUUMonoethylamineUUUUMonoethylamineUUUUMonoethylene glycol etherSSXMonoethylamineUUUUMonomethylamineUUUUMonosanto Resin Plasticizer HB40SSSMorsanto Santicizer 140SSSXMotor fuel antiknock compoundsXXXMotor fuel antiknock compoundsSSSMTBESSSSMurumuru fatXSSSMyrceneSSSXMyrceneSSSX	Mineral spirit #3	s	S	S
Mineral spirit #10SSSSMolassesLS-5SSMonobutylamineUUUMonochlorobenzeneLS-4SUMonoethanolamineUUUMonoethylamine 70% in waterUUUMonoethylene gylcolSSXMonoethylene gylcol etherSSXMonoethylene gylcol etherUUUMonomethylamineUUUMonomethylamineUUUMonomethylamineUUUMonomethylamineUUUMonomethylamineUUUMonomothylamineUUUMonosanto Brain Plasticizer HB40SSXMonsanto Santicizer 140SSSXMotor fuel antiknock compoundsXXXSMTBESSSSSMurumuru fatXSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyreine leicherSSS <td>Mineral spirit #4</td> <td>S</td> <td>S</td> <td></td>	Mineral spirit #4	S	S	
Molasses MonobutylamineLS-5SSSMonobutylamineUUUUMonochlorobenzene MonoethanolamineLS-4SUMonoethylamine 70% in waterUUUMonoethylamine 70% in waterUUUMonoethylene gylcolSSSMonoethylene gylcol etherSSXMonosopropanotamineUUUUMonomethylamineUUUUMonomethylamineUUUUMonomethylamineUUUUMonosopropanotamineUUUUMonosopropylene glycolSSSXMonsanto Resin Plasticizer HB40SSSXMorsanto Santicizer 140SSSXMotor fuel antiknock compoundsXXXSMotor fuel antiknock compoundsXXSSMTBESSSSMMurumuru fatXSSSMMyrceneSSSSMMyrceneSSSSMMurumuru fatVUSUSMyrceneSSSSMMyrceneSSSSMMyrceneSSSSMMurumuru fat etherSSSSMyristic	Mineral spirit #10	S		
MonobutylamineUUUUMonochlorobenzeneLS-4SUMonoethanolamineUUUMonoethylamine 70% in waterUUUMonoethylamine 70% in waterUUUMonoethylene gylcolSSXMonoethylene gylcol etherSSXMonoisopropanolamineUUUMonomethylamineUUUMonomethylamineUUUMononitrobenzeneLS-4SXMonsanto Resin Plasticizer HB40SSXMorsanto Santicizer 140SSXMorsanto Santicizer 148SSXMotor fuel antiknock compoundsXXXMotor fuel antiknock compoundsSSSMTBESSSSMurumuru fatXSSSMyrceneSSSXMyrtereSSSX	Molasses	LS-5	S	
MonoethanolamineUUUMonoethylamine 70% in waterUUUMonoethylene gytcolSSXMonoethylene glycol etherSSXMonoisopropanolamineUUUMonomethylamineUUUMonomethylamineUUUMonomethylamineUUUMonomethylamineUUUMonomethylamineUUUMonomethylamineUUUMonomethylamineSSSMonopropylene glycolSSSMonsanto Resin Plasticizer HB40SSSMorsanto Santicizer 140SSSMorsanto Santicizer 148SSSMotor fuel antiknock compoundsXXXMotor oilsSSSMTBESSSMurumuru fatXSSMyrceneSSSMyrceneSSXMyrceneSSSMyrceneSSSMyrceneSSSMurumuru fatUUSMurumuru fatUSUMurumuru fatSSSMurumuru fatSSSMurumuru fatSSSMurumuru fatSUSMurumuru fatSSSMurumuru f	Monobutylamine	U		
MonoethanolamineUUUUMonoethylamine 70% in waterUUUUMonoethylene gylcolSSXMonoethylene glycol etherSSXMonoisopropanolamineUUUUMonomethylamineUUUUMonoisopropanolamineUUUUMonomethylamineUUUUMonopropylene glycolSSXMonsanto Resin Plasticizer HB40SSXMonsanto Santicizer 140SSXMorsanto Santicizer 148SSXMotor fuel antiknock compoundsXXXMTBESSSSMTBESSSSMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSSMyreanologieMyrcene	Monochlorobenzene	LS-4	S	U
Monoethylamine 70% in waterUUUUMonoethylene gytcolSSXMonoethylene glycol etherSSXMonoisopropanolamineUUUUMonomethylamineUUUUMonomethylamineUUUUMononitrobenzeneLS-4SXMonopropylene glycolSSXMonsanto Resin Plasticizer HB40SSXMorsanto Santicizer 140SSXMorsanto Santicizer 148SSXMotor fuel antiknock compoundsXXXMTBESSSSMTBESSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMurumuru fatMurumuru fat <t< td=""><td>Monoethanolamine</td><td>U</td><td></td><td></td></t<>	Monoethanolamine	U		
Monoethylene glycolSSSXMonoethylene glycol etherSSXMonoisopropanotamineUUUMonomethylamineUUUMonomethylamineUUUMonopropylene glycolSSXMonsanto Resin Plasticizer HB40SSSMorsanto Santicizer 140SSSMorsanto Santicizer 148SSXMort fuel antiknock compoundsXXXMotor fuel antiknock compoundsSSSMTBESSSSMurumuru fatXSSSMyrceneSSSXMyrstic acidUUSU	Monoethylamine 70% in water	U		
Monoethylene glycol etherSSXMonoisopropanolamineUUUUMonomethylamineUUUUMononitrobenzeneLS-4SXMonopropylene glycolSSSXMonsanto Resin Plasticizer HB40SSSXMorsanto Santicizer 140SSSXMonsanto Santicizer 148SSXXMorsanto Santicizer 148SSSXMotor fuel antiknock compoundsXXXSMTBESSSSSMTBESSSSMMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMyrceneSSSXMuturu fatMuturu fatMuturu fatMuturu fatMuturu fatSSSXMuturu fatSSSSMuturu fatSSSSMuturu fatMuturu fatSSSMuturu fatSSSSMuturu fatSSSSMuturu fatSSSSMuturu fatSSSSMutu	Monoethylene gylcol	S	S	
MonomethylamineUUUMononitrobenzeneLS-4SXMonopropylene glycolSSXMonsanto Resin Plasticizer HB40SSXMonsanto Santicizer 140SSXMonsanto Santicizer 148SSXMorsanto Santicizer 148SSXMorpholine (Tetrahydro-1,4-oxazine)XXXMotor fuel antiknock compoundsXXSMTBESSSSMurumuru fatXSSSMyrceneSSSXMyristic acidUSU	Monoethylene glycol ether			
MononitrobenzeneLS-4SXMonopropylene glycolSSSXMonsanto Resin Plasticizer HB40SSSXMonsanto Santicizer 140SSSXMonsanto Santicizer 148SSXXMorsanto Santicizer 148SSXXMorpholine (Tetrahydro-1,4-oxazine)XXXXMotor fuel antiknock compoundsXXSSMotor oilsSSSSSMTBESSSSSMyrceneSSSXMyristic acidUSUS	Monoisopropanolamine	U	U	U
Monopropylene glycolSSSXMonsanto Resin Plasticizer HB4OSSSXMonsanto Santicizer 140SSSXMonsanto Santicizer 148SSSXMorpholine (Tetrahydro-1,4-oxazine)XXXXMotor fuel antiknock compoundsXXSSMotor oilsSSSSSMTBESSSSSMyrceneSSSXMyristic acidUSU	Monomethylamine	U	U	U
Monopropylene glycolSSSXMonsanto Resin Plasticizer HB40SSSXMonsanto Santicizer 140SSSXMonsanto Santicizer 148SSSXMorpholine (Tetrahydro-1,4-oxazine)XXXXMotor fuel antiknock compoundsXXSSMotor oilsSSSSSMTBESSSSSMyrceneSSSXMyristic acidUSU	Mononitrobenzene	LS-4	S	
Monsanto Resin Plasticizer HB40SSSXMonsanto Santicizer 140SSSXMonsanto Santicizer 148SSSXMorpholine (Tetrahydro-1,4-oxazine)XXXXMotor fuel antiknock compoundsXXSSMotor oilsSSSSSMTBESSSSSMyrceneSSSSMyristic acidUSUS	Monopropylene glycol	S		
Monsanto Santicizer 148SSXMorpholine (Tetrahydro-1,4-oxazine)XXXMotor fuel antiknock compoundsXXSMotor oilsSSSMTBESSSMurumuru fatXSSMyrceneSSSMyristic acidUSU	Monsanto Resin Plasticizer HB40			
Monsanto Santicizer 148SSXMorpholine (Tetrahydro-1,4-oxazine)XXXMotor fuel antiknock compoundsXXSMotor oilsSSSMTBESSSMurumuru fatXSSMyrceneSSSMyristic acidUSU	Monsanto Santicizer 140	S	S	×
Morpholine (Tetrahydro-1,4-oxazine)XXXXMotor fuel antiknock compoundsXXSMotor oilsSSSSMTBESSSSMurumuru fatXSSSMyrceneSSSXMyristic acidUSU	Monsanto Santicizer 148	S		
Motor fuel antiknock compoundsXXSMotor oilsSSSSMTBESSSSMurumuru fatXSSMyrceneSSSMyristic acidUSU	Morpholine (Tetrahydro-1,4-oxazine)			
Motor oilsSSSMTBESSSMurumuru fatXSSMyrceneSSSMyristic acidUSU				
Murumuru fatXSSMyrceneSSXMyristic acidUSU	•			
Murumuru fatXSSMyrceneSSXMyristic acidUSU	МТВЕ	S	S	S
MyrceneSSXMyristic acidUSU	Murumuru fat			
Myristic acid U S U	Myrcene			
Advantation of the second s	Myristic acid			
	Myristyl alcohol			x

April, 1993

> Exhibit E Page 32 of 52

-

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Nalkylene (detergent alkylates)	S	S	x
Naphtha	S	S	S
Naphtha, crude condensate	S	S	S
Naphtha, gasplant	S	S	S
Naphtha, grade	S	S	S
Naphtha, heavy (Coal tar)	S	s	x
Naphtha, light	S	S	S
Naphtha, M50	S	S	S
Naphtha, natural liquid	S	S	S
Naphtha, petroleum	S	S	S
Naphtha solvent (160° benzol)	S	S	S
Naphtha, unfinished	S	S	S
Naphtha, unfinished virgin	S	S	S
Naphtha, whole	S	S	S
Naphthalene 100%	S	S	S
Naphthalene oil (maximum heat 80°C)	x	x	x
Naphthenic acid (C ₆ H ₁₁ COOH)	U	S	U
Naphthenic oils (extended oils)	S	S	S
Naprex 50 (lube oil)	S	S	S
'atrium (Sodium)	×	x	x
Natural liquid gas (Petroleum naphtha)	S	S	S
Natural rubber latex	U	LS-9	х
Neatsfoot oil	LS-3	S	S
Necton 78	S	S	х
Neodecanoic acid	U	S	U
Neodol (fatty acid)	LS-3	LS-15	U
NeoLine	S	S	Х
Neu-Tri (Dow Trichlorethylene)	LS-4	LS-4	_ ປ
Niax Diol	S	S	х
Nitration grade toluene	x	S	S
Nitric acid 5%	U	U	U
Nitric acid 15%	U	U	U
Nitric acid 30%	U	U	U
Nitric acid 70% aqueous solution	U	U	U
Nitrobenzene	LS-4	S	x
o-Nitrochlorobenzene	LS-4	x	x
Nitroethane	LS-4	S	S
Nitrogen fertilizers	U	S	x
Nitromethane	LS-4	LS-1, (X-30)	U
"trophenol (ortho, meta, and para)	x	×	x

Page 24 of 40

April, 1993

ţ

1

(

Exhibit E Page 33 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
1-Nitropropane	LS-4	S	S
2-Nitropropane	LS-4	S	s
Nitropropane 60%/nitroethane 40% mixture	LS-4	S	s
Nitrotoluene (ortho and para)	S	s	x
Nonane (all isomers)	S	S	ŝ
Nonanol	S	S	x
Nonene	S	S	S
n-Nonanoic acid (n-Nonic acid)	U	S	Ŭ
Nonyi alcohol	S	S	x
Nonylenes	S	S	x
n-Nonylic acid	U	S	U
Nonyl methacrylate monomer	LS-9	x	x
Nonyl phenol	LS-7	S	x
Nonyl phenol ethoxylate	S	S	x
Normal amyl acetate	LS-4	LS-1,4	U
Normal amyl alcohol	S	s	x
Normal hexanol	S	S	S
Normal paraffin	S	S	S
Normal propyl acetate	LS-4	LS-1,4	U
Normal propyl alcohol	S	S	x
Nutmeg butter	x	S	S
Octadecane	S	S	S
1-Octadecanol	U	S	x
Octadecene	S	S	S
Octane (iso and normal)	S	S	S
Octadecatrienoic acid (Linolenic acid)	U	S	U
Octadecenoamide solution	X	Х	x
Octanoic acid (Caprylic acid)	U	- S	U
Octanol	S	S	x
Octene	S	S	S
Octyl acetate	LS-4	LS-1,4	U
Octyl alcohol (iso and normal)	S	S	x
Octyl aldehydes	X	х	x
Octylol	S	S	х
Octyl chloride	LS-4	LS-8	x
n-octyl n-decyl adipate (NODA)	LS-4	S	x
Oiticica oil	LS-3	S	S
	S	S	S
alpha-Olefin mixture (C6-C18)	S	S	S
Olefin mixture (C5-C7)	S	S	S

April, 1993

Page 25 of 40

.

. . . .

Exhibit E Page 34 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Olefin mixture (C8-C12)	S	S	S
Oleic acid (fatty acid)	U	LS-15	U
Oleum (Fuming sulfuric acid)	U	U	U
Oleyi alcohol	S	S	х
Olive oil	U	LS-6	S
Orange oil (Dipentene)	S	s	S
Ortho cresol	S	U	U
Ortho dichlorobenzene (no heat)	LS-4	LS (X 60)	U
Ortho nitrochlorobenzene	LS-4	x	U
Ortho nitrotoluene	S	S	x
Oxalic acid, dry	U	S	U
Oxirane (Ethylene oxide)	x	U	U
Oxitol (Ethylene glycol monoethyl ether)	S	S	X
Oxo alcohol (Isooctyl alcohol)	S	S	х
Palatinol AH (Diethyl hexyl phthalate)	S	S	x
Palatinol BB (Butylbenzylphthalate)	S	S	x
Palatinol C (DibutyIphthalate)	S	S	X
Pale oil (lube oil)	LS-12	LS-12	S
Palmac 55-16	х	S	х
Palmac 98-12	×	S	x
Palmac 505	x	S	x
Palm acid oil	U	LS-15	X
Palm kernel fatty acid, split	x	LS-15	U
Palm kernel oil (sulfuric acid free)	LS-3	S	S
Palm kernel residue	x	S	x
Palm nut oil	LS-3	S	S
Palm nut oil fatty acid	S ,	LS-1, 15	U
Palm nut oil fatty acid methyl ester	_ X	X	x
Palm oil, crude (sulfuric acid free)	LS-3	S	S
Palm oil fatty acid (C12-C18)	x	LS-15	U
Palm oil, processed (sulfuric acid free)	LS-3	S	S
Palm oil, refined (sulfuric acid free)	LS-3	S	S
Palm oil, sterin (sulfuric acid free)	LS-3	S	S
Palm oil fatty acid methyl ester	X	x	X
Palm oil methyl ester	x	LS-4	x
Palm olein, crude	LS-3	S	S
Palm olein, neutralized	LS-3	S	S
Palm residue	X	S	X
Palmitic acid	U	S	U
Paper mill green liquor	x	S	x

Page 26 of 40

April, 1993

(

۲ • ---- د

Ć

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Paper mill heavy liquor	x	S	x
Paper mill white liquor	x	S	x
Paper mill white/green liquor	Х	S	x
Paraldehyde	LS-4	U	Û
Para chlorometacreso!	S	Ŭ	Ŭ
Para cresol	×	U	U
Paraffin	S	S	S
Paraffin, chlorinated	LS-4	LS-4, 12	х
Paraffins	S	S	S
Paraffin sulfonates	S	S	х
Paraffin wax	S	s	S
Paraffinic oil, white (petrolatum)	S	S	S
Paraffinic sulfonate (petrolatum)	S	S	S
Peanut oil	LS-3	S	S
Peel oil (oranges and lemons)	LS-3	S	S
Pelargonic acid	U	S	U
Pentachlorethane	LS-4	S	U
1,3-Pentadiene	L S -9	х	х
Pentaerythritol 10%	S	S	х
Pentaethylene hexamine	U	U	U
Pentalin (Pentachloroethane)	S	S	U
Pentane (iso and normal)	S	S	S
Pentanoic acid	X	х	U
1-Pentene	S	S	S
Pentoxone	S	S	х
Perchloric acid	U	x	U
Perchlorethylene	LS-4	LS-4	U
Perilla oil	LS-3	S	S
Petrol	S	S	S
Petrolatum	S	S	S
Petrolatum liquid (white mineral oil)	S	S	S
Petroleum, crude	LS-2	S	S
Petroleum, refined	S	S	S
Petroleum ethers	S	LS-11	S
Petroleum naphtha	S	S	· S
Petroleum solvents	S	S	S
Petroleum solvents, aromatic	S	S	S
Petroleum sulfonate oils (lube additive)	S	S	х
Petroleum wax	S	S	S
Phenol 10%-99%	LS-7	U	U

April, 1993

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Phenol 100% (Carbolic acid)	LS-7	U	· U
Phenol, dodecyl	L S- 7	S	x
Phenol, nonyl	LS-7	S	X
Phenolate lye	LS-7	S	X
Phenolic oil (Cresylic acid)	U	U	U
Phenylamine (Aniline)	U	×	x
Phenylcarbinol (Benzyl alcohol)	S	S	x
Phenylethane (Ethyl benzene)	S	S	S
Phenylether (Diphenyl oxide)	S	U	x
Phenylethylene (Styrene monomer)	LS-9	LS-9	LS-9
Phenylformic acid (Benzoic acid	U	S	U
Phenylglycidyl ether	S	U	X
Phenylmethane (Toluol)	S	S	S
Phenylmethanol (Benzyl alcohol)	S	S	X
Phenylmethyl acetate (Benzyl acetate)	U	S	×
1-Phenyl-1-xylyl ethane	S	S	x
Phosgene	LS-4	U	U
Phosphate ester	S	S	x
Phosphoric acid 10%	U	U	U
^o hosphoric acid 20%	U	U	U
Phosphoric acid 30%	U	U	U
Phosphoric acid 85% aqueous solutions	U	U	U
Phosphorus trichloride	U	U	U
Phosphoryl chloride (Phosphorous oxychloride)	U	U	U
Phthalate plasticizers	LS-4	S	×
Phthalate 79 (Diisooctyl phthalate)	S	S	×
Phthalate 911 (DIOP)	S	S	X
Phthalic anhydride.	U	X	X
Pilchard oil	LS-3	S	S
Pinene (alpha, beta and mixed)	S	S	S
Pine oil	S	S	S
Pine tar	S	S	S
Piperylene (1,3-Pentadiene)	LS-9	x	X
Pluracol	S	S	X
Pluronic (Wyandotte polyol)	S	S	×
Polyalkyl (C18-C22) acrylate in xylene	x	×	×
Polyalkylene glycols/polyalkylene glycol monoalkyl	x	х	x
ethers mixture			
Polyalkylene oxide polyol	x	x	×
Polybutene	S	S	×

Page 28 of 40

April, 1993

i

ĺ

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Polybutylene	S	S	x
Polybutylene 24, Chevron	S	S	x
Polyether glycols	S	S	x
Polyethylene pellets (dry)	S	S	S
Polyethylene glycol	S	S	x
Polyethylene glycol monoalkyl ether	S	S	x
Polyethylene polyamines	X	x	x
Polyisobutylene (Polybutene)	S	S	S
Poly (20) oxyethylene sorbitan monooleate	X	x	x
Poly pluracol	S	S	×
Polypropylenebenzene	S	S	x
Polypropylene glycol	S	S	x
Poly Solv D	S	S	x
Poppy seed oil	LS-3	S	S
Potassium chloride (50%)	x	S	x
Potassium hydroxide 20%	U	S	S
Potassium hydroxide 50%	U	S	S
Potassium oleate	X	S	x
Potassium silicate	U	S	х
Potato oil (Fusel oil)	LS-3	S	S
Premium mogas 98	S	S	x
Priminox R-1M	х	S	x
Process-H oils (extender oils)	S	S	S
Process naphtha	S	S	S
Propane	S	S	S
Propane diot	S	S	x
Propano!	S	S	x
n-Propanolamine	x	U	U
2-Propenal (Acrolein)	U	U	U
Propenenitrile (Acrylonitrile)	LS-4	U	U
Propiolactone (USAN, BPL)	U	U	U
Propionaldehyde	U	U	U
Propionic Acid	U	U	U
Propionic anhydride	X	U	U
Propionitrile	LS-4	x	x
Propyl acetate (iso and normal)	S	LS-1,4	U
n-Propyl alcohol	S	S	x
Propylamine (iso and normal)	U	U	X
Propylbenzene, (iso and normal)	S	S	x
Propylcarbinol (n-Butyl alcohol)	S	S	x

April, 1993

_

Exhibit E Page 38 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Propylene	S	S	S
Propylene chloride	LS-4	S	Ŭ
Propylene dichloride	LS-4	S	Ŭ
Propylene dimer	S	S	S
Propylene glycol	S	S	X
Propylene glycol ethyl ether	S	10.1	
Propylene glycol monoalkyl ether	S	LS-1	U
Propylene glycol monomethyl ether	S	LS-1	U
Propylene glycol monomethyl ether acetate		LS-1, (X 30)	U
	LS-4	LS (X 30)	x
Propylene głycol-poly	S	S	x
Propylene oxide	S	U	x
Propylene polymer	S	S	S
Propylene tetramer	S	S	S
Propylene trimer	S	S	S
Pseudo-cumene	S	S	x
Pumpkinseed oil	LS-3	S	S
Pyridine	U	U	U
Pyrolsis fuel (fuel oil)	S	S	S
Quakersol	S	S	
Quaternary ammonium chloride	x	LS (X 30)	X X
Quenching oil	S	c.	
Raisin seed oil	LS-3	S	S
Rape oil (Rapeseed oil)	LS-3 LS-3	S	S
Rapeseed oil, hydrogenated		S	S
Rectified spirit (Ethyl alcohol)	X	S	S
	S	S	U
Red oil (Oleic acid)	U	S	U
Reproxal (Texaco Alfoi 610 Phthalate)	S	S	х
Resin oil (Coumarone oil)	S	S	Х
Resin concentrate (Esso)	S	S	Х
Resin Plasticizer HB40	S	S	Х
(Monsanto partially hydrogenated terphenyl)			
Resolube	S	S	x
Retardsol	S	S	x
Rexonic N7	X	S	x
Rhoplex AC388	LS-9	S	x
Rice bran oil	LS-3	c	<u> </u>
Ricinus oil (Castor oil)		S	s
Rohm & Haas Emulsion E-1440	LS-3	S	S
Rohm & Haas Solvent 2026	U	S	X
Posin	S	S	X
voin .	S	S	x

.

Page 30 of 40

•

April, 1993

(

!

(

Exhibit E Page 39 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchern 255 Lining
Rosin soap	x	S	x
SA 119 (Exxon)	υ	Ŭ	Û
Safflower oil	LS-3	LS-6	s
Sal fat	X	S	S
Salad oil	LS-3	S	S
Connected		_	
Sangajol	S	S	S
Santalol	S	S	S
Santicizer 140 (Monsanto Mixed cresyl diphenyl phosph		S	х
Santicizer 148 (Monsanto Iso decyl diphenyl phosphate)		S	x
Santicizer 160 (Monsanto Butyl benzyl phthalate)	S	S	x
Santicizer 711 (Monsanto Di normal alkyl phthalate)	S	S	x
Santicizer 790 (Monsanto)	S	S	x
Santochlor (Monsanto p-Dichloro benzene)	LS-4	U	U
Sardine oil	LS-3	S	S
Savory oil	LS-3	S	S
Sea water (ballast)	LS-13	S	c c
Sea water (hot Butterworthing)	LS-13	S	S
Secondary amyl acetate	LS-13 LS-4	5 LS-1,4	S
Secondary amyl alcohol	S		U
Secondary butyl acetate	5 LS-4	S	x
	L3-4	LS-1,4	U
Secondary butyl aicohol	S	S	х
Sesame oil	S	S	S
Shark Oil	X	S	S
Shea Oil	Х	S	S
Shell Brand A	S	S	x
Shell Cardura ester	S	S	x
Shell Cerex	S	S	x
Shell AC45C (lube additive)	S	S	S
Shell Kerex (mineral spirits)	S	S	S
Shellflex N (process extender oil)	LS-12	LS-12	LS-12
Shellflex 312 (process extender oil)	LS-12	10.10	10.40
Shell lube oils:	L3-12	LS-12	LS-12
Shell HVI-55	LS-12	10.10	10.10
Shell HVI-56	LS-12	LS-12	LS-12
Shell HVI-57		LS-12	LS-12
CIDELLA POP	L\$-12	LS-12	LS-12
Shell HVI-58	LS-12	LS-12	LS-12
Shell HVI-59	LS-12	LS-12	LS-12
Shell HVI-60	LS-12	LS-12	LS-12
Shell HVI-61	LS-12	LS-12	LS-12
Sheli HVI-62	LS-12	LS-12	LS-12

-

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Shell HVI-63	LS-12	LS-12	LS-12
Shell HVI-64	LS-12	LS-12	LS-12
Shell HVI-65	LS-12	LS-12	LS-12
Sheli HVI-95	LS-12	LS-12	LS-12
Shell HVI-160	LS-12	LS-12	LS-12
Shell HVI-1605	LS-12	LS-12	LS-12
Shell HVI-1608	LS-12	LS-12	LS-12
Shell HVI-270-HVI-350	LS-12	LS-12	LS-12
Shell HVI-650	LS-12	LS-12	LS-12
Shell LVI-50	LS-12	LS-12	L\$-12
Shell LVI-143	LS-12	LS-12	LS-12
Sheli LVI-375—LVI-450	LS-12	LS-12	LS-12
Shell LVI-1100	LS-12	LS-12	LS-12
Sheli MVI-N-40	LS-12	LS-12	LS-12
Shell MVI-N-41	LS-12	LS-12	LS-12
Shell MVI-N-42	LS-12	LS-12	LS-12
Shell MVI-N-43	LS-12	LS-12	LS-12
Shell MVI-N-44	LS-12	LS-12	LS-12
Shell MVI-N-45	LS-12	LS-12	LS-12
Shell MVI-N-65	LS-12	L\$-12	LS-12
Shell MVI-N-170	LS-12	LS-12	LS-12
Shell MVI-P-50	LS-12	LS-12	LS-12
Shell MVI-P-1300	LS-12	LS-12	LS-12
Shell Diala B	LS-12	LS-12	LS-12
Shell Diala D	LA-12	LA-12	LS-12
Sheli Limea Oil 968	LS-12	LS-12	LS-12
Shell S6412	LS-12	LS-12	LS-12
Aero Shell 100	LS-12	LS-12	LS-12
Aero Shell 120	LS-12	LS-12	- LS-12
Aero Shell W80	LS-12	LS-12	LS-12
Aero Shell W100	LS-12	LS-12	LS-12
Shell Heavy Axle Oil 65809	LS-12	LS-12	LS-12
Shell Rotella 30	LS-12	LS-12	LS-12
Shell NSR 45	LS-12	LS-12	LS-12
Shell NSR-S-5789	LS-12	LS-12	LS-12
Shell NND-40	LS-12	LS-12	LS-12
Shell NND-225	LS-12	LS-12	LS-12
Shell NND-240	LS-12	LS-12	LS-12
Shell NND-260-LVI	LS-12	LS-12	LS-12
Shell 100 ES Neutral	LS-12	LS-12	LS-12

Page 32 of 40

April, 1993

ť

i. i

(

Exhibit E Page 41 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Shell 501 Spindle 69110	LS-12	LS-12	LS-12
Shell HW9B 69961	LS-12	LS-12	LS-12
Shell Cabismas Distillate	LS-12	LS-12	LS-12
Shell Dutrex 33 (aromatic process/extender oils)	LS-12	LS-12	LS-12
Shell Dutrex 55C	LS-12	LS-12	LS-12
Shell Dutrex 713	LS-12	LS-12	LS-12
Shell Dutrex 726	LS-12	LS-12	LS-12
Shell Dutrel 786	LS-12	LS-12	LS-12 LS-12
Shell HVI-N-40	LS-12	LS-12	
Shell HVI-100 Neutral	LS-12	LS-12	LS_12 LS-12
Shell HVI-150-D Bright Stock	LS-12	LS-12	10.40
Shell HVI-170	LS-12	LS-12 LS-12	LS-12
Shell HVI-210C	LS-12	LS-12	LS-12
Shell HVI-250 Neutral	LS-12 LS-12	LS_12 LS_12	LS-12
Shell HVI-500 Neutral	LS-12	LS-12	LS-12 LS-12
Shell HVI-575-C Neutral	LS-12	LS-12	10.10
Shell LVI-100C Neutral	LS-12	LS-12 LS-12	LS-12
Shell LVI-570	LS-12	LS-12 LS-12	LS-12
Sheil LVI-750	LS-12	LS-12	LS-12
Shell MVI-P	LS-12	LS-12	LS-12 LS-12
Shell Nassa 89	LS-12	LS-12	10.10
Shell NVI-76	LS-12	LS-12 LS-12	LS-12
Shellsols:	LUTIZ	21-ھا	LS-12
Shellsol 350	LS-12	LS-12	10.40
Shellsol 360	S	L3-12 S	LS-12 S
Shelisol A (Minersl spirits)	S	S	S
Shellsol B (Mineral spirits)	S	S	S
Shellsol E (Mineral spirits)	S	- S	S
Shellsol H (Mineral spirits)	S	S	S
Shellsol K (Mineral spirits)	S	S	S
Shellsol N (Mineral spirits)	S	S	c
Shellsol PD (Mineral spirits)	S	S	S
Shellsol PP (Mineral spirits)	S	S	S S
Shellsol R (Mineral spirits)	S	S	
Shellsol RA (Mineral spirits)	S	S	S S
Shellsol T (Mineral spirits)	S	C C	-
Shellsol TD-7 (Mineral spirits)	S	S	S
Shell Spray oil	LS-12	S IS 10	S
Shell Tergol 180L-BS	LS-12 LS-12	LS-12	LS-12
Shell Transformer Oil	LS-12 LS-12	LS-12	LS-12
	ω·12	LS-12	LS-12

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Shell Veova 10	LS-12	LS-12	10.10
Shellflex (extender oils)	LS-12	LS-12	LS-12 LS-12
Silica slurry	x	X	
Silicon tetrachloride (Silicon chloride)	LS-4	x	x
Sirlene (Dow Propylene glycol)	S	ŝ	X X
Skellysolv	S	S	х
Skydroi 500	S	S	x
Skydrol Y-91	LS-12	S	x
Slackwax (petrolatum)	S	S	S
Sodium acetate solution	x	x	s S
Sodium alkylnaphthalene sulfonate	LS-12	LS-12	x
Sodium benzoate	X	S	x
Sodium alumina silicate slurry	X	x	x
Sodium bisulfide (50% or less)	X	S	x
Sodium bisulfite (50% or less)	U	S	×
Sodium borohydrate solution (also Sodium borohydride)	×	x	х
Sodium borohydride (15% or less)/sodium hydroxide solut		LS-12	
Sodium carbonate (saturated)	U	S	X
Sodium chlorate R-2 solution	x	S	X
Sodium chloride 10% in water	S	S	X S
Sodium chloride (saturated)	S	ç	0
Sodium dichromate	U	s U	S
Sodium formate 10%	Ŭ	-	U
Sodium hydrogen sulfide (50% or less)	U	S S	x
Sodium hydrogen sulfide (6% or less), sodium	Ŭ	S	x
carbonate (3% or less) solution	0	5	X
Sodium hydrogen sulfite solution			
Sodium hydrosulfide (50% or less)	U .	X	X
Sodium hydrosulfide (32%), sodium sulfide (2%) solution	U X	S	X
Sodium hydroxide 10%-20%	U	S S	x. s
Sodium hydroxide 50%	U	0	_
Sodium hypochlorite (15% or less)	U	S	S
Sodium nitrite solution	x	LS-1, (X60)	U
Sodium pentachlorophenate	LS-4	S	X
Sodium perborate	U	LS (X 30) U	X U
Sodium silicate		-	
Sodium sulfate (50% or less)	U	S	х
Sodium sulfate (50% or less) Sodium sulfhydrate (50% or less)	U	S	x
Sodium suffide solution (50% or less)	X	S	х
Sodium sulfide spent caustic	U	S	х
	U	S	x

Page 34 of 40

April, 1993

1

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Sodium sulfite (50% or less)	x	S	x
Sodium tetraborate	x	S	х
Sodium thiocyanate (56% or less)	х	S	х
Softanols (fatty alcohol)	S	S	x
Solinox (treated soybean oil)	LS-3	S	S
Solvenol	S	S	x
Solvent naphtha	S	S	S
Solvesso (Mineral spirits)	S	S	S
Solvesso 100 (Mineral spirits)	S	S	S
Solvesso 150 (Mineral spirits)	S	S	S
Sorbitol	S	S	S
Sorbitol 70% solution	S	S	S
Sour crude oil	L S ⋅2	S	х
Soybean oil (crude degummed)	LS-3	S	S
Special palm oil, bleachable	LS-3	S	S
Spent caustic (no heat)	U	S	x
SPB (Palm oil)	LS-3	S	S
Sperm oil	LS-3	S	S
Sperm oil pressings	LS-3	S	S
Sperm oil residue	LS-3	S	S
Spike oil	LS-3	S	S
Spindle oil (lube oil)	LS-3	S	S
Spirits (aromatic)	S	S	S
Stearic acid (fatty acid)	U	LS-15	U
Stearin (dry, 80°C)	LS-3	S	х
Stearyl alcohol	S	s	×
Stoddard solvent	S	S	х
Styrene, inhibited	LS-9	LS-9	LS-9
Styrene butadiene	U	U	U
Styrene monomer	LS-9	LS-9	LS-9
Styrene monomer, inhibited	LS-9	L\$-9	LS-9
Sulfonate oils (lube additive)	S	S	S
Sulfonic acid 86%—90% (Exxon)	U	U	U
Sulfonic alkylate (Exxon SA119)	U	U	х
Sulfonyl chloride	U	U	· U
Sulfur (liquid or molten)	U	S	x
Sulfur dioxide	U	U	U
Sulfur trioxide	U	U	U
Sulfuric acid 10%	U	U	U
Sulfuric acid 30%	U	U	U

April, 1993

Page 35 of 40

Exhibit E Page 44 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Sulfuric acid 65%	U	U	
Sulfuric acid 98%	Ŭ	Ŭ	U
Sulfurous acid	Ŭ	Ŭ	U
Sulfuryl chloride	Ū	Ŭ	U
Sulfur crude	Ŭ	S	U X
Sulfur solvent	x	LS-1,8 (X30)	U
Sundex 8125 (extender oil)	S	S	x
Sunflower oil	LS-3	LS-6	s
Supersol (Mineral spirits)	S	S	S
Surchem 306 (Sulfonate oil)	S	S	x
Sweet oil (Olive oil)	LS-3	<u> </u>	_
Synthenol (Refined castor oil)	LS-3 LS-3	S	S
Tall oil (crude and refined)		S	S
Tall oil fatty acid (Rosin acids less than 5%)	ប ប	LS-15	U
Tall oil soap solution		LS-15	U
	U	LS-15	U
Tallow	U	S	x
Tallow acid (crude and refined)	U	LS-15	U
Tallow acid (acidulated oil)	U	LS-15	Ŭ
Tallow alcohol	S	S	x
Tallow fatty acid	U	LS-15	U
lap water	S	S	6
Tartaric acid 10%	Ű	S	S
Tar acid	Ŭ	U	U
Tar oil (Creosote coal tar)	S	U	U
Teaseed oil	×	S	U S
Tergitols (Union Carbide linear detergent alcohol):			
Tergitol 15-S-3	S	S	~
Tergitol 15-S-7	S	S	×
Tergitol 15-S-9	S	S	×
Tergitol 15-S-12	S	S	X X
Tergitol 45-S-3	S	S	x
Terpenes	S	S	s
Terpentine (Turpentine)	S	S	
Terpineol	S	S	S
Tertiary amyl alcohol	s	S	X X
Tertiary butyl alcohol	S	S	v
Tetrachloroethane	LS-4	S	X
Tetrachloroethylene	LS-4	S	U
Tetrachloro pentamine	U	S U	U
Tetradecanol	×	S	U X

Hage 36 of 40

÷

April, 1993

ť

(

Exhibit E Page 45 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Tetradecylamine	U	x	x
Tetradecylbenzene	S	S	x
Tetraethylenepentamine	U	Ū	Û
Tetraethyl lead	U	S	×
1,2,3,4-Tetrahydrobenzene (Cyclohexene)	S	S	S
Tetrahydrofuran	S	U	U
Tetrahydrofurfuryl alcohol	S	U	U
Tetrahydronaphthalene	S	S	x
Tetraline	S	S	x
1,2,3,5-Tetramethylbenzene	S	S	x
Tetramethylene sulfone	S	U	U
Tetramethyl lead	х	x	x
Tetra propylene	S	S	x
Tiglium oil (Croton oil)	LS-3	S	S
Toluene diamine	U	x	×
Toluene diisocyanate (TDI)	LS-9	LS-9	x
Toluene, industrial	S	S	S
Toluene, nitration grade	х	S	S
p-Toluenesulfonic acid	U	U	Ŭ
o-Toluidine	x	×	x
Toluol (Toluene)	S	S	S
Transformer oil (insulating oil)	LS-12	LS-12	S
Transmission oil (lube oil)	S	S	S
Triacetin	S	S	x
1,1,2-Trichloro-1,2,2-trifluoroethane	LS-4	LS-4	x
Trialkyl phosphate	S	S	x
Tribasic'sodium phosphate (TSP)	LS-4	S	X
Tributylethylhexyl phosphate	S	S	x
Tributyl phosphate	S	S	x
Trichlorobenzene	LS-4	x	U
1,1,1-Trichloroethane	LS-4	LS-1,4	U
1,1,2-Trichloroethane	LS-4	LS-1,4	U
Trichlorethylene	LS-4	LS-1,4	U
Trichloropropane (all isomers)	LS-4	LS-1,4	U
Tricresyl phosphate	LS-4	S	×
Tridecane	S	S	S
Tridecanol	S	S	x
Tridecene	x	S	S
Tridecy! alcohol	S	S	X
Tridecyl benzene	S	S	S

-

•

Exhibit E Page 46 of 52

Cargoes to be carried:	Catha-Coat 305 Coating	Devchern 253 Lining	Devchern 255 Lining
Triethane (Trichloroethane)	S	LS-1, 4	U
Triethanolamine	U	S	x
Triethylene glycol	S	S	x
Triethylene glycol ethyl ether	S	LS-1	Û
Triethylene glycol di-2-ethylbutyrate	S	S	x
Triethylene glycol methyl ether	S	LS-1	U
Triethylene tetramine (TETA), no heat	U	U	U
Triethyl amine	U	Ŭ	Ŭ
Triethyl benzene	S	S	s
Triethyl phosphate	LS-4	S	x
Triisobutylene	S	S	S
Triisopropanolamine	x	x	X
Trimethylacetic acid	U	Ŭ	Û
Trimethylamine	Ŭ	Ű	U
Trimethyl benzene	S	S	s
Trimethyl cyclohexanol	S	S	×
Trimethylhexamine diamine	U	x	x
Trimethylol propane polyethoxylate	S	S	x
2,2,4-Trimethyl-1,3-pentanediol-1-isobutyrate	S	S	x
Trimethyl phosphite	x	x	×
Trimethyl propane glycol	S	S	×
Trimethylene glycol	S	S	x s
Tripropylene	S	S	
Tripropylene glycol	S	S	x
Tripropylene glycol monomethyl ether	s	LS-1	X U
Triptane	S	S	S
Trisodium phosphate	LS-4	S	X
Tritolyl phosphate	LS-4	S	
Triton GR7	X	S	x s
Triton X100	S	S	x
Trixylenyl phosphate (Trixylyl phosphate)	S	S	x
Troluoil	S	s	x
TSP (Trisodium phosphate)	LS-4	S	x
Tucum oil	LS-3	S	S
Tung oil	LS-3	S	S S
Turkey red oil	LS-3	S	c
Turpentine, oil and gum	S	S	S
U-Cane alkylate II (Dodecyl benzene)	S	S	S S
Undecane	S	S	S S
'Jndecanoic acid	x	S	U

£

(

Cargoes to be carried:	Catha-Coat 305 Coating	Devchem 253 Lining	Devchem 255 Lining
Undecanol (all isomers)	S	S	х
Undecanone	S	S	x
1-Undecene	S	S	x
Undecyl alcohol	S	S	x
Undecyl benzene	S	S	S
Unfinished kerosene (Kerosene)	S	S	S
Uran 32 (fertilizer)	U	S	x
Urea (saturated)	U	S	×
Urea, ammonium nitrate solutions	U	S	x
Urea ammonium phosphate solution	U	S	X
Urea water	U	S	x
U.S. White oil	S	S	S
VM&P Naphtha	S	S	S
Valeraldehyde	U	U	U
Valeric aldehyde	U	U	U
Varsol (Mineral spirits)	S	S	S
Vaseline	L S -3	S	S
Vegetable oils	LS-3	S	S
Vegetable protein solution (hydrolyzed)	. X	Х	x
Versene (Dow)	x	x	x
Versenex	x	x	x
Versenol	х	х	x
Vestal LPH	S	U	U
Vidden-D (Dichloropropane and dichloropropene)	LS-4	U	U
Vinegar	U	U	U
Vinyl (pellets, dry)	s	s	S
Vinyl acetate	х	X	x
Vinyl acetate monomer (no heat)	LS-4, 9	LS-1,9, 14, (X3	0) U
Vinyl acetate monomer (Borden 400PPM20) (no heat)	LS-9	LS-1,9, 14, (X3	0) U
Vinyl chloride	LS-4, 9	U	U
Vinyl ethyl ether	LS-4	U	U
Vinylidene chloride	LS-4, 9	U	U
Vinylmethyl ether liquid	LS-4	U	U
Vinyl neodecanoate (VNDC, Veova)	LS-4, 9	S	x
Vinyl propionate	U	U	. U
Vinyl trichloride (Trichloroethane)	S	LS-1, 4	U
Vinyl toluene	LS-9	LS-9	x
Virgillio 50 (Union Carbide)	S	S	x
Vitriol (Sulfuric acid)	U	U	U
Voranol (Polyols)	S	S	×

Exhibit E Page 48 of 52

Walnut oilLS-3SSWater, ballastSSSWater, deionizedSSSWater, distilledSSSWater, seaLS-13SSWater, seaLS-13SSWater, sea (hot Butterworthing)LS-13SSWater, sea (hot Butterworthing)LS-13SSWater, sea (hot Butterworthing)LS-13SSWater, sea (hot Butterworthing)LS-13SSWater, sea (hot Butterworthing)USSWax, petroleum (maximum temperature 80°C)SSSWax, paraffin (maximum temperature 80°C)SSSWating agent, nonionicSSSSWhale oilUSSSSWhite mineral oil (Petrol, liquid)SSSSWhite spirit 100 (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWood oilSSSSSWood fatLS-3SSSSWood fatLS-3SSSSWax t 1 oil (petrolatum, liquid)SSSSXylenolLS-11XXXX	255
Water, ballastSSSSWater, deionizedSSSSWater, distilledSSSSWater, seaLS-13SSSWater, seaLS-13SSSWater, sea (hot Butterworthing)LS-13SSSWater, sea (hot Butterworthing)LS-13SSSWax, petroleum (maximum temperature 80°C)SSSSWax, paraffin (maximum temperature 80°C)SSSSWelt pack fluid (Calcium bromide)USXXWetting agent, nonionicSSSSWhite mineral oil (Petrol, liquid)SSSSWhite spirits (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWhite spirit 160/180SSSSWood oilLS-3SSSWood oilSSSSVaneelSSSS	
Water, deionizedSSSSWater, distilledSSSSWater, seaLS-13SSSWater, sea (hot Butterworthing)LS-13SSSWax, petroleum (maximum temperature 80°C)SSSSWax, paraffin (maximum temperature 80°C)SSSSWell pack fluid (Calcium bromide)USXXWetting agent, nonionicSSSSWhale oilLS-3SSSSWhale oilLS-3SSSSWhite mineral oil (Petrol, liquid)SSSSWhite spirits (Mineral spirits)SSSSWhite spirit 100 (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWood oilSSSSSWood oilSSSSSWood fatLS-3SSSSWater oil (petrolatum, liquid)SSSSXylene (meta, ortho and para)SSSS	
Water, distilledSSSSWater, seaLS-13SSWater, seaLS-13SSWater, sea (hot Butterworthing)LS-13SSWax, petroleum (maximum temperature 80°C)SSSWax, paraffin (maximum temperature 80°C)SSSWell pack fluid (Calcium bromide)USXWetting agent, nonionicSSSWhale oilLS-3SSSWhale oilLS-3SSSWhite mineral oil (Petrol, liquid)SSSSWhite oilSSSSSWhite spirits (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWhite spirit 160/180SSSSWood oilSSSSSWood fatLS-3SSSSWSX1 oil (petrolatum, liquid)SSSSXylene (meta, ortho and para)SSSS	
Water, seaLS-13SSWater, sea (hot Butterworthing)LS-13SSWax, petroleum (maximum temperature 80°C)SSSWax, paraffin (maximum temperature 80°C)SSSWell pack fluid (Calcium bromide)USXWetting agent, nonionicSSSXWhale oilLS-3SSSWhale oilLS-3SSSWhite mineral oil (Petrol, liquid)SSSSWhite spirits (Mineral spirits)SSSSWhite spirit 100 (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWood oilSSSSSWood oilSSSSSWood fatLS-3SSSSYVSX1 oil (petrolatum, liquid)SSSSXylene (meta, ortho and para)SSSS	
Wax, petroleum (maximum temperature 80°C)SSSWax, paraffin (maximum temperature 80°C)SSSWell pack fluid (Calcium bromide)USXWetting agent, nonionicSSSXWhale oilLS-3SSSWhale oilLS-3SSSWhite mineral oil (Petrol, liquid)SSSSWhite spirits (Mineral spirits)SSSSWhite spirit 100 (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWhite spirit 160/180SSSSWood oilSSSSSWool fatLS-3SSSVSX1 oil (petrolatum, liquid)SSSSXylene (meta, ortho and para)SSSS	
Wax, petroleum (maximum temperature 80°C)SSSWax, paraffin (maximum temperature 80°C)SSSWell pack fluid (Calcium bromide)USXWetting agent, nonionicSSSXWhale oilLS-3SSSWhale oilLS-3SSSWhite mineral oil (Petrol, liquid)SSSSWhite spirits (Mineral spirits)SSSSWhite spirit 100 (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWood oilSSSSSWood fatLS-3SSSSVSX1 oil (petrolatum, liquid)SSSSXylene (meta, ortho and para)SSSS	
Wax, paraffin (maximum temperature 80°C)SSSSWell pack fluid (Calcium bromide)USXWetting agent, nonionicSSXWhale oilLS-3SSSWhite mineral oil (Petrol, liquid)SSSSWhite oilSSSSSWhite spirits (Mineral spirits)SSSSWhite spirit 100 (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWood oilSSSSSWood oilSSSSSVood fatLS-3SSSXylene (meta, ortho and para)SSSS	
Well pack fluid (Calcium bromide)USXWetting agent, nonionicSSSXWhale oilLS-3SSSWhite mineral oil (Petrol, liquid)SSSSWhite oilSSSSSWhite oilSSSSSWhite spirits (Mineral spirits)SSSSWhite spirit 100 (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWood oilSSSSSWood oilSSSSSYOSX1 oil (petrolatum, liquid)SSSSXylene (meta, ortho and para)SSSSYidepolSSSSS	
Wetting agent, nonionicSSSXWhale oilLS-3SSSWhite mineral oil (Petrol, liquid)SSSSWhite oilSSSSSWhite oilSSSSSWhite spirits (Mineral spirits)SSSSWhite spirit 100 (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWhite spirit 160/180SSSSWood oilSSSSWool fatLS-3SSSYVSX1 oil (petrolatum, liquid)SSSSXylene (meta, ortho and para)SSSSYulegolSSSSS	
White mineral oil (Petrol, liquid)SSSWhite oilSSSSWhite spirits (Mineral spirits)SSSSWhite spirit 100 (Mineral spirits)SSSSWhite spirit 150 (Mineral spirits)SSSSWhite spirit 160/180SSSSWood oilSSSSWood fatLS-3SSSVSX1 oil (petrolatum, liquid)SSSSXylene (meta, ortho and para)SSSSYulepolSSSSS	
White mineral oil (Petrol, liquid)SSSWhite oilSSSSWhite spirits (Mineral spirits)SSSWhite spirit 100 (Mineral spirits)SSSWhite spirit 150 (Mineral spirits)SSSWhite spirit 160/180SSSWood oilSSSWood fatLS-3SS'VSX1 oil (petrolatum, liquid)SSSXylene (meta, ortho and para)SSSYdepolSSSS	
White oilSSSWhite spirits (Mineral spirits)SSSWhite spirit 100 (Mineral spirits)SSSWhite spirit 150 (Mineral spirits)SSSWhite spirit 160/180SSSWood oilSSSWood fatLS-3SS'VSX1 oil (petrolatum, liquid)SSSXylene (meta, ortho and para)SSSYulepolSSSS	
White spirits (Mineral spirits)SSSWhite spirit 100 (Mineral spirits)SSSWhite spirit 150 (Mineral spirits)SSSWhite spirit 160/180SSSWood oilSSSWood fatLS-3SS'VSX1 oil (petrolatum, liquid)SSSXylene (meta, ortho and para)SSSYdepolSSSS	
White spirit 100 (Mineral spirits)SSSWhite spirit 150 (Mineral spirits)SSSWhite spirit 160/180SSSWood oilSSSWool fatLS-3SS'VSX1 oil (petrolatum, liquid)SSSXylene (meta, ortho and para)SSSYdepolSSSS	
White spirit 160/180 S S S Wood oil S S S Wool fat LS-3 S S 'VSX1 oil (petrolatum, liquid) S S S	
White spirit 160/180 S S S Wood oil S S S Wool fat LS-3 S S 'VSX1 oil (petrolatum, liquid) S S S	
Wood oil S S S Wool fat LS-3 S S 'VSX1 oil (petrolatum, liquid) S S S Xylene (meta, ontho and para) S S S	
Wool fat LS-3 S S 'VSX1 oil (petrolatum, liquid) S S S Xylene (meta, ortho and para) S S S	
'VSX1 oil (petrolatum, liquid) S S S Xylene (meta, ortho and para) S S S	
Yvlepol	
Yvlenol to the	
Yarmor oils LS-3 S S	
Yellow grease U S S	
Zinc Bromide 9% (No heat) X S X	
Zinc Calcium Bromide (50%) X S X	
Zolex S S X	
Zymol LS-3 S X	.

.

i

(

Compatibility Information

÷,

Unit 1700: T-A

Cross-Linked High Density Polyethylene (XLHDPE)

Or Equivalent

CHEMICAL RESISTANCE DAT

CHEM-TAINER INDUSTRIES uses only the highest quality raw materials available. These raw materials have outstanding resistance to both physical and chemical attack. The following chart should be used as a guide for evaluating the suitability of our products with the chemical agent to be used. Special consideration must be given to the

expected service temperature, stress involved in the application and length and type of exposure (i.e. intermittent or continuous). Contact our technical staff for information on chemicals not listed or when uncertain conditions exist.

REAGENT	CONC.	. 70°			0PE 140*	70°	эр 140°	х 70°	LPE 140°	REAGENT	CONC.	ل 70*	DPE 140*	н 70*	DPE 140°	70-	эр 140°	Xi 70°	LPE 140°
Acetone	1000	B	C C	B	C	A	Α	С	C	Chlorobenzene**		С	С		C	C	C	Ċ	<u></u>
Acetaldehyde* Acetic Acid*	100% 10%		ç	B	ç	A	B	8	Ç	Chlorofoam**		č	č	C B	č	č	č	ř	č
Acetic Acid*	60%		A B	A	A	A	A	Ą	A	Chlorosulphonic Acid	100%	Ċ	Ċ	č	č	č	Ċ	Ĉ	Ĉ
Acetic Anhydride*	0040	ĉ	Ĉ	A C	8	Α	А	A	A	Chrome Alum	sat'd	Α	Α	Ā	Ā	Ă	Ă	Ă	Ă
Air		Δ	A	Ă	Ç	-	-	C	Ç	Chromic Acid	80%	-			_	Â	2	2	2
Aluminum Chloride	all conc	~ ~	Â	Â	A	A	A	A	A	Chromic Acid	50%	Α	8	А	в	A	Α	Α	в
Aluminum Fluoride	all conc		Â	Â	A	A	A	A	A	Chromic Acid	10%	Α	Α	Α	Ā	Â	Â	Â	Ă
Aluminum Sulphate	ali conc		Ā	Â	Â	Â	A A	A	A	Cider*		Α	Α	Α	Α	A	Â	ĉ	ĉ
Alums	all types		Â	Â	Â	Â	Â	A	A	Citric Acid*	sat'd	Α	Α	Α	Α	Α	A	Ă	Ă
	40 dry gas		Ä	Â	Â	Â	Â	A	A	Coconut Oil Alcohols*		Α	Α	Α	Α	Α	Α	A	A
Ammonium	ie er y gea	<u> </u>	<u> </u>	~	~	~	A	А	Α	Coffee		Α	Α	А	Α	Α	Α	A	A
Carbonate		А	А	А	А	А	А	А		Cola Concentrates*		Α	Α	Α	Α	Α	Α	Α	A
Ammonium Chloride	sat'd		Â	Â	Â	Â	Â	Â	A A	Copper Chloride	satid	Α	Α	Α	Α	А	Α	Α	A
Ammonium Fluoride	sat'd		Â	Â	Â	Â	Â	Â	Â	Copper Cyanide	satid	А	Α	Α	Α	Α	Α	Α	A
Ammonium Hydroxide	10%		Â	Â	Â	Â	Ā	Â	Ă	Copper Fluoride	2%	A	A	Α	А	Α	Α	A	A
Ammonium Hydroxide	28%		Â	Â	Â	Â	Â	Â	Â	Copper Nitrate	satid	A	A	Α	Α	А	Α	Α	Α
Ammonium Nitrate	satid		Ä	Â	Â	Â	Â	Â	Â	Copper Sulphace	satid	A	Α	А	Α	Α	А	А	Α
Ammonium	0000		,,	~	~	~	~	~	4	Com Oil*		Ą	A	Α	А	Α	Α	Α	Α
Persulphate	sat'd	А	А	А	А	А	А	А	А	Cottonseed Oil*		A	Ą	А	Α	Α	Α	Α	А
Ammonium Sulphate	sat'd	Â	Â	Â	Â	Â	Â	Â	Â	Cuprous Chloride	sat'd	Ą	A	Α	Α	А	Α	Α	Α
Ammonium			-		~	~	~	~	А	 Detergents, synthetic 	-	Α	А	А	А	Α	Α	А	Α
Metaphosphate	satid	А	А	А	А	А	Α	А	А	Developers,									
Ammonium Sulfide	satid	Â	Â	Ā	Â	Â	Ä	A	Â	photographic Dextrin		Ą	A	Α	А	Α	Α	А	А
Arnyl Acetate**	100%	ĉ	ĉ	ĉ	ĉ	Ê.	ĉ	ĉ	ĉ		satid	A	A	А	A	А	Α	Α	Α
Amyl Alcohol**	100%	Ă	Ă	Ă	Ă	Ă	в	Ă	Ă	Destrose Diano Solto	sat d	Ą	Ą	A	Α	Α	Α	А	Α
Amyl Chloride*	100%	ĉ	ĉ	ĉ	ĉ	ĉ	Č	ĉ	ĉ	Diazo Salts		A	A	Α	Α	Α	А	Α	Α
Aniline**	100%	Ă	č	ř	Ĕ	Ă	Ă	Ă	C	Oibutylphthalate*		В	B	B	B	Α	Θ	в	в
Aqua Regiat	0,000	ĉ	č	C C	č	ĉ	ĉ	ĉ	č	Dichlorobenzene**		С	C C	С	Ç	_		Ē	č
Arsenic Acid	all conc	Ă	Ă	Ă	Ă	Ă	Ă			Diethyl Kentone**		8	С	8	B		_	в	Ĉ
Aromatic		<u> </u>	<u> </u>	~	~	~	A	Α	А	Diethylene Glycol*		А	Α	Α	Α	Α	А	A	Ā
Hydrocarbons #		С	С	С	С			~	~	Oiglycolic Acid*		Α	А	А	Α	-	_	A	A
Ascorbic Acid	10%	Ă	Ă	Ă	A	_	-	ç	С	Oimethylamine		С	С	С	С	_		С	č
Barium Carbonate	sat'd	Â	Ä	Â	Â			A	A	Disodium Phosphate		А	Α	Ð	Α	Α	Α	Ā	Ā
Barium Chloride	satid	Â	A	Ä	Â	À	A	Ą	A	Emulsions,									••
Banium Hydroxide	581.0	Â	Â			A	A	Ą	A	_ photographic*		А	Α	Α	Α	А	А	Α	А
Barium Sulphace	catid	Â	Â	A	A	A	Ą	A	A	Ethyl Acetate**	100%	B	С	B	С	в	В	B	ĉ
Barium Sulphide	satid	Â		A	A	A	Ą	A	A	Ethyl Alcohol*	100%	А	Α	А	Ā	Ā	Ă	Ă	Ă
Beer	satid		A	A	A	A	A	A	A	Ethyl Alcohol*	35%	А	A	A	Ä	Ä	Â	Â	Â
Benzene**		A	A	A	A	A	A	Ç	C	Ethyl Benzene**		С	C C	С	č	ĉ		ĉ	Ê.
Benzoic Acid		ċ	c	ç	С	B	С	Ç	С	Ethyl Chloride*		С	Č	ē	č	č	0000	0000	CCC
Bismuth Carbonate	all conc	A	A	A	A	Ă.	Ą	A	Ą	Ethyl Ether*		С	Č C	C C	č	ĕ	ř	ř	ř
Bleach Lye	satid	A	A	A	A	A	Α	А	Α	Ethylene Chloride**		Ĉ	č	č	с С	č	ř	ř	č
Borax	10%	Ą	A	Α	A	A	A	Α	Α	Ethylene Glycol*		Ā	Ā	Ă	Ă	Ă	Ă	Ă	Ă
Bonic Acid	satd	Ą	A	A	A	A	А	Α	Α	Fatty Acids*		A	A	Â	Â	Â	Â	Â	Â
Boron Trifluoride	all conc	A	A	A	A	Α	Α	Α	Α	Ferric Chloride	satd	A	A	A	Ä	Δ	Â	Â	Ã
Brine		A	A	Α	A		-	Α	Α	Ferric Nitrate	sat'd	Â	Ä	Ä	Â	Â	Â	Â	Â
orminet		A	A	А	A	A	А	A C	Α	Ferrous Chloride	sat'd	A	Ä	Â	Â	Â	Â	Â	Â
	liquid	Ç	C C	C	А С С	C	С	С	С	Ferrous Sulphate		Ä	A	Â	Â	Â	Â	Â	Â
Bromine Water#	satid	Ċ	ç	Ç		Ç	-	C	С	Fish Solubles		A	Â	Â	Â	Â	Â	Â	Â
Butanediol*	10%	A	A	Α	A	A	Α	А	Α	Fluobonic Acid		Â	Â	Â	Â	Â	Â	Â	Â
Bucanedio!*	60%	A	A	A	Α	А	Α	Α	А	Fluosillic Acid	conc	A	B	Â	8	Â	ê	Â	
Butanediol*	100%	A	A	А	А	A	A	A C	Α	Fluosillic Acid	32%	A	Ă	Â	Ă	Ä	Ā	Â	A A
Butter*		A	A	А	Α	A	Α	С	С	Formic Acid	all conc	Â	Â	Â	Â	Â	Â	Â	
Houtyl Acetate**	100%	B	C	A		С		Α	Ĉ	Fructose	sat'd	Â	Â	Â	Ä	Â	Â	Â	A
Butyl Alcohol	100%	A	A	A	A	А	—	А	Α	Fruit Pulp*		A	Â	Â		Â	Â	Â	A
Jucyric Acid	conc	Ċ	Ç	Ç	Ç	-			-	Furtural	100%	ĉ		ê	A C C A	ĉ	2	2	A C C
alcium Bisulphide		A	A	A		A		А	Α	Furfuryi Alcoho!**		č	C C	ĕ	ř	C C	C	C	ž
alcium Carbonate	satid	A	A	Α		A		Α	Α	Gallic Acid*	sat'd	Ă	Ă	Ă	ă	Ă	Ă	Ă	
alcium Chlorate	satid	A	A	Α		A		Α	Α	Gasoline**		ĉ	ĉ	B		8	ĉ	A	Â
alcium Chloride	sat'd	A	Α	Α		A	Α	A	Α	Glucose		Ă	Ă	Ă		A			ç
alcium Hydroxide	conc	Α	Α	Α	Α	Α	Α	A	A	Givcenine*		2	Ä		Ą		A	A	A
alcium								•		Glycol*		A		Å	A	A.	Ą	A	A
	ach soí n	А	А	А	Α	A	8	А	А	Glycolic Acid*	30%	Å	A	A.	Ą	A.	A	A .	A
alcium Nitrate	50%	A	Ä	Â		Â		Â	Â	C		A	A	Å		A.	A	Ą	A
alcium Oxide	sat'd	А	Α	Â	A	_		Â	Â	n-Heptane**	sat. ag.	Å	A	A	A	A	A	A	A
alcium Sulphate		A	A	Â	A	Α		Â	Â	Hexachlonobenzens		ç	c	B	8		-	A	Ç
amphor Oil**		ĉ	ĉ	ê	A C	A C	A C	ĉ	ĉ	Hexanol, tertiary*		Ă.	Ą	Ą.	-	-	-	A	A
arbon Dioxide	all conc	Ă	Α	Ă		Ă	ă 🛛	Ă	Ă	Hydrobromic Acid		A.	A	A	A	_		A	Α
arbon Disulphide		6		ĉ	i G	B	Â	ĉ	ĉ			Ą.	A	A		Α		Α	Α
arbon Monoxide		Ă	Ă	Ă		Ā	Ă.	Ă	Ă	Hydrochloric Acid		A	A	A		Α	Α	A	Α
erbon		~	~	~	<u> </u>	-	~	~	~	Hydrocyanic Acid		A	A	A	Α	-	-	A	A
Tetrachloride		С	С	Ð	C i	C	C I	~	<u> </u>	Hydrafluoric Acia*		A	Α	Α		Α	Α	A	Α
arbonic Acid		Ă		Ā				ç	ç	Hydrogen		Α	Α	Α		A		A	Ä
ester Oil*	conc	Â	A	2				A	A	Hydrogen Chloride		A	Α	A		A		A	Â
hlorinet 100%		ê	ĉ	2		1	i	A	A	Hydrogen Peroxide		Α	Α	A		A	_	Â	Â
hlorine Liquidt	- , yas	ž	č	A C C		3		B	ç	Hydrogen Peraxide		Α		Α		A		A	Ā
	t d so'n	Ă	Ă	Ă		ส์	8 /	C A	A.	Hydrogen Sulphide		Α	Α	Α		A		A	Â
21030		~	^	~	~ /	~	ບ່	H.	A	Hydroquinane		A	A	A		A	A	Δ	Â

*Contact Sales Office regarding chemical concentration and temperature ranges.

24

.

Stress-crack agent—Certain surface-active materials, although they have no chemical effect on polyethylene, can accelerate the cracking of polyethylene when it is under stress. Although our tanks are generally stress free, caution should be used when large tanks are unsupported and welded fittings are used.

- Plasticizer—Certain types of chemicals are absorbed to varying degrees by polyethylene causing swelling, weight gain, softening and some loss of yield strength. These plasticizing materials cause no actual chemical degradation of the resin. Some of these chemicals have a strong plasticizing effect (e.g. aromatic hydrocarbons benzene), whereas others have weaker effects (e.g. gasoline). Certain plasticizers are sufficiently volatile that if they are removed from contact with the polyethylene, the part will "dry" out and return to its original condition with no loss of properties.
- t Oxidizers —Oxidizers are the only group of materials capable of chemically degrading polyethylene. The effects on the polyethylene may be gradual even for strong oxidizers and short-term effects may not be measurable. However, if continuous, long-term exposure is intended, the chemical effects should be cherted.

COOE

IOE Resistant, no indication that serviceability would be impained. Variable resistance, depending on conditions of use. Unresistant, not recommended for service applications under any conditions. Information not yet available. Ā

ē

_

REAGENT	CONC.	L 70°	DPE 140		HDPE * 140	, 70°	PP 140°						LOPE		DPE	I	pp	YI	LPE
Hypochlorous Acid	CONC		A	Ä	A	<u>יי י</u> A		70°			CONC.	70				70'	140-	70	140
loks*		Α	Ā	Â	Â	A	A A	A A	A A	Propargyl Alcohol*		Α	A	Α	Α		-	Ä	A
lodinet	in Kl sol'n		С	В	_	_	_	8	ĉ	n-Propyl Alcohol* Propylene Oichlonide*	· 1000-	A	A	A	А	A C	A C	А	Δ
Isopropyl Alcohol	100%		-	_	-	Α	А	А	Ă	Propylene Glycol*	100%	C	C	ç	-	С		С	ĉ
Lead Ácetate Lead Nitrate	satid		A	A	A	А	А	А	А	Pyridine		Δ	Α	A	Α	-	-	A	A
	20%	A	A	Α	A	-		Α	Α	Resonand	sat'd		Ā	Â	Ā	Α	~	A	Ċ
Linseed Oil*	100%		A C	A B	A C	A	А	А	Α	Sallcylic Acid	satid	Ā	Â	Â	Â	_	-	A	A
Magnesium Carbonate	sat'd		Ă	A	A	A A	A	A	ç	Sea Water	0404	Â	Â	Ā	Â	Ā	Ã	A	A
Magnesium Chloride	sat d	Â	Ā	Ā	Ā	A	A A	A	A	Selenic Acid		Α	Α	A	Ā	2	-	Â	Â
Magnesium Hydroxide	satid	Â	Â	Â	Â	Â	Â	A A	A A	Shartening*		Α	Α	Α	A	Α	A	Â	Â
Magnesium Nitrate	sət'd	A	A	Ā	Â	Â	Ā	A	Â	Silver Nitrate Solution		Α	Α	Α	Α	A	Â	Â	Â
Magnesium Sulphare	satid	А	А	А	A	Â	Ā	Ä	Â	Soap Solution* Sodium Acetate	any con	A	A	Α	Α	Α	Α	Α	Â
Mercuric Chloride	4040	Α	Α	Α	Α	А	A	A	Ā	Sodium Benzoate	satid	A	A	A	Α	Α	Α	Α	Α
Mercunic Cyanide	satd	A	А	А	А	А	А	A	A	Sodium Biscarbonate	35% satid	A A	A	A	A	A	А	Α	Α
Mercury Methyl Alcohol*	1000	A	A	A	А	А	А	А	A	Sodium Bisulphate	satid	Â	А А	A	A	A	A	A	Α
Methylethyl Ketone *	100%	A	A	Α	Α	Α	Α	А	А	Sodium Bisulphite	sacid	Â	Â	A A	A A	A	A	A	A
Viethylene Chlonde**	100% 100%	B C	C C	B	C	A	E	B C C	С С	Sodium Borate	380.0	Â	Â	Â	Ă	A A	A	A	Α
Milk	10090	Ă	A	B	B	в	-	C	C	Sodium Bramide	dilute	Ā	Ā	Ä	Â	Â	A A	A	A
Nineral Oils*		B	Ĉ	A B	A C	A	A	Ç	C	Sodium Carbonate	CONC	Â	Â	Â	Ā	Â	Â	A	A
Violasses		Ă	Ă	Ă	A	A A	Ð	A	Ċ	Sodium Chlorace	sat d	Α	Ä	Â	Ā	Ā	Â	Â	A A
Naphtha**		B	ĉ	Ê	ĉ	~	A _	A B	Ă C C	Sodium Chionde	satid	Α	Α	A	Â	Â	Ā	Â	Â
laphthaiene**		č	č	ĕ	-	Ā	Ā	в С	Ľ	Sodium Cyanide		Α	Α	Α	A	A	Ā	Â	Â
lickel Chlonde	CONC	Ā	Ă	Ă	Α	Â	Â	Ă	Ă	Sodium Dichromate	sat d	А	Α	А	Α	Α	A	A	Â
lickel Nitrate	sat'd	Α	Α	Α	Λ	A	Â	Â	Â	Sodium Ferri/Ferro Cyanide									
lickel Sulphate	CONC	Α	А	Α	A	A	A	Ā	Â	Sodium Fluoride	satid	A	A	А	Α	A	А	Α	Α
licotine	dilute	A	. A	Α	Α		Α	Â	Ä	Sodium Hydroxide	sat d	A	Α	Α	A	Α	Α	А	Α
	0-30%	A	А	Α	А	С	С	Α	Α	Sodium Hypochlorice	conc	A A	A	A	Α	Α	A	А	Α
litric Acidt 3 litric Acidt	10-50%	A	8	А	Θ	С	С	Α	в	Sodium Nitrate		Ā	A A	A	Ą	A	в	A	Α
	70%	A	B	A	B		С	А	в	Sodium Sulphate		Â	Ă	A	A A	A	A	A	A
ktrobenzene#*	100%	Ċ	ç	C	C	Ç	С	С	Ċ	Sodium Sulphide	sat d	Â	Ä	Â	A	A A	A	A	A
-Octane	10040		Ç	Ç	Ç		А	С	С	Sodium Sulphite	satd	Â	Â	Â	Å	Â	A A	A	A
leic Acid		Ê	A	A B	A	-	_	А	A C	Stannic Chloride	sat'd	Ä	Ā	Â	Ã	Ã	Â	A A	A
xalic Acid*	sat'd	Ă	C A	A	C A	A	B	A	Ç	Stannous Chloride	satid	A	A	Â	Ā	Ā	Â	Â	Ă
erchloroethylene*	2000	ĉ	ĉ	ĉ	ĉ	Α	8	A	A	Starch Solution*	sat d	Α	А	Â	Â	Ā	Ā	Â	Â
hosphonic Acid	95%	Ă	Б	Ă	Ă	Ā	Ā	C A	ç	Steanic Acid*	100%	Α	A	A	Ä	Ā	Â	Ā	Â
hotographic Solutions	00.0	Â	Ă	Ã	Ã	Â	Ā	A	B	Sulphuric Acid	0-50%	А	Α	A	A	Â	Ê.	Â	Ã
lating Solutions*				~	~	~	~	А	Α	Sulphunic Acidt	70%	Α	8	А	в	А	B B C	Â	ອົ
Brass		А	А	Α	Α	А	А	Α	А	Sulphuric Acidt	80%	Α	С	А	С	С	č		č
Cadmium		Α	А	Α	A	Ā	Ā	Ā	Â	Sulphuric Acidt	96%	8	С С С	A 8 8 C		Č C	_		0000
Chromium		А	Α	Α	A	A	Â	Ā	Â	Sulphunic Acidt Sulphunic Acidt	98-conc	В	Ç	B	С	С	_	Ċ	č
Copper		Α	А	Α	А	A	Â	Ā	Â	Sulphurous Acid	fuming	C	C	Ç	Ç	С	C	С	Ĉ
Gold		A	А	А	А	А	A	A	Â	Tallow"		Δ	A	Ā		A	Α	A A	Α
Indium Lead		A	Ą	A	Α	А	Α	Λ	A	Tannic Acid	satid	Ä	B A	A A	Ā	A	A	A	в
Nicket		A	A	A	A	А	Α	A	Α	Tartaric Acid	3000	Ä	Ă	A	A	A A	A	A	Α
Rhodium		A	A A	A	A	A	A	А	Α	Tetrolydrofuran**			ĉ	ê	ĉ	ĉ	A C	Â	40000
Silver		Â	A	A A	A	A	A	A	A	Titaniúm Tetrachloride*	sat'd	С С С	č	č		L		ž	Ľ.
Tin		Â	Ă	Â	А А	A A	A A	A	A	Toluene*		č	С С С	ĕ	в	c	c	ř	۲ ۲
Zinc		Â	Â	Â	Â	Ä	Ă	A A	A	Trichloroethylene		ē	Ĉ	B C	č	č	č	ř	ř
tassium Bicarbonate	satd	Â	Ā	Â	Ā	Ā	Ă	A	A	Inethylene Glycol*		Α	Α	Α			÷	ACCCCA	Ă
tassium Bromide		A	Â	Â	Ā	Â		Â	A A	Trisodium Phosphate	sat d	Α	Α	А	Α	Ā	А	Â	Â
tassium Bromate	10%o	А	А	A	Â	Ā		Â	Â	Turpentine*		С	С	8	BA	Ĉ	A C	A C	C
tassium Carbonate		Α	Α	Α	A	Â		Â	Â	Urea Urine	0-30%	A	Α	А	А	Α	Α	Α	Ā
tassium Chlorate		А		А	А	A		Ā	Â	Vanilla Extract*		A	A	Α	А	Α	Α	Α	Α
tassium Chloride		Α		Α	А	A		Ā	Â	Vinegar		Ą	A	A		Α	Α	A	Α
tessium Chromate		Α		Α	А	A		A	Â	Water		A	A	Ą	A	A	A	A	А
tassium Cvanide		A	Α	A	Α	А		A	A	Wetting Agents		A A	A	A		A	А	A	Α
tassium Oichromate tassium	40%	Α	А	A	Α	A		A	Α	Whiskey*		Ä	A A	A	A	A.	A A	A	A
Ferriv/Ferrio Cyanide				_						Wines*		Â	Å	A .		A	A	ç	Č
tassium Fluoride		A.	A	Ă.	Ą	Α		A	Α	Xylene*		ĉ	A C	A B	A	A	Â	A C C C	
Lassium Hydroxide		A		A.	A	A	A .	A	Α	Yeast		Ă	Ă	A	8 A	Ç	A C A	<u>,</u>	Č.
tassium Nitrate		A		A.	A	A	Ą.	A	Α	Zinc Bromide	satid	Â	Â	Â		A			A
assium Perborate		A A		Å.	A	A		4	Α	Zinc Carbonate		Â		Â	Å .	-			A
lassium Perchlorete				Å.		A.	Ą,	4	Α	Zinc Chloride		Â		Â		Ā			A
lassium	1070	~	Α.	A	Α	A	Α.	۹.	Α	Zinc Oxide		Â		Â		Ă			A
·	20% /	A	Α.	A	А	^				Zinc Stearate		Â		Â		-			AA
rennanganate			rn (-		A		۹.	A	Zinc Sulphate	sat'd	A					-		
ermanganate assium Persulphate		A	Α.	Δ	Δ	_		n			30 L U	~	Α	A	A A	Α	A	Δ.	Δ
assium Persulphate assium Sulphate	sat'd /			A	A	Δ		4 1	A		300 0	~	А	A	A /	A.	A	Α.	A
assium Persulphate	satid / conc /	A	A Z	A A A	Α	A A	A /	4 4	A A A		500 0	~	A	A	Α.	Ą	Α.	Α.	A

*Contact Sales Office regarding chemical concentrations and temperature ranges.